A Variational Technique to Estimate Snowfall Rate from Coincident Radar, Snowflake, and Fall-Speed Observations

Total Page:16

File Type:pdf, Size:1020Kb

A Variational Technique to Estimate Snowfall Rate from Coincident Radar, Snowflake, and Fall-Speed Observations Atmos. Meas. Tech., 10, 2557–2571, 2017 https://doi.org/10.5194/amt-10-2557-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. A variational technique to estimate snowfall rate from coincident radar, snowflake, and fall-speed observations Steven J. Cooper1, Norman B. Wood2, and Tristan S. L’Ecuyer3 1Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT, USA 2Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, WI, USA 3Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, WI, USA Correspondence to: Steven J. Cooper ([email protected]) Received: 1 February 2017 – Discussion started: 15 February 2017 Revised: 12 June 2017 – Accepted: 13 June 2017 – Published: 20 July 2017 Abstract. Estimates of snowfall rate as derived from radar 1 Introduction reflectivities alone are non-unique. Different combinations of snowflake microphysical properties and particle fall speeds can conspire to produce nearly identical snowfall rates for The high-latitude regions play a critical role in shaping cli- given radar reflectivity signatures. Such ambiguities can re- mate response to anthropogenic forcing. Model predictions sult in retrieval uncertainties on the order of 100–200 % for suggest that it is these areas that are most susceptible to individual events. Here, we use observations of particle size change and will experience the most dramatic temperature distribution (PSD), fall speed, and snowflake habit from the increase in response to the release of greenhouse gases into Multi-Angle Snowflake Camera (MASC) to constrain esti- the atmosphere (Manabe and Stouffer, 1980; Holland and mates of snowfall derived from Ka-band ARM zenith radar Bitz, 2003; Serreze and Francis, 2006). Observed changes in (KAZR) measurements at the Atmospheric Radiation Mea- the Arctic over the late 20th century and early 21st century surement (ARM) North Slope Alaska (NSA) Climate Re- have been dramatic and have included increased surface tem- search Facility site at Barrow. MASC measurements of mi- perature and decreased sea ice, permafrost, glacial ice sheet, crophysical properties with uncertainties are introduced into and spring Arctic snow cover extents (Serreze et al., 2000; a modified form of the optimal-estimation CloudSat snow- Frauenfeld et al., 2004; Dyurgerov and Meier, 2005; Stroeve fall algorithm (2C-SNOW-PROFILE) via the a priori guess et al., 2008, 2014; Brown et al., 2010; Perlwitz et al., 2015, and variance terms. Use of the MASC fall speed, MASC among numerous others). PSD, and CloudSat snow particle model as base assumptions Snowfall can dramatically change surface conditions at resulted in retrieved total accumulations with a −18 % dif- high-latitude regions, acting to increase shortwave surface ference relative to nearby National Weather Service (NWS) albedo while impacting sensible and latent heat fluxes and observations over five snow events. The average error was longwave emission (Cohen and Rind, 1991). Changes in 36 % for the individual events. Use of different but reason- snow cover can feed back on snow cover, sea ice, and able combinations of retrieval assumptions resulted in esti- permafrost distributions (Brown, 2000; Ramonovsky et al., mated snowfall accumulations with differences ranging from 2002; Holland et al., 2006; Vavrus, 2007), where the effects −64 to C122 % for the same storm events. Retrieved snow- on permafrost in turn may affect high-latitude carbon storage. fall rates were particularly sensitive to assumed fall speed Snowfall changes at higher north latitudes may also impact and habit, suggesting that in situ measurements can help to freshening of the North Atlantic Ocean and the strength of constrain key snowfall retrieval uncertainties. More accurate the Atlantic Meridional Overturning Circulation. Peterson et knowledge of these properties dependent upon location and al. (2006) attributed more than half of the cumulative fresh- meteorological conditions should help refine and improve water input anomaly in the Arctic and high-latitude North ground- and space-based radar estimates of snowfall. Atlantic oceans over the previous 50 years to increases in net precipitation over land and oceans, exceeding the estimated Published by Copernicus Publications on behalf of the European Geosciences Union. 