<I>Kajikia Albida</I> from Roundscale Spearfish

Total Page:16

File Type:pdf, Size:1020Kb

<I>Kajikia Albida</I> from Roundscale Spearfish BULLETIN OF MARINE SCIENCE. 87(1):147–153. 2011 doi:10.5343/bms.2010.1036 NOTE USING HEAD MEASUREMENTS TO DISTINGUISH WHITE MARLIN KAJIKIA ALBIDA FROM ROUNDSCALE SPEARFISH TETRAPTURUS GEORGII IN THE WESTERN NORTH ATLANTIC Lawrence R Beerkircher and Joseph E Serafy ABSTRACT The morphometric characteristics that separate white marlin Kajikia albida (Poey, 1860) from roundscale spearfish Tetrapturus georgii Lowe, 1841 can be difficult for non-experts to distinguish, particularly when the animals are in the water. Using the measurements of the lower jaw tip to the longest branchiostegal ray (LJBR) and the opercle (LJOP), a discriminant function is presented that will help field observers separate the two species. The function DR−W = LJBR (3.31861) + LJOP (−2.84856) − 6.37198 classified specimens as roundscale spearfish when DR−W was > 0 and as white marlin when DR−W < 0 with a 95% correct classification rate overall. Since only the head of a specimen needs to be closely observed, the method has particular utility for tournament anglers during the hook removal process. Billfishes I( stiophoridae) are large, cosmopolitan apex predators captured by both commercial and recreational fisheries. In the Atlantic Ocean, several billfish popula- tions are considered overexploited (ICCAT 2003) and are subject to international re- building efforts. One of these species, the white marlin Kajikia albida (Poey, 1860), is morphologically very similar to the co-occurring roundscale spearfish Tetrapturus georgii Lowe, 1841, raising concerns that misidentification has affected the accuracy of past stock assessments (Beerkircher et al. 2009). Differentiating white marlin from roundscale spearfish when comparing dead ani- mals onboard vessels, dockside, or in the laboratory has been made simpler by the use of scale morphology and position of the anal opening (Beerkircher et al. 2008a). Roundscale spearfish have characteristic lateral scales with wide, rounded anterior edges and, normally, multiple points; white marlin lateral scales are narrow, with usually only a single point. The position of the anal opening on roundscale spearfish is located in advance of the anal fin a distance (roughly) greater than half to three- quarters the height of the anal fin; in white marlin, the anal opening is located a dis- tance (roughly) less than half the height of the anal fin (see Beerkircher et al. 2008a for precise relationships). These characteristics (scale and anal opening morphology) are easily learned by both field samplers and the general public, and have ready ap- plication in situations where circumstances offer the opportunity for close inspec- tion of billfishes (such as landings at tournaments or onboard research vessels with the permits required to board these animals). However, current US regulations do not allow commercial fishermen to board billfishes (alive or dead) and recreational fishermen are required to release billfishes without removing them from the water if the fish is undersized or otherwise not intended for legal possession (NMFS 2006). In many situations, this prevents vessel personnel from closely examining hooked fish, thus precluding species identification based on the above characteristics. Best Bulletin of Marine Science 147 © 2011 Rosenstiel School of Marine and Atmospheric Science of the University of Miami 148 BULLETIN OF MARINE SCIENCE. VOL 87, NO 1. 2011 release practices encourage fishermen to remove gear from billfishes and other large pelagics prior to release (Prince et al. 2002). A morphometric characteristic useful in differentiating white marlin from roundscale spearfish, and which may be easily observed during the hook removal process, would help fishery participants to more accurately report billfish catches in self-reported or survey data collection programs. Based on examination of photographs taken by fisheries observers in the north- eastern Atlantic, Beerkircher et al. (2008b) suggested that branchiostegal length, rel- ative to other reference points on the head of a specimen, was a diagnostic character, but offered no statistical basis for this conclusion due to small sample sizes available at that time. Since (in most cases) this characteristic can be easily observed and pho- tographed while removing a hook from specimens, relative branchiostegal length has potential utility for use by the public and researchers to differentiate between white marlin and roundscale spearfish. Here, we examine white marlin and roundscale spearfish relative branchiostegal lengths to determine the extent to which this char- acteristic offers an alternative diagnostic approach for these two species. Methods Measurement of Specimens.