Mechanisms of Stress-Corrosion Cracking / 3

Total Page:16

File Type:pdf, Size:1020Kb

Mechanisms of Stress-Corrosion Cracking / 3 Stress-Corrosion Cracking, Materials Performance and Evaluation, Second Edition Copyright © 2017 ASM International® R. Jones, editor All rights reserved. www.asminternational.org CHAPTER 1 Mechanisms of Stress- Corrosion Cracking* Revised by R.H. Jones, Pacific Northwest National Laboratory (Retired) and GT Engineering STRESS- CORROSION CRACKING (SCC) multaneous interaction of mechanical and is a term used to describe service failures in chemical forces results in crack propagation, engineering materials that occur by slow, envi- whereas neither factor acting independently or ronmentally induced crack propagation. The ob- alternately would result in the same effect. The served crack propagation is the result of the exact nature of this interaction is the subject of combined and synergistic interaction of me- numerous scientific investigations and is cov- chanical stress and corrosion reactions. ered in the section “Crack Propagation Mecha- Before SCC can be discussed in detail, several nisms” in this chapter. things must be clearly defined: the type of load- The stresses required to cause SCC are small, ing involved, the types of materials involved, usually below the macroscopic yield stress, and the types of environments that cause SCC, and are tensile in nature. The stresses can be exter- the nature of the interactions that result in this nally applied, but residual stresses often cause phenomenon. The term stress- corrosion crack- SCC failures. However, compressive residual ing is frequently used to describe any type of stresses can be used to prevent this phenome- environmentally induced or assisted crack prop- non. Static loading is usually considered to be agation. However, this discussion focuses on responsible for SCC, while environmentally in- the normal usage of the term as defined duced crack propagation due to cyclic loading is subsequently. defined as corrosion fatigue. The boundary be- One common misconception is that SCC is tween these two classes of phenomena is vague, the result of stress concentration at corrosion- and corrosion fatigue is often considered to be a generated surface flaws (as quantified by the subset of SCC. However, because the environ- stress- intensity factor, K); when a critical value ments that cause corrosion fatigue and SCC are of stress concentration, Kcrit, is reached, mechan- not always the same, these two should be con- ical fracture results. Although stress concentra- sidered separate phenomena. tion does occur at such flaws, it does not exceed The term stress- corrosion cracking is usually the critical value required to cause mechanical used to describe failures in metallic alloys. fracture of the material in an inert environment However, other classes of materials also exhibit (Kscc < Kcrit). Precorrosion followed by loading delayed failure by environmentally induced in an inert environment will not result in any sig- crack propagation. Ceramics exhibit environ- nificant crack propagation, while simultaneous mentally induced crack propagation (Ref 1.1), environmental exposure and application of and polymeric materials frequently exhibit craze stress will cause time-dependent subcritical cracking as a result of the interaction of applied crack propagation. The term synergy is used to stress and environmental reactions (Ref 1.2– describe this process because the combined si- 1.5). The mechanical properties of composites will degrade if exposure to the environment at- tacks the matrix, the reinforcing phase, or the *Originally by R.E. Ricker, National Institute of Standards and Technology, as Chapter 1, Mechanisms of Stress- matrix-to- reinforcement interface; if crack prop- Corrosion Cracking, in Stress- Corrosion Cracking, Materi- agation results during static loading, this degra- als Performance and Evaluation, ASM International, 1992. dation is SCC. Until recently, it was thought that 2 / Stress-Corrosion Cracking, Materials Performance and Evaluation, Second Edition pure metals were immune to SCC, but it is now either immune or susceptible. As a result, the list known that this is not true (Ref 1.6, 1.7). Be- of possible alloy/environment combinations that cause considerably more research has been con- cause SCC is