2558 S. J. Cooper et al.: A variational technique to estimate snowfall rate contributions from glacial melt and sea ice reduction. Snow- tinues the global monitoring of snowfall with dual-frequency fall is also important as it provides mass influx for vast glacial Ka-band and Ku-band radar and extensive ground measure- ice sheets such as those found in Antarctica and Greenland ment activities (Skofronick-Jackson et al., 2015). (Lenaerts et al., 2013; Palerme et al., 2014). The distribu- Despite such efforts, validation activities suggest that un- tion of snowfall helps define ice sheet dynamics, and the rel- certainties in retrieved snowfall rates can still be on the ative difference between snowfall and melt will impact the order of 200 % for individual snow events (Wood, 2011). long-term survival of these glaciers (Van Tricht et al., 2016). In our retrieval scheme, instead of using a priori guesses Significant loss of ice sheets may have deleterious effects on of snowflake microphysical properties from field campaigns human society through a corresponding rise of global ocean such as C3VP, we used coincident observations of snowflake levels (Gardner et al., 2013; Jacob et al., 2012). microphysical properties from the Multi-Angle Snowflake The quantitative estimation of snowfall at the global scale Camera (MASC; Garrett et al., 2012) to constrain the radar- from spaceborne measurements has occurred only recently. based retrieval approach. The MASC takes multiple images Initial retrieval approaches were based on passive microwave of snowflakes in free fall while simultaneously measuring fall measurements (Skofronick-Jackson et al., 2004; Noh et al., speed. From these pictures, estimates of snowflake maximum 2006) with a shift in emphasis to radar observations with particle dimension, habit, and other properties that could be the launch of the CloudSat Cloud Profiling Radar (CPR) in used to refine a radar retrieval scheme are estimated. It should 2006. Matrosov et al. (2007) and Liu (2008a) demonstrated be noted, however, that any instrument that measures snow the first-order capability of the CloudSat CPR to retrieve ver- particle properties or fall speed, e.g., the Precipitation Imag- tical profiles of dry snowfall. Kulie and Bennartz (2009), in ing Package (Newman et al., 2009), could replace the role of turn, used CloudSat CPR reflectivities to estimate global dry the MASC in the variational approach presented in this work. snowfall rate for a year of CloudSat data. They found that We describe here a retrieval technique for snowfall rate snowfall estimates depended critically upon assumed rela- and its application to five snow events as observed at the tionships between radar reflectivity and snowfall particle size Atmospheric Radiation Measurement (ARM) North Slope distributions (PSDs) and shapes. Alaska (NSA) Climate Research Facility site at Barrow. These studies suggest that estimates of snowfall as derived Our scheme uses ground-based Ka-band ARM zenith radar from radar reflectivities alone are non-unique. Numerous dif- (KAZR) measurements for reflectivity profiles and was di- ferent combinations of snowflake microphysical properties rectly modified from the W-band CloudSat 2C-SNOW- and snow particle fall speeds may yield nearly identical sur- PROFILE algorithm. The flexible optimal-estimation frame- face snowfall rates for a given reflectivity profile. As such, work was used to incorporate coincident MASC observations use of traditional Ze–S relationships to quantify snowfall into the radar-based scheme through the retrieval a priori cannot be expected to produce accurate results for all snow- terms. A primary objective was to identify those combina- fall events. tions of retrieval assumptions that allowed the best match From an operational retrieval perspective, clever selection with snowfall observations at the Barrow site for five snow of representative snowflake microphysical properties may events during April and May 2014. Another objective was produce estimates of snowfall amounts that agree well with to quantify the sensitivity of snowfall rate retrieval results reported values for climate or regional applications. For ex- to the key microphysical assumptions of particle size distri- ample, Wood et al. (2015; but see also Wood, 2011) devel- bution, habit, and fall speed from the MASC. These results oped snowflake models for the CloudSat snowfall retrieval were contrasted with snowfall rates found using alternate as- algorithm based upon field campaigns focused on cold- sumptions such as the Locatelli and Hobbs (1974, hereafter season clouds and precipitation, principally the Canadian LH74) particle dimension–fall speed parameterizations, ob- CloudSat–CALIPSO Validation Project (C3VP, Hudak et al., served KAZR Doppler velocities, and previous field cam- 2006). They used this a priori knowledge of snowfall micro- paign estimates of snow particle size distributions. In Sect. 2, physics to refine expected snowfall–radar reflectivity rela- we discuss the methodology including the CloudSat snowfall tionships for the optimal-estimation-based (Rodgers, 2000) retrieval scheme, the MASC observations,
Recommended publications
  • Snow Nowcasting Using a Real-Time Correlation of Radar Reflectivity