—Fishery observers deployed onboard US commercial pe- lagic longline vessels fishing in the NW Atlantic, Gulf of Mexico, and Caribbean (see Keene et al. 2007 for observer program details) opportunistically collected morphometric information from all boated specimens in the white marlin/roundscale spearfish complex; specimens were identified to this level using diagnostic information given in Nakamura (1985). All boated bill- fishes were dead, which allowed rapid inspection and measurement. Following Beerkircher (2008b), observers measured lower jaw fork length, height of the first anal fin, and distance between the posterior edge of the anal opening to the anterior edge of the anal fin. Observers also measured the distance from the tip of the lower jaw to the distal end of the longest bran- chiostegal ray (hereafter referred to as LJBR), and the distance between the tip of the lower jaw to the edge of the opercle following an axial line (hereafter referred to as LJOP; Fig. 1). All Figure 1. Measurement of the distance between the tip of the lower jaw and the longest branchio- stegal ray (LJBR) and the distance between the tip of the lower jaw and the opercle (LJOP) of a billfish. NOTE 149 Table 1. Mean and ranges (in parentheses) for the following distances (in cm) measured from the tip of the lower jaw: fork length (LJFL), longest branchiostegal ray (LJBR), and opercle (LJOP) for white marlin and roundscale spearfish (n = total number of fish) observed in the northwestern Atlantic. Ratio means and ranges for LJBR:LJOP calculated for each species are also given in the last column. Species LJFL LJBR LJOP LJBR:LJOP White marlin (n = 140) 158 (133–202) 35 (29–43) 41 (34–50) 0.87 (0.79–0.97) Roundscale spearfish (n = 82) 162 (126–189) 37 (31–42) 39 (33–44) 0.95 (0.88–1.00) measurements were taken by tape measure to the nearest cm, while the mouth of the speci- men was held shut, usually by use of a nylon cable tie. Beerkircher et al. (2008b) found that the distance between the anal opening and the first anal fin AFA( ) divided by the height of the first of the anal finAFH ( ) accurately distinguished genetically-confirmed roundscale spearfish and white marlin specimens. They observed no overlap in AFA:AFH ratios between the two species, with values ≥ 0.48 being 100% diagnos- tic of roundscale spearfish. Therefore, in the present study, we used the above cut-off to as- sign species identity to each specimen that had been initially assigned into the white marlin/ roundscale spearfish complex. Discriminant Function Analyses.—Evaluation of the discriminatory power of bran- chiostegal ray length and opercle length for differentiating the two species was achieved via discriminant function analysis (DFA) using SAS (1990) statistical software. The DFA pro- vided: (1) assessment of the statistical significance of the head measurements based on F-tests of Wilks’ Lambda; (2) linear functions for calculation of discriminant scores (D values) for each specimen; (3) matrices of classification error rates with a resubstitution analysis and leave-one-out cross validation procedure in SAS (1990); and (4) posterior probabilities of cor- rect assignment of species membership for each specimen. This allowed us to calculate cut-off points for achieving ≥ 75% probability of correct classification of an individual being a white marlin or roundscale spearfish based on the two head measurements. Finally, to accommo- date fishers that may have difficulty with discriminant score calculations, we also conducted a simplified univariate DFA to assess the power of the LJBR:LJOP ratio to distinguish the two species. Results In total, 222 individuals were measured for AFA, AFH, LJBR, and LJOP, and ratios of AFA:AFH and LJBR:LJOP were calculated for each specimen (Table 1). Based on AFA:AFH values, our sample was composed of 140 white marlin and 82 roundscale spearfish.T ogether, the two head measurements were highly effective for separating white marlin from roundscale spearfish (Wilks’ Lambda = 0.29, F2,219 = 266.51, P < 0.0001). The discriminant function was: DR−W = LJBR(3.31861) + LJOP(−2.84856) − 6.37198 (Fig. 2); such that fishes were classified as roundscale spearfish whenD R−W was > 0 and as white marlin when DR−W < 0. The discriminant function with these two morphometrics correctly classified 94% of known roundscale spearfish and 96% of known white marlin (95% correct classification rate overall). The leave-one- out cross validation test also correctly classified species for 95% of the fishes. This analysis indicated > 75% accuracy in species assignment when DR−W < −1.1 for white marlin and > 1.1 for roundscale spearfish F( ig. 3). The simplified discriminant function using only the LJBR:LJOP ratio was also ef- fective in classifying species (Wilks’ Lambda = 0.28, F1,220 = 553.63, P < 0.0001), al- 150 BULLETIN OF MARINE SCIENCE.