continually expanding, and the ducted on the SCC behavior of metallic alloys, possibilities are virtually infinite. Some of the the discussion in this chapter focuses on SCC of more commonly observed alloy/environment metals and their alloys. combinations that result in SCC are listed in Environments that cause SCC are usually Table 1.1. aqueous and can be either condensed layers of In general, SCC is observed in alloy/environ- moisture or bulk solutions. Stress- corrosion ment combinations that result in the formation cracking is alloy/environment specific; that is, it of a film on the metal surface. These films may is frequently the result of a specific chemical be passivating layers, tarnish films, or dealloyed species in the environment. For example, the layers. In many cases, these films reduce the rate SCC of copper alloys, traditionally referred to as of general or uniform corrosion, making the season cracking, is usually due to the presence alloy desirable for resistance to uniform corro- of ammonia in the environment, and chloride sion in the environment. As a result, SCC is of ions cause or exacerbate cracking in stainless greatest concern in corrosion-resistant alloys ex- steels and aluminum alloys. Also, an environ- posed to aggressive aqueous environments. The ment that causes SCC in one alloy may not cause exact role of films in the SCC process is the sub- it in another. Changing the temperature, the de- ject of current research and is covered in the sec- gree of aeration, and/or the concentration of tion “Crack Propagation Mechanisms” in this ionic species may change an innocuous environ- chapter. Table 1.2 lists several alloy/environ- ment into one that causes SCC failure. Also, dif- ment combinations and the films that may form ferent heat treatments may make the same alloy at the crack tip. Table 1.1 Alloy/environment systems exhibiting 1.1 The Phenomenon of Stress- stress- corrosion cracking Corrosion Cracking Alloy Environment Carbon steel Hot nitrate, hydroxide, and carbonate/ bicarbonate solutions Stress- corrosion cracking is a delayed failure High- strength steels Aqueous electrolytes, particularly process. That is, cracks initiate and propagate at –9 –6 when containing H2S a slow rate (e.g., 10 to 10 m/s) until the Austenitic stainless steels Hot, concentrated chloride solutions; chloride-contaminated steam stresses in the remaining ligament of metal ex- High- nickel alloys High- purity steam ceed the fracture strength. The sequence of a brass Ammoniacal solutions events involved in the SCC process is usually Aluminum alloys Aqueous Cl–, Br–, and I– solutions Titanium alloys Aqueous Cl–, Br–, and I– solutions; divided into three stages: organic liquids; N O 2 4 • Magnesium alloys Aqueous Cl– solutions Crack initiation and stage 1 propagation Zirconium alloys Aqueous Cl– solutions; organic liquids; • Stage 2 or steady-state crack propagation I2 at 350 °C (660 °F) • Stage 3 crack propagation or final failure Table 1.2 Alloy/environment combinations and the resulting films that form at the crack tip Metal or alloy Environment Initiation layer a brass, copper- aluminum Ammonia Dealloyed layer (Cu) Gold- copper FeCl3 Dealloyed layer (Au) Acid sulfate Dealloyed layer (Au) Iron- chromium nickel Chloride Dealloyed layer (Au) Hydroxide Dealloyed layer or oxide High- temperature water Dealloyed layer or oxide a brass Nitrite Oxide Copper Nitrite Oxide Ammonia (cupric) Porous dissolution zone Ferritic steel High- temperature water Oxide Phosphate Oxide (?) Anhydrated ammonia Nitride CO/CO2/H2O Carbide CS2/H2O Carbide Titanium alloys Chloride Hydride Aluminum alloys, steels Various media Near- surface hydrogen Mechanisms of Stress-Corrosion Cracking / 3 The characteristics of each of these stages are pendent on a wide variety of parameters, such as subsequently discussed in greater detail. First, surface finish. The presence of flaws that con- however, the techniques used to measure SCC centrate stress or crevices that alter the environ- are reviewed briefly. Stress- corrosion cracking ment may dramatically change the threshold experiments can be categorized as: stress or the crack initiation time (Ref 1.9, 1.10). The entire crack initiation process is presently • Tests on statically loaded smooth samples • not well understood. Tests on statically loaded precracked samples Tests on statically loaded precracked sam- • Tests using slowly straining samples ples are usually conducted with either a constant More detailed information on these tests can applied load or with a fixed crack opening dis- be found in Chapter 17, “Evaluation of Stress- placement, and the actual rate or velocity of Corrosion Cracking,” in this book, and in Ref crack propagation, da/dt, is measured (Ref 1.11). 