Extreme Genetic Engineering: an Introduction to Synthetic Biology January 2007
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glossary - Cellbiology
1 Glossary - Cellbiology Blotting: (Blot Analysis) Widely used biochemical technique for detecting the presence of specific macromolecules (proteins, mRNAs, or DNA sequences) in a mixture. A sample first is separated on an agarose or polyacrylamide gel usually under denaturing conditions; the separated components are transferred (blotting) to a nitrocellulose sheet, which is exposed to a radiolabeled molecule that specifically binds to the macromolecule of interest, and then subjected to autoradiography. Northern B.: mRNAs are detected with a complementary DNA; Southern B.: DNA restriction fragments are detected with complementary nucleotide sequences; Western B.: Proteins are detected by specific antibodies. Cell: The fundamental unit of living organisms. Cells are bounded by a lipid-containing plasma membrane, containing the central nucleus, and the cytoplasm. Cells are generally capable of independent reproduction. More complex cells like Eukaryotes have various compartments (organelles) where special tasks essential for the survival of the cell take place. Cytoplasm: Viscous contents of a cell that are contained within the plasma membrane but, in eukaryotic cells, outside the nucleus. The part of the cytoplasm not contained in any organelle is called the Cytosol. Cytoskeleton: (Gk. ) Three dimensional network of fibrous elements, allowing precisely regulated movements of cell parts, transport organelles, and help to maintain a cell’s shape. • Actin filament: (Microfilaments) Ubiquitous eukaryotic cytoskeletal proteins (one end is attached to the cell-cortex) of two “twisted“ actin monomers; are important in the structural support and movement of cells. Each actin filament (F-actin) consists of two strands of globular subunits (G-Actin) wrapped around each other to form a polarized unit (high ionic cytoplasm lead to the formation of AF, whereas low ion-concentration disassembles AF). -
Global Transposon Mutagenesis and a Minimal Mycoplasma Genome
R EPORTS thermore, while immunosubunit precursors- stained positive, whereas no staining of PA28Ϫ/Ϫ purchased from PharMingen (San Diego, CA). 25D1.16 containing 15S proteasome assembly inter- cells was observed. (10) and a PA28a-specific antiserum (2) were kindly 11. S. C. Jameson, F. R. Carbone, M. J. Bevan, J. Exp. Med. provided by A. Porgador and M. Rechsteiner, respective- mediates were detected in wild-type cells, 177, 1541 (1993). ly. Metabolic labeling, immunoprecipitation, immuno- under identical conditions 15S complexes 12. T. Preckel and Y. Yang, unpublished results. blotting, and sodium dodecyl sulfateÐpolyacrylamide were hardly detectable in PA28Ϫ/Ϫ cells (Fig. 13. M. Ho, Cytomegalovirus: Biology and Infection (Ple- gel electrophoresis (SDS-PAGE) were performed as de- 4B). Notably, PA28 was found to be associ- num, New York, ed. 2, 1991). scribed (3). 14. P. Borrow and M. B. A. Oldstone, in Viral Pathogenesis, 19. T. Flad et al., Cancer Res. 58, 5803 (1998). ated with the immunosubunit precursor-con- N. Nathanson, Ed. (Lippincott-Raven, Philadelphia, 20. M. W. Moore, F. R. Carbone, M. J. Bevan, Cell 54, 777 taining 15S complexes, suggesting that PA28 1997), pp. 593Ð627; M. J. Buchmeier and A. J. Zajac, (1988). is required for the incorporation of immuno- in Persistent Virus Infections, R. Ahmed and I. Chen, 21. A. Vitiello et al., Eur. J. Immunol. 27, 671 (1997). Eds. ( Wiley, New York, 1999), pp. 575Ð605. subunits into proteasomes. 22. H. Bluthmann et al., Nature 334, 156 (1988). 15. G. Niedermann et al., J. Exp. Med. 186, 209 (1997); 23. W. Jacoby, P. V. Cammarata, S. -
Venter Institute