Recommended publications
  • The 2016 SWFSC Billfish Newsletter
    The SouthwestSWFSC Fisheries 2016 Billfish Science Newsletter Center’s 2016 Billfish Newsletter Global Tagging Map El Niño fishing conditions Catch-Photo-Release mobile phone application IGFA Great Marlin Race and satellite tagging 1 Top Anglers and Captains of 2015 SWFSC 2016 Billfish Newsletter Table of Contents Special Foreword …………………………………………………………….. 3 An Inside Look ……………………………………………………………..… 4 Prologue …………………………………………………………………….… 5 Introduction ……………………………………………………………..….… 5 The International Billfish Angler Survey ………………………………....... 7 Pacific blue marlin 9 Striped marlin 10 Indo-Pacific sailfish 11 Black marlin 13 Shortbill spearfish 13 Broadbill swordfish 14 The Billfish Tagging Program ……………………………………………..... 14 The Hawaiian Islands 16 2015 Tagging-at-a-Glance Map 17 Baja California and Guerrero, Mexico 18 Southern California 18 Western Pacific 18 Top Anglers and Captains Acknowledgements ……………………………. 19 Top Tagging Anglers 19 Top Tagging Captains 21 Tag Recoveries ……………………………………………………………….. 21 Science in Action: “The IGFA Great Marlin Race and Marlin Tagging” 23 Acknowledgements ………………………………………………………....... 25 Angler Photos ……………………………………………………………..….. 26 Congratulations to Captain Teddy Hoogs of the Bwana for winning this year’s cover photo contest! Teddy photographed this spectacular marlin off the coast of Hawaii. Fish on! 2 Special Forward James Wraith, director of the SWFSC Cooperative Billfish Tagging Program since 2007, recently left the SWFSC to move back to Australia. James was an integral part of the Highly Migratory Species (HMS) program. In addition to day-to-day work, James planned and organized the research cruises for HMS at the SWFSC and was involved in tagging thresher, blue, and mako sharks in the Southern California Bight for many years. We are sad to see him go but are excited for his future opportunities and thankful for his many contributions to the program over the last 10 years.
    [Show full text]
  • Striped Marlin (Kajikia Audax)
    I & I NSW WILD FISHERIES RESEARCH PROGRAM Striped Marlin (Kajikia audax) EXPLOITATION STATUS UNDEFINED Status is yet to be determined but will be consistent with the assessment of the south-west Pacific stock by the Scientific Committee of the Central and Western Pacific Fisheries Commission. SCIENTIFIC NAME STANDARD NAME COMMENT Kajikia audax striped marlin Previously known as Tetrapturus audax. Kajikia audax Image © I & I NSW Background lengths greater than 250cm (lower jaw-to-fork Striped marlin (Kajikia audax) is a highly length) and can attain a maximum weight of migratory pelagic species distributed about 240 kg. Females mature between 1.5 and throughout warm-temperate to tropical 2.5 years of age whilst males mature between waters of the Indian and Pacific Oceans.T he 1 and 2 years of age. Striped marlin are stock structure of striped marlin is uncertain multiple batch spawners with females shedding although there are thought to be separate eggs every 1-2 days over 4-41 events per stocks in the south-west, north-west, east and spawning season. An average sized female of south-central regions of the Pacific Ocean, as about 100 kg is able to produce up to about indicated by genetic research, tagging studies 120 million eggs annually. and the locations of identified spawning Striped marlin spend most of their time in grounds. The south-west Pacific Ocean (SWPO) surface waters above the thermocline, making stock of striped marlin spawn predominately them vulnerable to surface fisheries.T hey are during November and December each year caught mostly by commercial longline and in waters warmer than 24°C between 15-30°S recreational fisheries throughout their range.