    20 JOURNAL OF APPLIED METEOROLOGY VOLUME 42 Snow Nowcasting Using a Real-Time Correlation of Radar Re¯ectivity with Snow Gauge Accumulation ROY RASMUSSEN AND MICHAEL DIXON National Center for Atmospheric Research, Boulder, Colorado STEVE VASILOFF National Severe Storms Laboratory, Norman, Oklahoma FRANK HAGE,SHELLY KNIGHT,J.VIVEKANANDAN, AND MEI XU National Center for Atmospheric Research, Boulder, Colorado (Manuscript received 21 November 2001, in ®nal form 13 June 2002) ABSTRACT This paper describes and evaluates an algorithm for nowcasting snow water equivalent (SWE) at a point on the surface based on a real-time correlation of equivalent radar re¯ectivity (Ze) with snow gauge rate (S). It is shown from both theory and previous results that Ze±S relationships vary signi®cantly during a storm and from storm to storm, requiring a real-time correlation of Ze and S. A key element of the algorithm is taking into account snow drift and distance of the radar volume from the snow gauge. The algorithm was applied to a number of New York City snowstorms and was shown to have skill in nowcasting SWE out to at least 1 h when compared with persistence. The algorithm is currently being used in a real-time winter weather nowcasting system, called Weather Support to Deicing Decision Making (WSDDM), to improve decision making regarding the deicing of aircraft and runway clearing. The algorithm can also be used to provide a real-time Z±S relationship for Weather Surveillance Radar-1988 Doppler (WSR-88D) if a well-shielded snow gauge is available to measure real-time SWE rate and appropriate range corrections are made.
    [Show full text]
  • Quantitative Interpretation of Laser Ceilometer Intensity Profiles
    396 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 14 Quantitative Interpretation of Laser Ceilometer Intensity Pro®les R. R. ROGERS AND M.-F. LAMOUREUX Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada L. R. BISSONNETTE Defence Research Establishment Valcartier, Courcelette, Quebec, Canada R. M. PETERS Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania (Manuscript received 23 July 1996, in ®nal form 28 October 1996) ABSTRACT The authors have used a commercially available laser ceilometer to measure vertical pro®les of the optical extinction in rain. This application requires special signal processing to correct the raw data for the effects of receiver noise, high-pass ®ltering, and the incomplete overlap of the transmitted beam with the receiver ®eld of view at close range. The calibration constant of the ceilometer, denoted by C, is determined from the pro®le of the corrected returned power in conditions of moderate attenuation in which the power is completely extin- guished over a distance on the order of 1 km. In this determination, the value of the backscatter-to-extinction ratio k of the scattering medium must be speci®ed and an allowance made for the effects of multiple scattering. These requirements impose an uncertainty on C that can amount to 650%. An alternative to determining the calibration constant is explained, which does not require specifying k, although it assumes that k is constant with height. Using this alternative approach, the authors have estimated many extinction pro®les in rain and compared them with radar re¯ectivity pro®les measured with a UHF boundary layer wind pro®ler.
    [Show full text]
  • A Study on Snow Density Variations at Different Elevations
    Brian Miretzky 1 A Study on Snow Density Variations at Different Elevations and the Related Consequences; Especially to Forecasting. Brian J. Miretzky Senior Undergrad at the University of Wisconsin- Madison ABSTRACT With observations becoming more common and forecasting becoming more accurate snow density research has increased. These new observations can be correlated with current knowledge to develop reasons for snow density variations. Currently there is still no specific consensus on what are the important characteristics in snow density variations. There are many points of general agreement such as that temperature and relative humidity are key factors. How to incorporate these into snowfall prediction is the key. Once there is more substantiated knowledge, more accurate forecasts can be made. Finally, the last in the chain of events is that society can plan accordingly to this new data. Better prediction means less work, less time, and less money spent. This study attempts to determine if elevation is an important characteristic in snow density variations. It also looks at computer models and how snow density is used in conjunction with these models to make snowfall projections. The results seem to show elevation is not an important characteristic. The results also show that model accuracy is more important than snow density variations when using models to make snowfall projections. 1. Introduction volume of the sample. Snow densities are typically on an order of 70 to 150 kg The density of snow is a m-3, but can be lower or higher in some very important topic in winter weather. cases. This is because the density of snow The fact that snow densities can helps determine characteristics of a vary makes them one of the most given snowfall.