Genomics:GTL Program Projects J. Craig Venter Institute 42 Estimation of the Minimal Mycoplasma Gene Set Using Global Transposon Mutagenesis and Comparative Genomics John I. Glass* ([email protected]), Nina Alperovich, Nacyra Assad-Garcia, Shibu Yooseph, Mahir Maruf, Carole Lartigue, Cynthia Pfannkoch, Clyde A. Hutchison III, Hamilton O. Smith, and J. Craig Venter J. Craig Venter Institute, Rockville, MD The Venter Institute aspires to make bacteria with specific metabolic capabilities encoded by artificial genomes. To achieve this we must develop technologies and strategies for creating bacterial cells from constituent parts of either biological or synthetic origin. Determining the minimal gene set needed for a functioning bacterial genome in a defined laboratory environment is a necessary step towards our goal. For our initial rationally designed cell we plan to synthesize a genome based on a mycoplasma blueprint (mycoplasma being the common name for the class Mollicutes). We chose this bacterial taxon because its members already have small, near minimal genomes that encode limited metabolic capacity and complexity. We took two approaches to determine what genes would need to be included in a truly minimal synthetic chromosome of a planned Mycoplasma laboratorium: determination of all the non-essential genes through random transposon mutagenesis of model mycoplasma species, Mycoplasma genitalium, and comparative genomics of a set of 15 mycoplasma genomes in order to identify genes common to all members of the taxon. Global transposon mutagenesis has been used to predict the essential gene set for a number of bac- teria. In Bacillus subtilis all but 271 of bacterium’s ~4100 genes could be knocked out. -
NSABB June-July 2005 Meeting Agenda
First Meeting of the National Science Advisory Board for Biosecurity June 30 – July 1, 2005 Hyatt Regency Bethesda 7400 Wisconsin Ave. Bethesda, Maryland, 20814 USA Hotel Phone: 301-657-1234 Agenda Webcast: To watch the live webcast of the meeting, click here. The webcast can only be viewed when the meeting is in session at 8:00am-6:00pm on June 30 and at 8:00am-1:30pm on July 1 Eastern Time. You will need RealOne Player to view the webcast. If you do not already have RealOne Player on your computer, download here. Presentation slides: To access the following PowerPoint presentations, click on the presentation titles below. June 30, 2005 Opening Remarks and Swearing in Ceremony Elias Zerhouni, M.D. Director of the National Institutes of Health (NIH) Chair's Remarks and Agenda Overview Dennis L. Kasper, M.D. NSABB Chair Harvard Medical School Introduction of NSABB Members NSABB Structure and Operations Thomas Holohan, M.D. NSABB Executive Director, NIH Office of Biotechnology Activities Break Perspectives on Biosecurity in the Life Sciences NSABB Voting Members Impetus for NSABB: Enhancing Biosecurity on the Life Sciences Rajeev Venkayya, M.D. Special Assistant to the President, Senior Director for Biological and Chemical Defense White House Homeland Security Council Perspectives on Biosecurity in the Life Sciences NSABB Ex Officio Members Lunch Session I- The Development of Criteria for Identifying Dual Use Research and Research Results Introduction: Issues of Relevance to Criteria Development Arturo Casadevall, M.D., Ph.D. Professor of Medicine and of Microbiology & Immunology and Chief of Infectious Diseases Albert Einstein College of Medicine National Research Council Perspective: Experiments of Concern Ron Atlas, Ph.D. -
Intelligent Design, Abiogenesis, and Learning from History: Dennis R
Author Exchange Intelligent Design, Abiogenesis, and Learning from History: Dennis R. Venema A Reply to Meyer Dennis R. Venema Weizsäcker’s book The World View of Physics is still keeping me very busy. It has again brought home to me quite clearly how wrong it is to use God as a stop-gap for the incompleteness of our knowledge. If in fact the frontiers of knowledge are being pushed back (and that is bound to be the case), then God is being pushed back with them, and is therefore continually in retreat. We are to find God in what we know, not in what we don’t know; God wants us to realize his presence, not in unsolved problems but in those that are solved. Dietrich Bonhoeffer1 am thankful for this opportunity to nature, is the result of intelligence. More- reply to Stephen Meyer’s criticisms over, this assertion is proffered as the I 2 of my review of his book Signature logical basis for inferring design for the in the Cell (hereafter Signature). Meyer’s origin of biological information: if infor- critiques of my review fall into two gen- mation only ever arises from intelli- eral categories. First, he claims I mistook gence, then the mere presence of Signature for an argument against bio- information demonstrates design. A few logical evolution, rendering several of examples from Signature make the point my arguments superfluous. Secondly, easily: Meyer asserts that I have failed to refute … historical scientists can show that his thesis by not providing a “causally a presently acting cause must have adequate alternative explanation” for the been present in the past because the origin of life in that the few relevant cri- proposed candidate is the only known tiques I do provide are “deeply flawed.” cause of the effect in question. -