1.8. The magnitude of the stress distribution at the Tests on statically loaded smooth samples crack tip (the mechanical driving force for crack are usually conducted at various fixed stress lev- propagation) is quantified by the stress-intensity els, and the time to failure of the sample in the factor, K, for the specific crack and loading ge- environment is measured. Figure 1.1 illustrates ometry. As a result, the crack propagation rate, the typical results obtained from this type of test. da/dt, is plotted versus K, as illustrated in Fig. In Fig. 1.1, the logarithm of
Recommended publications
  • Engine Components and Filters: Damage Profiles, Probable Causes and Prevention
    ENGINE COMPONENTS AND FILTERS: DAMAGE PROFILES, PROBABLE CAUSES AND PREVENTION Technical Information AFTERMARKET Contents 1 Introduction 5 2 General topics 6 2.1 Engine wear caused by contamination 6 2.2 Fuel flooding 8 2.3 Hydraulic lock 10 2.4 Increased oil consumption 12 3 Top of the piston and piston ring belt 14 3.1 Hole burned through the top of the piston in gasoline and diesel engines 14 3.2 Melting at the top of the piston and the top land of a gasoline engine 16 3.3 Melting at the top of the piston and the top land of a diesel engine 18 3.4 Broken piston ring lands 20 3.5 Valve impacts at the top of the piston and piston hammering at the cylinder head 22 3.6 Cracks in the top of the piston 24 4 Piston skirt 26 4.1 Piston seizure on the thrust and opposite side (piston skirt area only) 26 4.2 Piston seizure on one side of the piston skirt 27 4.3 Diagonal piston seizure next to the pin bore 28 4.4 Asymmetrical wear pattern on the piston skirt 30 4.5 Piston seizure in the lower piston skirt area only 31 4.6 Heavy wear at the piston skirt with a rough, matte surface 32 4.7 Wear marks on one side of the piston skirt 33 5 Support – piston pin bushing 34 5.1 Seizure in the pin bore 34 5.2 Cratered piston wall in the pin boss area 35 6 Piston rings 36 6.1 Piston rings with burn marks and seizure marks on the 36 piston skirt 6.2 Damage to the ring belt due to fractured piston rings 37 6.3 Heavy wear of the piston ring grooves and piston rings 38 6.4 Heavy radial wear of the piston rings 39 7 Cylinder liners 40 7.1 Pitting on the outer
    [Show full text]
  • Tech Spotlight
    impact.qxd 3/12/04 11:25 AM Page 1 TECH SPOTLIGHT Impact Testing notched side by the moving striker by the metrology of the parts that are Wayne Hayward pendulum, and the energy needed to subject to the most wear and tear, and Tinius Olsen Testing Machine Co. break off the free end is the measure some machines were manufactured Horsham, Pennsylvania of the impact strength. This article before strict adherence to the specifi- discusses the equipment, calibration, cations in ASTM E23 was deemed to and procedures for Charpy testing. be critical. Accurate results are not pos- he purpose of impact testing is to sible if the equipment is not operating Tdetermine the toughness of a ma- Impact testing equipment according to the specification; there- terial by measuring the amount of en- Instruments for impact testing of fore, it is strongly recommended that ergy absorbed by a specimen as it frac- metals have been manufactured com- the impact tester be calibrated and/or tures while being struck by a striker mercially since the 1900’s, and several verified by an accredited calibration pendulum moving at high speed. The manufacturers of testing equipment service at regular intervals. impact strength is defined as the max- meet the requirements of ASTM E23, imum amount of energy that can be “Standard Test Methods for Notched Instrument calibration absorbed by the specimen without Bar Impact Testing of Metallic Mate- A calibration swing is performed to fracture. rials.” The standard provides dimen- ensure that energy losses due to In the Charpy impact test, a notch sion and tolerance requirements for windage and friction in the bearings is placed in the specimen.