    [Show full text]
  • Evaluation of the Hotplate Snow Gauge
    Evaluation of the Hotplate Snow Gauge http://aurora-program.org Aurora Project 2004-01 Final Report July 2005 Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. Aurora Project 2004-01 4. Title and Subtitle 5. Report Date Evaluation of the Hotplate Snow Gauge July 2005 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Jack Stickel, Bill Maloney, Curt Pape, Dennis Burkheimer 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Center for Transportation Research and Education Iowa State University 11. Contract or Grant No. 2711 South Loop Drive, Suite 4700 Ames, IA 50010-8664 12. Sponsoring Organization Name and Address 13. Type of Report and Period Covered Aurora Program Iowa State University 14. Sponsoring Agency Code 2711 South Loop Drive, Suite 4700 Ames, IA 50010-8664 15. Supplementary Notes Visit www.ctre.iastate.edu for color PDF files of this and other research reports. 16. Abstract Winter precipitation (e.g., snow, ice, freezing rain) is poorly measured by current National Weather Service (NWS), Federal Aviation Administration (FAA), and State Departments of Transportation (SDOT) automated weather observation systems. The lack of accurate winter precipitation measurements, particularly snow, negatively impacts the ability of winter maintenance personnel to conduct snow and ice control operations. The inability to accurately measure winter precipitation is an ongoing problem that is well recognized by the meteorological community as well as organizations and industries dependent on accurate quantitative precipitation information. The FAA recognized this limitation and its impact on the ability to conduct aircraft deicing operations, and began a research program in the 1990s to improve decision support for aircraft deicing.
    [Show full text]
  • Gauge and Radarradargauge
    GaGaugugeeaandndRRaadadarr PPaaoo--LLiaiangngChaChangng CentCentrarallWWeaeattherherBBurureaeau,u,TTaaiwiwaann A Training Course on Quantitative Precipitation Estimation/Forecasting (QPE/QPF) Crowne Plaza Manila Galleria, Quezon City, Philippines 27-30 March 2012 OOuutlitlinnee RaRadadarraandndGGaaugugeeNetNetwwoorkrkininTTaaiwiwaann RaRadadarrDaDattaaQQCCususingingRefReflectlectivivitityyaandnd RaRainfinfaallllClimClimaattoolologgyy RaRadadarrQQPPEEaandndGGaaugugee--cocorrrrectectededQQPPEE OOututloloookk 2 OOppeerratiationonalalRRadadararNNeetwtwororkkiinnTTaiaiwwanan RRCCWWFF RRCCCCKK RRCCHHLL RRCCMMKK RRCCCCGG RRCCKKTT CCWBWB::RRCCWFWF,,RRCCHHLL,,RRCCKKTT,,RRCCCCGG((DDopoppplleerr,,wwaveavelleenngtgthh::10c10cmm)) AAiirrFFororccee::RRCCCCKK,,RRCCMMKK((dduualal--ppololarariizzatatiionon,,wwaveavelleenngtgthh::5c5cmm)) Taiwan operational radar network basic information RCWF RCHL RCCG RCKT RCCK RCMK Observation Range (km) 460,230 460,230 460,230 460,230 460,160 460,160 (Z,Vr) Gematronik Gematronik Gematronik Gematronik Gematronik Type WSR-88D 1500S 1500S 1500S 1500C 1500C Height (m) 766 63 38 42 203 48 Wavelength (cm) 10 10 10 10 5 5 Polarization Single Single Single Single Dual Dual Max. Unambiguous 26.55 21.15 21.15 49.5 49.5 49.5 Velocity (m/s) GGaaugugeeStStaattioionsns inin TTaaiwiwaann Data from CWB and Gov. agencies (WRA, SWCB,TPC,..) •All Gauge stations ~570 stations •Overland ~560 stations MMeaeannGGaaugugeeSpaSpacingcing ffrroommCWBCWBSitSiteses((dadattaainin22000077)) Number of Gauges CoConceptnceptooffRefReflectlectivivitityyClimClimaattoolologgyy
    [Show full text]
  • Measurement of Precipitation