    [Show full text]
  • Fao Species Catalogue
    FAO Fisheries Synopsis No. 125, Volume 5 FIR/S125 Vol. 5 FAO SPECIES CATALOGUE VOL. 5. BILLFISHES OF THE WORLD AN ANNOTATED AND ILLUSTRATED CATALOGUE OF MARLINS, SAILFISHES, SPEARFISHES AND SWORDFISHES KNOWN TO DATE UNITED NATIONS DEVELOPMENT PROGRAMME FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS FAO Fisheries Synopsis No. 125, Volume 5 FIR/S125 Vol.5 FAO SPECIES CATALOGUE VOL. 5 BILLFISHES OF THE WORLD An Annotated and Illustrated Catalogue of Marlins, Sailfishes, Spearfishes and Swordfishes Known to date MarIins, prepared by Izumi Nakamura Fisheries Research Station Kyoto University Maizuru Kyoto 625, Japan Prepared with the support from the United Nations Development Programme (UNDP) UNITED NATIONS DEVELOPMENT PROGRAMME FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome 1985 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory. city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-42 ISBN 92-5-102232-1 All rights reserved . No part of this publicatlon may be reproduced. stored in a retriewal system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwase, wthout the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations Via delle Terme di Caracalla, 00100 Rome, Italy.
    [Show full text]
  • A Black Marlin, Makaira Indica, from the Early Pleistocene of the Philippines and the Zoogeography of Istiophorid B1llfishes
    BULLETIN OF MARINE SCIENCE, 33(3): 718-728,1983 A BLACK MARLIN, MAKAIRA INDICA, FROM THE EARLY PLEISTOCENE OF THE PHILIPPINES AND THE ZOOGEOGRAPHY OF ISTIOPHORID B1LLFISHES Harry L Fierstine and Bruce 1. Welton ABSTRACT A nearly complete articulated head (including pectoral and pelvic girdles and fins) was collected from an Early Pleistocene, upper bathyal, volcanic ash deposit on Tambac Island, Northwest Central Luzon, Philippines. The specimen was positively identified because of its general resemblance to other large marlins and by its rigid pectoral fin, a characteristic feature of the black marlin. This is the first fossil billfish described from Asia and the first living species of billfi sh positively identified in the fossil record. The geographic distribution of the two living species of Makaira is discussed, Except for fossil localities bordering the Mediterranean Sea, the distribution offossil post-Oligocene istiophorids roughly corresponds to the distribution of living adult forms. During June 1980, we (Fierstine and Welton, in press) collected a large fossil billfish discovered on the property of Pacific Farms, Inc., Tambac Island, near the barrio of Zaragoza, Bolinao Peninsula, Pangasinan Province, Northwest Cen­ tral Luzon, Philippines (Fig. 1). In addition, associated fossils were collected and local geological outcrops were mapped. The fieldwork continued throughout the month and all specimens were brought to the Natural History Museum of the Los Angeles County for curation, preparation, and distribution to specialists for study. The fieldwork was important because no fossil bony fish had ever been reported from the Philippines (Hashimoto, 1969), fossil billfishes have never been described from Asia (Fierstine and Applegate, 1974), a living species of billfish has never been positively identified in the fossil record (Fierstine, 1978), and no collection of marine macrofossils has ever been made under strict stratigraphic control in the Bolinao area, if not in the entire Philippines.
    [Show full text]
  • Status of Billfish Resources and the Billfish Fisheries in the Western
    SLC/FIAF/C1127 (En) FAO Fisheries and Aquaculture Circular ISSN 2070-6065 STATUS OF BILLFISH RESOURCES AND BILLFISH FISHERIES IN THE WESTERN CENTRAL ATLANTIC Source: ICCAT (2015) FAO Fisheries and Aquaculture Circular No. 1127 SLC/FIAF/C1127 (En) STATUS OF BILLFISH RESOURCES AND BILLFISH FISHERIES IN THE WESTERN CENTRAL ATLANTIC by Nelson Ehrhardt and Mark Fitchett School of Marine and Atmospheric Science, University of Miami Miami, United States of America FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Bridgetown, Barbados, 2016 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISBN 978-92-5-109436-5 © FAO, 2016 FAO encourages the use, reproduction and dissemination of material in this information product. Except where otherwise indicated, material may be copied, downloaded and printed for private study, research and teaching purposes, or for use in non-commercial products or services, provided that appropriate DFNQRZOHGJHPHQWRI)$2DVWKHVRXUFHDQGFRS\ULJKWKROGHULVJLYHQDQGWKDW)$2¶VHQGRUVHPHQWRI XVHUV¶YLHZVSURGXFWVRUVHUYLFHVLVQRWLPSOLHGLQDQ\ZD\ All requests for translation and adaptation rights, and for resale and other commercial use rights should be made via www.fao.org/contact-us/licence-request or addressed to [email protected].