    [Show full text]
  • Intergranular Corrosion (IGC)
    Intergranular Corrosion (IGC) Example: Weld Decay When stainless steel (SS) is Microstructure of metals and alloys is made up of grains (separa ted by heated to about 650 0C, Cr C grain boundaries) 23 6 carbides form at the GB and the metal is said to be “sensitised ” Intergranular corrosion is a localized attack along the grain bo undaries, or immediately adjacent to grain boundaries, while the bulk of t he Cr -rich GB precipitates lead to a grains remain largely unaffected local depletion of Cr immediately Cr C adjacent to these precipitates, IGC is associated: 23 6 leaving these areas vulnerable to 1. With chemical segregation effects (impurities segregate at grain corrosive attack in certain boundaries) electrolytes. 2. Precipitate of compounds (e.g; carbides) at grain boundaries If the Cr concentration falls low IGC then occurs at the GB phase that has lost an element necessa ry enough (<9%), SS will no longer for adequate corrosion resistance: the GB becomes more anodic remain passive and corrosion relative to the rest of the metal surface (which is cathodic). occurs. Sensitisation of SS “Sensitisation ” of stainless Prevention of weld decay: steels is also common in the heat affected zone (HAZ) during welding and the resultant 1. Use low carbon content grade stainless steel, e.g: 316L, 304L ~ corrosion is known as “weld 0.03 wt%, so carbide formation is minimal. IGC in HAZ of SS decay ” 2. Use a stabilised grade of SS, which contain strong carbide -forming Many Al base alloys are elements such as Nb or Ti susceptible to IGC if phases present at GB ’s are anodic to Al 3.
    [Show full text]
  • Intergranular Corrosion of Extruded Alloy AA6005 and AA6082
    Proceedings of the 9th International Conference on Aluminium Alloys (2004) 818 Edited by J.F. Nie, A.J. Morton and B.C. Muddle © Institute of Materials Engineering Australasia Ltd Intergranular Corrosion of Extruded AA6000-Series Model Alloys G. Svenningsen1, M. Hurlen Larsen1, J-E. Lein2, J-H. Nordlien3, K. Nisancioglu1 1 Department of Materials Technology, NTNU, NO-7491 Trondheim, Norway 2 SINTEF Materials Technology, NO-7465 Trondheim, Norway 3 Hydro Aluminium, R&D Materials Technology, NO-4265 Håvik, Norway Keywords: AlMgSi alloys, intergranular corrosion, Q-phase Abstract Susceptibility to intergranular corrosion (IGC) of 6000-series model alloys extruded in the laboratory was investigated as a function of Cu content, cooling rate after extrusion and artificial aging. One alloy type contained about 0.6 wt% each of Mg and Si with varying Cu content. The second type was a Cu-free alloy with higher Si content (ca. 1%). Extrusions with low Cu content (≤ 0.02 wt%) were resistant to localised corrosion, while those with high Cu content (0.17 wt%) could become susceptible to IGC. FE-SEM investigation revealed large grain boundary precipitates on air cooled samples. These precipitates were Mg2Si and Q-phase (Al5Cu2Mg8Si6) in the samples susceptible to IGC. Only Mg2Si was present in the corrosion-resistant samples. IGC susceptibility was attributed to the microgalvanic coupling between the noble Q-phase particles and the adjacent depleted zone. IGC can be prevented by proper heat treatment. 1. Introduction IGC is the result of microgalvanic processes along grain boundaries [1,2]. Galvanic coupling between the grain boundary particles and the matrix, grain boundary particles and the adjacent depleted zone, or between matrix and the depleted zone may result in preferential corrosion along the grain boundary.