    CHAPTER CONTENTS Page CHAPTER 6. MEASUREMENT OF PRECIPITATION ..................................... 186 6.1 General ................................................................... 186 6.1.1 Definitions ......................................................... 186 6.1.2 Units and scales ..................................................... 186 6.1.3 Meteorological and hydrological requirements .......................... 187 6.1.4 Measurement methods .............................................. 187 6.1.4.1 Instruments ................................................ 187 6.1.4.2 Reference gauges and intercomparisons ........................ 188 6.1.4.3 Documentation. 188 6.2 Siting and exposure ........................................................ 189 6.3 Non-recording precipitation gauges .......................................... 190 6.3.1 Ordinary gauges .................................................... 190 6.3.1.1 Instruments ................................................ 190 6.3.1.2 Operation. 192 6.3.1.3 Calibration and maintenance ................................. 192 6.3.2 Storage gauges ..................................................... 192 6.4 Precipitation gauge errors and corrections ..................................... 193 6.5 Recording precipitation gauges .............................................. 196 6.5.1 Weighing-recording gauge ........................................... 196 6.5.1.1 Instruments ................................................ 196 6.5.1.2 Errors and corrections. 197 6.5.1.3 Calibration
    [Show full text]
  • Ott Parsivel - Enhanced Precipitation Identifier for Present Weather, Drop Size Distribution and Radar Reflectivity - Ott Messtechnik, Germany
    ® OTT PARSIVEL - ENHANCED PRECIPITATION IDENTIFIER FOR PRESENT WEATHER, DROP SIZE DISTRIBUTION AND RADAR REFLECTIVITY - OTT MESSTECHNIK, GERMANY Kurt Nemeth1, Martin Löffler-Mang2 1 OTT Messtechnik GmbH & Co. KG, Kempten (Germany) 2 HTW, Saarbrücken (Germany) as a laser-optic enhanced precipitation identifier and present weather sensor. The patented extinction method for simultaneous measurements of particle size and velocity of all liquid and solid precipitation employs a direct physical measurement principle and classification of hydrometeors. The instrument provides a full picture of precipitation events during any kind of weather phenomenon and provides accurate reporting of precipitation types, accumulation and intensities without degradation of per- formance in severe outdoor environments. Parsivel® operates in any climate regime and the built-in heating device minimizes the negative effect of freezing and frozen precipitation accreting critical surfaces on the instrument. Parsivel® can be integrated into an Automated Surface/ Weather Observing System (ASOS/AWOS) as part of the sensor suite. The derived data can be processed and 1. Introduction included into transmitted weather observation reports and messages (WMO, SYNOP, METAR and NWS codes). ® OTT Parsivel : Laser based optical Disdrometer for 1.2. Performance, accuracy and calibration procedure simultaneous measurement of PARticle SIze and VELocity of all liquid and solid precipitation. This state The new generation of Parsivel® disdrometer provides of the art instrument, designed to operate under all the latest state of the art optical laser technology. Each weather conditions, is capable of fulfilling multiple hydrometeor, which falls through the measuring area is meteorological applications: present weather sensing, measured simultaneously for size and velocity with an optical precipitation gauging, enhanced precipitation acquisition cycle of 50 kHz.