    [Show full text]
  • IATTC-94-01 the Tuna Fishery, Stocks, and Ecosystem in the Eastern
    INTER-AMERICAN TROPICAL TUNA COMMISSION 94TH MEETING Bilbao, Spain 22-26 July 2019 DOCUMENT IATTC-94-01 REPORT ON THE TUNA FISHERY, STOCKS, AND ECOSYSTEM IN THE EASTERN PACIFIC OCEAN IN 2018 A. The fishery for tunas and billfishes in the eastern Pacific Ocean ....................................................... 3 B. Yellowfin tuna ................................................................................................................................... 50 C. Skipjack tuna ..................................................................................................................................... 58 D. Bigeye tuna ........................................................................................................................................ 64 E. Pacific bluefin tuna ............................................................................................................................ 72 F. Albacore tuna .................................................................................................................................... 76 G. Swordfish ........................................................................................................................................... 82 H. Blue marlin ........................................................................................................................................ 85 I. Striped marlin .................................................................................................................................... 86 J. Sailfish
    [Show full text]
  • (Tetrapturus Albidus) Released from Commercial Pelagic Longline Gear in the Western North
    ART & EQUATIONS ARE LINKED 434 Abstract—To estimate postrelease Survival of white marlin (Tetrapturus albidus) survival of white marlin (Tetraptu- rus albidus) caught incidentally in released from commercial pelagic longline gear regular commercial pelagic longline fishing operations targeting sword- in the western North Atlantic* fish and tunas, short-duration pop- up satellite archival tags (PSATs) David W. Kerstetter were deployed on captured animals for periods of 5−43 days. Twenty John E. Graves (71.4%) of 28 tags transmitted data Virginia Institute of Marine Science at the preprogrammed time, includ- College of William and Mary ing one tag that separated from the Route 1208 Greate Road fish shortly after release and was Gloucester Point, Virginia 23062 omitted from subsequent analyses. Present address (for D. W. Kerstetter): Cooperative Institute for Marine and Atmospheric Studies Transmitted data from 17 of 19 Rosenstiel School for Marine and Atmospheric Science tags were consistent with survival University of Miami of those animals for the duration of 4600 Rickenbacker Causeway the tag deployment. Postrelease sur- Miami, Florida 33149 vival estimates ranged from 63.0% E-mail address (for D. W. Kerstetter): [email protected] (assuming all nontransmitting tags were evidence of mortality) to 89.5% (excluding nontransmitting tags from the analysis). These results indi- cate that white marlin can survive the trauma resulting from interac- White marlin (Tetrapturus albidus incidental catch of the international tion with pelagic longline gear, and Poey 1860) is an istiophorid billfish pelagic longline fishery, which targets indicate that current domestic and species widely distributed in tropi- tunas (Thunnus spp.) and swordfish international management measures cal and temperate waters through- (Xiphias gladius).