    [Show full text]
  • Galling and Galling Resistance of Stainless Steels
    Stainless Steel Advisory Service Tel: 0114 267 1265 Fax 0114 266 1252 A service provided by the SSAS Information Sheet No.5.60 th British Stainless Steel Association Issue 02 12 March 2001 Page 1 of 1 Galling and Galling Resistance of Stainless Steels Introduction Galling, or cold welding as it is sometimes referred to as, is a form of severe adhesive wear. Adhesive wear occurs between two metal surfaces that are in relative motion to each other and under sufficient load to permit the transfers of material between themselves. This is a solid-phase welding process. The load must be sufficient, during relative motion, to disrupt the protective oxide layer covering surface asperities of the metal and permit metal to metal contact. Under high stress and poor lubrication conditions, stronger bonds may form over a larger surface area. Large fragments or surface protrusions may be formed and the result is galling of the surfaces. Severe galling can result in the seizure of metal components. Materials which are highly ductile or which possess low work-hardening rates tend to be prone to galling. Austenitic stainless steels show a tendency to gall under certain conditions. Factors Affecting Wear and Galling The factors affecting wear and galling are related to design, lubrication, environment, and steel properties. The material properties relevant to the issue of galling of stainless steels include: - • design tolerances and surface finish of the steel • surface properties (hardness) and structure of the steel • applied load • contact area and degree of movement. Design tolerances should provide sufficient clearance. The contact load on sliding components should be kept to a minimum, while the contact area should be maximised.
    [Show full text]
  • W+B Materials Testing Systems
    w+b Materials Testing Systems w+b walter+bai ag Testing Machines Industriestrasse 4, 8224 Löhningen, Switzerland, Tel. +41 (0)52 687 25 25, Fax +41 (0)52 687 25 20 E-Mail: [email protected] / Internet: http://www.walterbai.com © Copyright 2008 walter+bai ag Testing Machines All right reserved. All data subject to modifications without notice. Version 3.1 / 04.04.2008 / pw 2 walter+bai ag Testing Machines Section Guide w+b Introduction Page 5 A Electromechanical Testing Machines Page 23 B Servohydraulic Testing Machines Page 55 C Dynamic Testing Systems Page 69 D Customer Specific Testing Machines Page 93 E Rotary Bending Testing Machines Page 99 F Pendulum Impact Testers Page 107 G Servo-Actuator Testing Installations Page 121 H Internal Pressure Testing Systems Page 133 I Modernisations of Existing Machines Page 139 J Software and Digital Controllers Page 151 K Accessories for Materials Testing Page 171 walter+bai ag Testing Machines 3 walter+bai ag Testing Machines Introduction walter+bai ag Testing Machines Industriestrasse 4, 8224 Löhningen, Switzerland, Tel. +41 (0)52 687 25 25, Fax +41 (0)52 687 25 20 E-Mail: [email protected] / Internet: http://www.walterbai.com w+b Introduction walter+bai ag – Testing Machines Introduction walter+bai ag Testing Machines supplies a wide range material testing machines and systems for the safety and quality of materials, industrial products and buildings. Mechanical testing is carried out in many industrial sectors, such as the automotive and aircraft industry, metal industry, plastic and rubber industry, the chemical industry, construction industry, bio mechanics as well as institutes and universities.
    [Show full text]
  • Fatigue Mechanical Life Design-A Review
    International Journal of Engineering Research and General Science Volume 5, Issue 2, March-April, 2017 ISSN 2091-2730 Fatigue Mechanical Life Design-A Review Dr L.C Singal1, Rajwinder Singh Gill2, Aishna Mahajan3 1Professor, Department of Mechanical Engineering, Chandigarh Engineering College, Landran, Mohali, Punjab, India [email protected], +919815477612 Abstract Fatigue is due to cyclic loading and unloading of one kind or the other. It is due to the presence of discontinuities in the material. Mostly fatigue failure is progressive and plastic in nature. It is due to the nucleation, growth and propagation of a micro crack at the point of a discontinuity. There are materials having unlimited fatigue life (plain low carbon steels) as well as limited fatigue life (nonferrous as well as ferrous materials). Fatigue is mostly due to tensile stresses and is random as well as sudden without any warning. 90 % of the service failures are due to fatigue. Lot of work on fatigue failures has already been done and is still continued because of very complex nature of fatigue failures which result in loss of life and property. Fatigue failures thus must be avoided by a proper selection of material, surface finish, stress raisers, residual stresses, reliability, surrounding environment and temperature as per type the cyclic loading and unloading. Fatigue can be reduced by proper selection of fatigue resistant material like composites, by drilling a hole at the point of a probable crack, use of laser peeing and high frequency mechanical impact (HFMI) treatment of welds. Stress fatigue and strain fatigue life approaches have been used for plastic and elastic deformations respectively.