Paul Modrich Howard Hughes Medical Institute and Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
Mechanisms in E. coli and Human Mismatch Repair Nobel Lecture, December 8, 2015 by Paul Modrich Howard Hughes Medical Institute and Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA. he idea that mismatched base pairs occur in cells and that such lesions trig- T ger their own repair was suggested 50 years ago by Robin Holliday in the context of genetic recombination [1]. Breakage and rejoining of DNA helices was known to occur during this process [2], with precision of rejoining attributed to formation of a heteroduplex joint, a region of helix where the two strands are derived from the diferent recombining partners. Holliday pointed out that if this heteroduplex region should span a genetic diference between the two DNAs, then it will contain one or more mismatched base pairs. He invoked processing of such mismatches to explain the recombination-associated phenomenon of gene conversion [1], noting that “If there are enzymes which can repair points of damage in DNA, it would seem possible that the same enzymes could recognize the abnormality of base pairing, and by exchange reactions rectify this.” Direct evidence that mismatches provoke a repair reaction was provided by bacterial transformation experiments [3–5], and our interest in this efect was prompted by the Escherichia coli (E. coli) work done in Matt Meselson’s lab at Harvard. Using artifcially constructed heteroduplex DNAs containing multiple mismatched base pairs, Wagner and Meselson [6] demonstrated that mismatches elicit a repair reaction upon introduction into the E. coli cell. Tey also showed that closely spaced mismatches, mismatches separated by a 1000 base pairs or so, are usually repaired on the same DNA strand. -
Microbial Identification Framework for Risk Assessment
Microbial Identification Framework for Risk Assessment May 2017 Cat. No.: En14-317/2018E-PDF ISBN 978-0-660-24940-7 Information contained in this publication or product may be reproduced, in part or in whole, and by any means, for personal or public non-commercial purposes, without charge or further permission, unless otherwise specified. You are asked to: • Exercise due diligence in ensuring the accuracy of the materials reproduced; • Indicate both the complete title of the materials reproduced, as well as the author organization; and • Indicate that the reproduction is a copy of an official work that is published by the Government of Canada and that the reproduction has not been produced in affiliation with or with the endorsement of the Government of Canada. Commercial reproduction and distribution is prohibited except with written permission from the author. For more information, please contact Environment and Climate Change Canada’s Inquiry Centre at 1-800-668-6767 (in Canada only) or 819-997-2800 or email to [email protected]. © Her Majesty the Queen in Right of Canada, represented by the Minister of the Environment and Climate Change, 2016. Aussi disponible en français Microbial Identification Framework for Risk Assessment Page 2 of 98 Summary The New Substances Notification Regulations (Organisms) (the regulations) of the Canadian Environmental Protection Act, 1999 (CEPA) are organized according to organism type (micro- organisms and organisms other than micro-organisms) and by activity. The Microbial Identification Framework for Risk Assessment (MIFRA) provides guidance on the required information for identifying micro-organisms. This document is intended for those who deal with the technical aspects of information elements or information requirements of the regulations that pertain to identification of a notified micro-organism. -
Replication of Picornaviruses I