    [Show full text]
  • Validity, Identification, and Distribution of the Roundscale Spearfish, <I>Tetrapturus Georgii</I> (Teleostei: Istio
    BULLETIN OF MARINE SCIENCE, 79(3): 483–491, 2006 ValiDitY, IDentification, anD Distribution of THE RounDscale SPearfisH, TETRAPTURUS GEORGII (TELEOSTEI: ISTIOPHORIDAE): MorPHoloGical anD Molecular eviDence Mahmood S. Shivji, Jennifer E. Magnussen, Lawrence R. Beerkircher, George Hinteregger, Dennis W. Lee, Joseph E. Serafy, and Eric D. Prince ABSTRACT The roundscale spearfish, Tetrapturus georgii Lowe, 1840, is known only from four specimens from the Mediterranean and eastern North Atlantic. Additional specimens have not been identified since 1961, making the validity and distribution of this species unclear. Analysis of 16 billfish specimens from the western North Atlantic on the basis of scale morphology, anus position, and mitochondrial DNA confirms the validity of this species and extends its distribution. Mid-lateral scales are soft, notably rounded anteriorly, and bear 2–3 points distinct from those of the sympatric longbill spearfish Tetrapturus( pfluegeri Robins and de Sylva, 1963) and white marlin (Tetrapturus albidus Poey, 1860). Position of anus relative to first anal fin and a related morphometric ratio (distance from anus to first anal fin origin: height of first anal fin) are intermediate between T. pfluegeri and T. albidus. These characteristics match those described by Robins (1974) from the four eastern North Atlantic specimens of T. georgii. The mitochondrial ND4L, ND4, and cyt b gene sequences strongly support reciprocal monophyly of the western North Atlantic specimens relative to other Atlantic istiophorids. The difficulty in distinguishing between morphologically similar T. georgii and T. albidus in the field and the previ- ously unrecognized presence of T. georgii in the western North Atlantic has implica- tions for stock assessments of T.
    [Show full text]
  • Validity, Identification, and Distribution of the Roundscale Spearfish
    Nova Southeastern University NSUWorks Marine & Environmental Sciences Faculty Articles Department of Marine and Environmental Sciences NSUWorks Citation Mahmood S. Shivji, Jennifer E. Magnussen, Lawrence R. Beerkircher, George Hinteregger, Dennis W. Lee, Joseph E. Serafy, and Eric D. Prince. 2006. Validity, Identification, and Distribution of the Roundscale Spearfish, Tetrapturus georgii (Teleostei: Istiophoridae): Morphological and Molecular Evidence .Bulletin of Marine Science , (3) : 483 -491. https://nsuworks.nova.edu/occ_facarticles/374. This Article is brought to you for free and open access by the Department of Marine and Environmental Sciences at NSUWorks. It has been accepted for inclusion in Marine & Environmental Sciences Faculty Articles by an authorized administrator of NSUWorks. For more information, please contact [email protected]. 11-1-2006 Validity, Identification, and Distribution of the Roundscale Spearfish, Tetrapturus georgii (Teleostei: Istiophoridae): Morphological and Molecular Evidence Mahmood S. Shivji Nova Southeastern University, <<span class="elink">[email protected] Jennifer E. Magnussen Nova Southeastern University Lawrence R. Beerkircher National Oceanic and Atmospheric Administration George Hinteregger National Oceanic and Atmospheric Administration Dennis W. Lee National Oceanic and Atmospheric Administration See next page for additional authors Find out more information about Nova Southeastern University and the Halmos College of Natural Sciences and Oceanography. Follow this and additional works at: https://nsuworks.nova.edu/occ_facarticles Part of the Genetics and Genomics Commons, Marine Biology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons This Article has supplementary content. View the full record on NSUWorks here: https://nsuworks.nova.edu/occ_facarticles/374 Authors Joseph E. Serafy National Oceanic and Atmospheric Administration, [email protected] Eric D.
    [Show full text]
  • 63Rd Annual Labor Day White Marlin Tournament
    Information THE OCEAN CITY MARLIN CLUB would like to extend a special thanks to our great sponsors. 63rd Annual Labor Day REGISTRATION White Marlin Level Sponsors: White Marlin Tournament Thursday, September 2 @ 6:30-8:00 p.m. Decatur Diner Ocean City Fishing Center Delaware Elevator Sunset Marina In-Person Captain’s Meeting 7:30 p.m. or Virtual Captain’s D.W. Burt Concrete Construction, Inc. SEPTEMBER 3, 4 & 5 2021 Meeting available on our website and Facebook. Over the You do not need to be phone registration available M-F 10:30-5:30 p.m. Blue Marlin Level Sponsors: a member of The Marlin Club to fish this tournament. 410-213-1613. A representative from each boat must Atlantic General Hospital Henley Construction Co. Inc. watch/attend the Captain’s Meeting. Bahia Marina Intrinsic Yacht & Ship Carey Distributors Ocean City Golf Club Open Bar - Beer & Wine Only & donated Appetizers by Consolidated Commercial Services PYY Marine Decatur Diner until 8:00 p.m. (while supplies last) DBS, Inc. Red Sun Custom Apparel Delmarvalous Photos Rt113 Boat Sales Fish in OC Ruth’s Chris Steak House AWARDS BANQUET September 5, 6:30-9:00 p.m. at the Club Billfish Level Sponsors: Awards Presentation: 8:00 p.m. Billfish Gear Ocean Downs Casino Four Tickets included with entry fee. Bluewater Yacht Sales PKS & Company, P.A. C & R Electrics, Inc. Premier Flooring Installation 1, Inc. C.J. Miller LLC Racetrack Auto & Marine FISHING DAYS Casual Designs Furniture SeaBoard Media Inc. (2 of 3) September 3, 4 & 5 Creative Concepts Steen Homes Lines In 8:00 a.m.