    [Show full text]
  • Downloaded 09/24/21 04:33 AM UTC APRIL 2013 F R I E D R I C H E T a L
    1182 MONTHLY WEATHER REVIEW VOLUME 141 Drop-Size Distributions in Thunderstorms Measured by Optical Disdrometers during VORTEX2 KATJA FRIEDRICH AND EVAN A. KALINA University of Colorado, Boulder, Colorado FORREST J. MASTERS AND CARLOS R. LOPEZ University of Florida, Gainesville, Florida (Manuscript received 13 April 2012, in final form 22 October 2012) ABSTRACT When studying the influence of microphysics on the near-surface buoyancy tendency in convective thun- derstorms, in situ measurements of microphysics near the surface are essential and those are currently not provided by most weather radars. In this study, the deployment of mobile microphysical probes in con- vective thunderstorms during the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2) is examined. Microphysical probes consist of an optical Ott Particle Size and Velocity (PARSIVEL) disdrometer that measures particle size and fall velocity distributions and a surface obser- vation station that measures wind, temperature, and humidity. The mobile probe deployment allows for targeted observations within various areas of the storm and coordinated observations with ground-based mobile radars. Quality control schemes necessary for providing reliable observations in severe environ- ments with strong winds and high rainfall rates and particle discrimination schemes for distinguishing be- tween hail, rain, and graupel are discussed. It is demonstrated how raindrop-size distributions for selected cases can be applied to study size-sorting and microphysical processes. The study revealed that the raindrop-size distribution changes rapidly in time and space in convective thunderstorms. Graupel, hailstones, and large raindrops were primarily observed close to the updraft region of thunderstorms in the forward- and rear-flank downdrafts and in the reflectivity hook appendage.
    [Show full text]
  • Radar Artifacts and Associated Signatures, Along with Impacts of Terrain on Data Quality
    Radar Artifacts and Associated Signatures, Along with Impacts of Terrain on Data Quality 1.) Introduction: The WSR-88D (Weather Surveillance Radar designed and built in the 80s) is the most useful tool used by National Weather Service (NWS) Meteorologists to detect precipitation, calculate its motion, estimate its type (rain, snow, hail, etc) and forecast its position. Radar stands for “Radio, Detection, and Ranging”, was developed in the 1940’s and used during World War II, has gone through numerous enhancements and technological upgrades to help forecasters investigate storms with greater detail and precision. However, as our ability to detect areas of precipitation, including rotation within thunderstorms has vastly improved over the years, so has the radar’s ability to detect other significant meteorological and non meteorological artifacts. In this article we will identify these signatures, explain why and how they occur and provide examples from KTYX and KCXX of both meteorological and non meteorological data which WSR-88D detects. KTYX radar is located on the Tug Hill Plateau near Watertown, NY while, KCXX is located in Colchester, VT with both operated by the NWS in Burlington. Radar signatures to be shown include: bright banding, tornadic hook echo, low level lake boundary, hail spikes, sunset spikes, migrating birds, Route 7 traffic, wind farms, and beam blockage caused by terrain and the associated poor data sampling that occurs. 2.) How Radar Works: The WSR-88D operates by sending out directional pulses at several different elevation angles, which are microseconds long, and when the pulse intersects water droplets or other artifacts, a return signal is sent back to the radar.
    [Show full text]
  • Observation of Cloud Base Height and Precipitation Characteristics at a Polar Site Ny-Ålesund, Svalbard Using Ground-Based Remote Sensing and Model Reanalysis
    remote sensing Article Observation of Cloud Base Height and Precipitation Characteristics at a Polar Site Ny-Ålesund, Svalbard Using Ground-Based Remote Sensing and Model Reanalysis Acharya Asutosh 1,2,*, Sourav Chatterjee 1,3 , M.P. Subeesh 1, Athulya Radhakrishnan 1 and Nuncio Murukesh 1 1 National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Goa 403804, India; [email protected] (S.C.); [email protected] (M.P.S.); [email protected] (A.R.); [email protected] (N.M.) 2 Indian Institute of Technology, Bhubaneswar, Odisha 752050, India 3 School of Earth, Ocean, and Atmospheric Sciences, Goa University, Goa 403206, India * Correspondence: [email protected] Abstract: Clouds play a significant role in regulating the Arctic climate and water cycle due to their impacts on radiative balance through various complex feedback processes. However, there are still large discrepancies in satellite and numerical model-derived cloud datasets over the Arctic region due to a lack of observations. Here, we report observations of cloud base height (CBH) characteristics measured using a Vaisala CL51 ceilometer at Ny-Ålesund, Svalbard. The study highlights the monthly and seasonal CBH characteristics at the location. It is found that almost 40% of the lowest Citation: Asutosh, A.; Chatterjee, S.; CBHs fall within a height range of 0.5–1 km. The second and third cloud bases that could be detected Subeesh, M.P.; Radhakrishnan, A.; by the ceilometer are mostly concentrated below 3 km during summer but possess more vertical Murukesh, N. Observation of Cloud spread during the winter season. Thin and low-level clouds appear to be dominant during the Base Height and Precipitation summer.