    [Show full text]
  • Vertical Turbine Pumps Models VIT, VIC & VIS
    An ITT Brand Vertical Turbine Pumps Models VIT, VIC & VIS Flexibility by Design: This bulletin is designed to assist the user in selecting Three Pump Models, One Common Bowl Assembly the best pump for the conditions required; however, any The three different pump models in the vertical turbine line questions will be answered promptly by calling the Goulds have one thing in common – the hydraulic design of the sales office or representative in your area. pump bowl assembly. Using state-of-the-art techniques in turbine pump design, Goulds vertical turbine line covers a wide range of hydraulic conditions to meet virtually every pumping service in the industry with optimum efficiency. Goulds flexibility of design allows the use of a wide range of materials and design features to meet the custom requirements of the user. No matter what the requirements, Goulds can design and manufacture the pump to best satisfy them, specifically and thoroughly. Driver Discharge Driver Adapter Fabricated Fabricated Discharge Discharge Head Head Bowl Assembly Flanged Flanged Column Column Suction Can Adapter Bowl BoBowlwl Assembly Submersible Assembly Assembly Motor 2 Vertical Turbine Pumps Vertical Turbine Pumps Goulds Vertical Turbine Pumps Pump Bowl Assembly The bowl assembly is the heart of the vertical turbine pump. The impeller and diffuser type casing are designed to deliver the head and capacity that your system requires in the most efficient way possible. The fact that the vertical turbine pump can be multi-staged allows maximum flexibility both in the initial pump selection and in the event that future system modifications require a change in the pump rating.
    [Show full text]
  • Analysis of Fatigue and Wear Behaviour in Ultrafine Grained Connecting Rods
    metals Article Analysis of Fatigue and Wear Behaviour in Ultrafine Grained Connecting Rods Rodrigo Luri, Carmelo J. Luis, Javier León, Juan P. Fuertes, Daniel Salcedo and Ignacio Puertas * Mechanical, Energetics and Materials Engineering Department, Public University of Navarre, Campus Arrosadía s/n, Pamplona 31006, Spain; [email protected] (R.L.); [email protected] (C.J.L.); [email protected] (J.L.); [email protected] (J.P.F.); [email protected] (D.S.) * Correspondence: [email protected]; Tel.: +34-948-169-305 Received: 3 July 2017; Accepted: 20 July 2017; Published: 29 July 2017 Abstract: Over the last few years there has been an increasing interest in the study and development of processes that make it possible to obtain ultra-fine grained materials. Although there exists a large number of published works related to the improvement of the mechanical properties in these materials, there are only a few studies that analyse their in-service behaviour (fatigue and wear). In order to bridge the gap, in this present work, the fatigue and wear results obtained for connecting rods manufactured by using two different aluminium alloys (AA5754 and AA5083) previously deformed by severe plastic deformation (SPD), using Equal Channel Angular Pressing (ECAP), in order to obtain the ultrafine grain size in the processed materials are shown. For both aluminium alloys, two initial states were studied: annealed and ECAPed. The connecting rods were manufactured from the previously processed materials by using isothermal forging. Fatigue and wear experiments were carried out in order to characterize the in-service behaviour of the components.