    [Show full text]
  • Diet of the White Marlin (Tetrapturus Albidus) from the Southwestern Equatorial Atlantic Ocean
    SCRS/2009/173 Collect. Vol. Sci. Pap. ICCAT, 65(5): 1843-1850 (2010) DIET OF THE WHITE MARLIN (TETRAPTURUS ALBIDUS) FROM THE SOUTHWESTERN EQUATORIAL ATLANTIC OCEAN P.B. Pinheiro1, T. Vaske Júnior2, F.H.V. Hazin2, P. Travassos3, M.T. Tolotti3 and T.M. Barbosa2 SUMMARY The aim of this study was to evaluate the diet of white marlin, regarding the number, weight, and frequency of occurrence of the prey items, prey-predator relationships, and feeding strategies in the southwestern equatorial Atlantic Ocean. A total of 257 white marlins were examined, of which 60 (23.3%) were male and 197 (76.7%) were female. Males ranged from 105 to 220 cm low jaw fork length (LJFL) and females ranged from 110 to 236 cm LJFL. Most prey (fish and cephalopods) ranged between 1.0 and 65.0 cm in body length, with a mean length around 10.1 cm. According to the IRI (Index of Relative Importance) ranking, the flying gurnard, Dactylopterus volitans, was the most important prey item, with 27.9% of occurrence, followed by the squid, Ornithoteuthis antillarum (Atlantic bird squid), with 21.2% occurrence. RÉSUMÉ Cette étude vise à évaluer le régime alimentaire des makaires blancs en ce qui concerne le nombre, poids et fréquence de présence des proies, la relation proie-prédateur et les stratégies trophiques dans l’Océan Atlantique équatorial sud-occidental. Un total de 257 makaires blancs ont été examinés, dont 60 (23,3%) étaient des mâles et 197 (76,7%) des femelles. La taille des mâles oscillait entre 105 et 220 cm (longueur maxillaire inférieur-fourche, LJFL) et celle des femelles entre 110 et 236 cm (LJFL).
    [Show full text]
  • Frequently Asked Questions
    atlaFrequentlyntic white Asked mQuestionsarlin 2007 Status Review WHAT ARE ATLANTIC WHITE MARLIN? White marlin are billfish of the Family Istiophoridae, which includes striped, blue, and black marlin; several species of spearfish; and sailfish. White marlin inhabit the tropical and temperate waters of the Atlantic Ocean and adjacent seas. They generally eat other fish (e.g., jacks, mackerels, mahi-mahi), but will feed on squid and other prey items. White marlin grow quickly and can reach an age of at least 18 years, based on tag recapture data (SCRS, 2004). Adult white marlin can grow to over 9 feet (2.8 meters) and can weigh up to 184 lb (82 kg). WHY ARE ATLANTIC WHITE MARLIN IMPORTANT? Atlantic white marlin are apex predators that feed at the top of the food chain. Recreational fishers seek Atlantic blue marlin, white marlin, and sailfish as highly-prized species in the United States, Venezuela, Bahamas, Brazil, and many countries in the Caribbean Sea and west coast of Africa. White marlin, along with other billfish and tunas, are managed internationally by member nations of the International Commission for the Conservation of Atlantic Tunas (ICCAT). In the United States, Atlantic blue marlin, white marlin, and Atlantic sailfish can be landed only by recreational fishermen fishing from either private vessels or charterboats. WHAT IS A STATUS REVIEW? A status review is the process of evaluating the best available scientific and commercial information on the biological status of a species and the threats it is facing to support a decision whether or not to list a species under the ESA or to change its listing.
    [Show full text]