JouRNAL oF VnoLoGy, Dec. 1975, p. 1512-1527 Vol. 16, No. 6 Copyright ©) 1975 American Society for Microbiology Printed in U.SA. Replication of Picornaviruses I. Evidence from In Vitro RNA Synthesis that Poly(A) of the Poliovirus Genome is Genetically Coded KAROLINE DORSCH-HASLER, YOSHIAKI YOGO,' AND ECKARD WIMMER* Department ofMicrobiology, St. Louis University School ofMedicine, St. Louis, Missouri 63104, and Department ofMicrobiology, School ofBasic Health Sciences, State University ofNew York at Stony Brook, Stony Brook, New York 11794 * Received for publication 3 July 1975 A crude replication complex has been isolated from poliovirus-infected HeLa cells and used for synthesis of poliovirus replicative intermediate (RI) RNA, replicative form (RF) RNA, and single-stranded (SS) RNA in vitro. All three classes of virus-specific RNA synthesized in vitro are shown to contain poly(A). Poly(A) of RF and of SS RNA [RF-poly(A) and SS-poly(A)] has a chain length (50 to 70 nucleotides) that is shorter than that of poly(A) of in vivo-synthesized RNAs. Poly(A) of RI [RI-poly(A)], however, is at least 200 nucleotides long and, therefore, larger than poly(A) of RI isolated from HeLa cells 4 h after infection. The crude membrane-bound replication complex contains a terminal adenylate transferase activity that is stimulated by Mn2+ and the addition of an (Ap),AoH primer. This transferase activity is found also in extracts of mock-infected cells. Partial purification of the replication complex in a stepwise sucrose gradient, in which the viral replicase is associated with the smooth cytoplasmic membrane fraction, does not remove the terminal transferase. -
Abstract Book (Pdf)
6th EMBO/EMBL Conference on Science and Society Science and Security 28 – 29 October 2005 at the European Molecular Biology Laboratory Heidelberg, Germany Organising Committee: Andrew Moore (EMBO, Chair), Halldòr Stefànsson (EMBL), Alessandra Bendiscioli (EMBO), Frank Gannon (EMBO), Iain Mattaj (EMBL) Welcome message n September this year, plans for a new bio-defence laboratory in Montana, USA, were Iunveiled. In the $66.5 million facility, researchers will apply similar scientific knowledge to that which makes bio-terrorism or biological warfare a possibility in the first place. The double-edged sword of science application can hardly be more evident. How successfully can we prevent the misuse of research findings that otherwise give us important insights into the workings of nature and prospects of useful applications? What would be the consequences of tackling this problem by constraining research, the mobility of researchers and the funding and publication of their research? Could we, indeed, ever successfully define “research that should not be done”? How much thought should scientists give to the downstream consequences of their work when deciding what to research, or which experiments to do? In June this year, the USA announced that it would delay the introduction of compulsory biometric passports for travellers from 27 countries in Europe and the Asia-Pacific region until October 2006. But whenever they appear, biometric passports will be part of normal life in the future. In the era of international terrorism, this could, indeed, lead to a safer world; an example of a beneficial use of science. On the other hand, it increases the perception by normal citizens that they are being unnecessarily “watched” by an all- seeing, all-controlling state – the so-called Big Brother of Orwell’s 1984. -
Gene Therapy and Genetic Engineering: Frankenstein Is Still a Myth, but It Should Be Reread Periodically
Indiana Law Journal Volume 48 Issue 4 Article 2 Summer 1973 Gene Therapy and Genetic Engineering: Frankenstein is Still a Myth, but it Should be Reread Periodically George A. Hudock Indiana University - Bloomington Follow this and additional works at: https://www.repository.law.indiana.edu/ilj Part of the Genetics and Genomics Commons Recommended Citation Hudock, George A. (1973) "Gene Therapy and Genetic Engineering: Frankenstein is Still a Myth, but it Should be Reread Periodically," Indiana Law Journal: Vol. 48 : Iss. 4 , Article 2. Available at: https://www.repository.law.indiana.edu/ilj/vol48/iss4/2 This Article is brought to you for free and open access by the Law School Journals at Digital Repository @ Maurer Law. It has been accepted for inclusion in Indiana Law Journal by an authorized editor of Digital Repository @ Maurer Law. For more information, please contact [email protected]. GENE THERAPY AND GENETIC ENGINEERING: FRANKENSTEIN IS STILL A