    [Show full text]
  • METEOROLOGICAL HAZARDS by Werner Wehry and Lutz Lesch Prcsenledat the XXV Ostmongress, St
    NOWCASTING METEOROLOGICAL HAZARDS by Werner Wehry and Lutz Lesch Prcsenledat the XXV OsTMongress, St. Auban, Fnnce cal elements of interest are process€d and displayed by The main workofregional forecasters and especially of means ofstatistical model inlerpretation (Knup ffer, 1996). m€teorologists briefing geneml aviation and, especially, Some of this information is available, already, in the Cer, flight comp€titions is to provide most accurate Nowcastin g man Weather Service systems. (up to twohours) and VeryShortRange Forecasting (VSRF, Hosever. mrssinS are the hard \rlue, concernrng up to 12 hours) including wamings of hazardous weather extreme weather, i-e- w€ath€rhazards likemaximum gusts, events in general and in task actions. In co-operation with large amount of convective rain, conditions of fl ash fl oods, the German National Weather Service (DWD) our Work- hail, and - in wint€r - sudden tuming ofrain into snow or ing Croup does res€arch pr€paring a modular system to glaze conditions. "Waming points" are available in the which will work mostly automatically, and it includes DWD monitoring system, now, like hail heads derived empirical parts. This system will enable the forecaster to from satellite cloud top temperature and thunderstorms, give objective information for proper decisions. A similar derived from radar and w€ather observations and, espe system working for several parts of the USA has been cially, from lightning location sysiems. described by Eilts et al (1996). 3. Special Methods for Nowcasting Hazards 2. Monitoring We are developing an empirical syst€m, combining all Such a nowcasting system needs all available meteoro' available Direct Model Output (DMO)and Model Output loSical inputin order to monitor the atmospherjc€lements Statistics (MOS) information, in order to catch theseldom- like t€mperature, precipitation, gusts etc.
    [Show full text]
  • Triggered Upward Lightning from Towers in Rapid City, South Dakota
    LIGHTNING-TRIGGERED UPWARD LIGHTNING FROM TOWERS IN RAPID CITY, SOUTH DAKOTA Tom A. Warner 1*, Marcelo M. F. Saba 2, Scott Rudge 3, Matthew Bunkers 3, Walt Lyons 4, and Richard E. Orville 5 1. Dept. of Atmospheric and Environmental Sciences, South Dakota School of Mines and Technology, Rapid City, SD, USA 2. National Institute for Space Research – INPE – Sao Jose dos Campos, Brazil 3. NOAA /National Weather Service, Rapid City, SD, USA 4. FMA Research, Inc., Fort Collins, CO, USA 5. Dept. of Atmospheric Sciences, Texas A&M University, College Station, Texas, USA 1. INTRODUCTION Since 2004, 84 upward flashes from 10 towers (91–191 m AGL) have been observed using optical Recent research efforts have shown that nearby instrumentation. High-speed cameras were added in flashes can trigger upward lightning from tall towers 2008 along with electric field sensing instrumentation in (e.g., Wang and Takagi, 2010; Mazur and Ruhnke , 2009, which allowed for coordinated measurements for 2011; Warner, 2011, Warner et al., 2011, and Zhou et some flashes. An analysis has shown that preceding al., 2011). Findings from these studies suggest that visible flash activity triggered all but one upward flash. these lightning-triggered upward lightning (LTUL) The upward flashes discussed below were flashes are more common with summer thunderstorms, observed with up to three high-speed cameras whereas self-initiated upward lightning (SIUL) flashes, operating between 1,000 and 67,000 images per where an upward leader initiates from a tall object second (ips). Fast electric field change data were without nearby preceding flash activity, favor less collected using a modified whip antenna at a sensor site electrically active winter storms.
    [Show full text]