    [Show full text]
  • Low Alloy Steel Susceptibility to Stress Corrosion Cracking in Hydraulic
    LOW ALLOY STEEL SUSCEPTIBILITY TO STRESS CORROSION CRACKING IN HYDRAULIC FRACTURING ENVIRONMENT Thesis Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Master of Science in Chemical Engineering By Ezechukwu J. Anyanwu Dayton, OH May, 2014 LOW ALLOY STEEL SUSCEPTIBILITY TO STRESS CORROSION CRACKING IN HYDRAULIC FRACTURING ENVIRONMENT Name: Anyanwu, Ezechukwu John APPROVED BY: ______________________ ________________________ Douglas C. Hansen, Ph.D. Sean C. Brossia, Ph.D. Advisory Committee Chairman Research Advisor Research Advisor and Professor Senior Vice President and Chemical and Materials Engineering Senior Principal Engineer DYCE USA ________________________ Robert J. Wilkens, Ph.D., P.E. Committee Member Professor Chemical and Materials Engineering _______________________ ________________________ John G. Weber, Ph.D. Tony E. Saliba, Ph.D. Associate Dean Dean, School of Engineering School of Engineering and Wilke Distinguished Professor ii ABSTRACT LOW ALLOY STEEL SUSCEPTIBILITY TO STRESS CORROSION CRACKING IN HYDRAULIC FRACTURING ENVIRONMENT Name: Anyanwu, Ezechukwu John University of Dayton Research Advisors: Dr. Douglas C. Hansen Dr. Sean C. Brossia The pipelines used for hydraulic fracturing (aka. “fracking”) are often operating at a pressure above 10000psi and thus are highly susceptible to Stress Corrosion Cracking (SCC). This is primarily due to the process of carrying out fracturing at a shale gas site, where the hydraulic fracturing fluid is pumped through these pipes at very high pressure in order to initiate fracture in the shale formation. While the fracturing fluid is typically more than 99% water, other components are used to perform various functions during the fracturing process. Research into the occurrence of SCC reveals that SCC is engendered by a number of factors, of which two main contributors are stress in iii the pipe steel and a particular type of corrosive environment in contact with the pipeline in the service setting.
    [Show full text]
  • 3Rd Edition A.R
    WEAR – MATERIALS, MECHANISMS AND PRACTICE Editors: M.J. Neale, T.A. Polak and M. Priest Guide to Wear Problems and Testing for Industry M.J. Neale and M. Gee Handbook of Surface Treatment and Coatings M. Neale, T.A. Polak, and M. Priest (Eds) Lubrication and Lubricant Selection – A Practical Guide, 3rd Edition A.R. Lansdown Rolling Contacts T.A. Stolarski and S. Tobe Total Tribology – Towards an integrated approach I. Sherrington, B. Rowe and R. Wood (Eds) Tribology – Lubrication, Friction and Wear I.V. Kragelsky, V.V. Alisin, N.K. Myshkin and M.I. Petrokovets Wear – Materials, Mechanisms and Practice G. Stachowiak (Ed.) WEAR – MATERIALS, MECHANISMS AND PRACTICE Edited by Gwidon W. Stachowiak Copyright © 2005 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England Telephone (+44) 1243 779777 Chapter 1 Copyright © I.M. Hutchings Email (for orders and customer service enquiries): [email protected] Visit our Home Page on www.wiley.com Reprinted with corrections May 2006 All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to [email protected], or faxed to (+44) 1243 770620.
    [Show full text]
  • Residual Stress and Its Role in Failure
    Home Search Collections Journals About Contact us My IOPscience Residual stress and its role in failure This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2007 Rep. Prog. Phys. 70 2211 (http://iopscience.iop.org/0034-4885/70/12/R04) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 213.233.174.211 The article was downloaded on 19/12/2010 at 14:34 Please note that terms and conditions apply. IOP PUBLISHING REPORTS ON PROGRESS IN PHYSICS Rep. Prog. Phys. 70 (2007) 2211–2264 doi:10.1088/0034-4885/70/12/R04 Residual stress and its role in failure P J Withers School of Materials, University of Manchester, Grosvenor St., Manchester, M1 7HS, UK E-mail: [email protected] Received 15 January 2007, in final form 17 September 2007 Published 27 November 2007 Online at stacks.iop.org/RoPP/70/2211 Abstract Our safety, comfort and peace of mind are heavily dependent upon our capability to prevent, predict or postpone the failure of components and structures on the basis of sound physical principles. While the external loadings acting on a material or component are clearly important, There are other contributory factors including unfavourable materials microstructure, pre- existing defects and residual stresses. Residual stresses can add to, or subtract from, the applied stresses and so when unexpected failure occurs it is often because residual stresses have combined critically with the applied stresses, or because together with the presence of undetected defects they have dangerously lowered the applied stress at which failure will occur.
    [Show full text]