MYTH, BUT IT SHOULD BE REREAD PERIODICALLY GEORGE A. HUDOCKt Biotechnology and the law are far removed from each other as disciplines of human intellect. Yet the law and my own discipline, genetics, have come together in many courtrooms concerning such matters as paternity, and they will continue to intersect with increasing frequency as the visions of 100 years ago become the reality of today. This article examines the implications of recent research for human genetic therapy and genetic engineering, and suggests some guidelines for legal regulation of genetic technology. The following discussion derives from three premises which I view as basic: (1) that which is currently possible in genetic engineering, and in fact has already been done, is generally underestimated; (2) what may be possible in the near future is quite commonly overesti- mated; (3) regulation of the application of genetic technology is possible and will not be overwhelmingly complicated. -
TRANSCRIPT Applications
Presidential Commission for the Study of Bioethical Issues TRANSCRIPT Applications J. Craig Venter, Ph.D. Founder and President, J. Craig Venter Institute George Church, Ph.D. Professor of Genetics, Harvard Medical School Kristala L. J. Prather, Ph.D. Assistant Professor, Dept. of Chemical Engineering, Massachu- setts Institute of Technology Meeting 1, Session 2 July 8, 2010 Washington, D.C. Jim Wagner: Could we have our speakers come to the table. And if others could take their chairs, we’ll get under way. Thank you. Commission members, we need you as well, actually. I see them filter- ing up. I saw Nita out there. And there’s Bonnie in the back of the room. So that there is ample time for our speakers to present and for us to ask questions, let’s do get under way. Really, again, appreciate this morning’s conversation and the presenta- tions, helping us to — wow. Helping us to define what is and is not synthetic biology and to understand a little bit more about some of the science involved. This particular session, we are going to focus and we have asked our experts to focus more on applications. We’ll try to use a similar format. Have our speakers present for a brief period. You have the timer in front of you. Make sure after all of you have pre- sented the commission has time to ask questions. And then we’ll try to throw it open — not try to – we will, certainly, throw it open to the public for other questions they may have. -
Driving Diffusion of Scientific Innovation
Driving Diffusion of Scientific Innovation - The Role of Institutional Entrepreneurship and Open Science in Synthetic Biology Vom Promotionsausschuss der Technischen Universit¨at Hamburg-Harburg zur Erlangung des akademischen Grades Doktor der Wirtschafts- und Sozialwissenschaften (Dr. rer. pol.) genehmigte Dissertation von Giulio Barth aus M¨unster 2018 Advisors: Prof. Dr. C. Ihl, Prof. Dr. M. G. M¨ohrle Institute of Entrepreneurship, TUHH i Gutachter: Prof. Dr. C. Ihl Prof. Dr. M. G. Mohrle¨ Vorsitz: Prof. Dr. C. Luthje¨ Tag der mundlichen¨ Prufung:¨ 14. September 2018 ”Our victory: inevitable; our timing: uncertain.” (Drew Endy, Assistant Professor Stanford University) i Abstract Scientific innovations need to widely diffuse to fully exploit their potential. Prior research investigated levers on the diffusion of scientific innovation with particular interest on institutions, e.g., settings of property rights. As institutional theory lacks in explaining emergence and shaping of institu- tions, the institutional entrepreneur approach faces these limitations. Key actors combine logics from multiple fields and convince their social context of their ideas to legitimate the creation of new institutions and shape an emerging field. This thesis validates theories on institutional entrepreneurs and investigates the end-to process from diffusing a logic to the impact of an established insti- tution on scientific innovations in context of the emerging synthetic biology. The field is expected to introduce the 5th revolution and characterized by the central logic of making biology an engineering discipline. In chapter 4 theories on institutional entrepreneurs driving diffusion of in- stitutional logics to shape an emerging field are validated. To measure the social influence mechanisms, the heterogeneous diffusion model is adapted to the institutional logic.