Aerospace Micro-Lesson
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Projekt Brána Do Vesmíru
Projekt Brána do vesmíru Hvězdárna Valašské Meziříčí, p. o. Krajská hvezdáreň v Žiline Súčasnosť a budúcnosť výskumu medziplanetárnej hmoty RNDr. Peter Vereš, PhD. University of Hawaii / Univerzita Komenského Ako sa objavila MPH ● Pôvodne iba nehybná hviezdna sféra ● Mesiac a Slnko ● Bludné planéty viditeľné voľným okom Starovek => novovek Piazzi ● 1.1.1801 ● Objekt pozorovaný 41 dní ● Stratený...predpoklad, medzi Marsom a Jupiterom ● Laplace – nemožné nájsť ● Gauss (24) vynašiel metódu, vypočítal, Ceres bol nájdený... Halley ● Kométy, odjakživa považované za poslov zlých správ, vysvetlené ako atmosferické javy ● ● ● ● Názov Kometes (dlhovlasá) ● 1577 Brahe = paralaxa, ďalej ako Mesiac ● Edmond Halley si všimol periodicitu kométy 1531, 1607, 1682 = návrat v 1758 Meteory ● Zaznamenané v -1809, - 687 (Lyridy) ● Ernst Chladni 1794 Kniha o pôvode Pallasovho železa ● 1798 Brandes, Benzenberg, paralaxa 400 meteorov, 22 spoločných ● 1803 dážď / Paríž, priznanie kozmického pôvodu ● 1833 USA dážď 20/s, LEO ● 1845/46 rozpad kométy Biela, dažde Andromedíd (72, 85, 93, 99) ● 1861 = Kirkwood, súvis rojov s kométami ● 1866 Schiaparelli: Swift-Tuttle (Perzeidy), Tempel (Leonidy) ● 1899 Adams vypočítal, že Jupiter narušil dráhu kométy, dážď nebol 1833, rytina, Leonidy 1998, foto, Leonidy, AGO Modra MPH a Slnečná sústava ● Slnko ● planéty (8) ● trpasličie planéty /Ceres, Pluto, Haumea, Makemake, Eris ● MPH = asteroidy, kométy, prach, plyn, .... Vznik a vývoj asteroidov ● -4571mil. rokov – vznik Sl. sús. ● Akrécia hmoty – nehomogenity, planetesimály, „viskózna -
ISTS-2017-D-074ⅠISSFD-2017-074
A look at the capture mechanisms of the “Temporarily Captured Asteroids” of the Earth By Hodei URRUTXUA1) and Claudio BOMBARDELLI2) 1)Astronautics Group, University of Southampton, United Kingdom 2)Space Dynamics Group, Technical University of Madrid, Spain (Received April 17th, 2017) Temporarily captured asteroids of the Earth are a newly discovered family of asteroids, which become naturally captured in the vicinity of the Earth for a limited time period. Thus, during the temporary capture these asteroids are in energetically favorable condi- tions, which makes them appealing targets for space missions to asteroids. Despite their potential interest, their capture mechanisms are not yet fully understood, and basic questions remain unanswered regarding the taxonomy of this population. The present work looks at gaining a better understanding of the key features that are relevant to the duration and nature of these asteroids, by analyzing patterns and extracting conclusions from a synthetic population of temporarily captured asteroids. Key Words: Asteroids, temporarily captured asteroids, capture dynamics, asteroid retrieval. Acronyms system. Asteroid 2006 RH120 is so far the only known mem- ber of this population, though statistical studies by Granvik et TCA : Temporarily captured asteroids al.12) support the evidence that such objects are actually com- TCO : Temporarily captured orbiters mon companions of the Earth, and thus it is expected that an TCF : Temporarily captured fly-bys increasing number of them will be found as survey technology improves.13) 1. Introduction During their temporary capture phase these asteroids are technically orbiting the Earth rather than the Sun, since their The origin of planetary satellites in the Solar System has Earth-binding energy is negative. -
Origin and Evolution of Trojan Asteroids 725
Marzari et al.: Origin and Evolution of Trojan Asteroids 725 Origin and Evolution of Trojan Asteroids F. Marzari University of Padova, Italy H. Scholl Observatoire de Nice, France C. Murray University of London, England C. Lagerkvist Uppsala Astronomical Observatory, Sweden The regions around the L4 and L5 Lagrangian points of Jupiter are populated by two large swarms of asteroids called the Trojans. They may be as numerous as the main-belt asteroids and their dynamics is peculiar, involving a 1:1 resonance with Jupiter. Their origin probably dates back to the formation of Jupiter: the Trojan precursors were planetesimals orbiting close to the growing planet. Different mechanisms, including the mass growth of Jupiter, collisional diffusion, and gas drag friction, contributed to the capture of planetesimals in stable Trojan orbits before the final dispersal. The subsequent evolution of Trojan asteroids is the outcome of the joint action of different physical processes involving dynamical diffusion and excitation and collisional evolution. As a result, the present population is possibly different in both orbital and size distribution from the primordial one. No other significant population of Trojan aster- oids have been found so far around other planets, apart from six Trojans of Mars, whose origin and evolution are probably very different from the Trojans of Jupiter. 1. INTRODUCTION originate from the collisional disruption and subsequent reaccumulation of larger primordial bodies. As of May 2001, about 1000 asteroids had been classi- A basic understanding of why asteroids can cluster in fied as Jupiter Trojans (http://cfa-www.harvard.edu/cfa/ps/ the orbit of Jupiter was developed more than a century lists/JupiterTrojans.html), some of which had only been ob- before the first Trojan asteroid was discovered. -
Ice& Stone 2020
Ice & Stone 2020 WEEK 33: AUGUST 9-15 Presented by The Earthrise Institute # 33 Authored by Alan Hale About Ice And Stone 2020 It is my pleasure to welcome all educators, students, topics include: main-belt asteroids, near-Earth asteroids, and anybody else who might be interested, to Ice and “Great Comets,” spacecraft visits (both past and Stone 2020. This is an educational package I have put future), meteorites, and “small bodies” in popular together to cover the so-called “small bodies” of the literature and music. solar system, which in general means asteroids and comets, although this also includes the small moons of Throughout 2020 there will be various comets that are the various planets as well as meteors, meteorites, and visible in our skies and various asteroids passing by Earth interplanetary dust. Although these objects may be -- some of which are already known, some of which “small” compared to the planets of our solar system, will be discovered “in the act” -- and there will also be they are nevertheless of high interest and importance various asteroids of the main asteroid belt that are visible for several reasons, including: as well as “occultations” of stars by various asteroids visible from certain locations on Earth’s surface. Ice a) they are believed to be the “leftovers” from the and Stone 2020 will make note of these occasions and formation of the solar system, so studying them provides appearances as they take place. The “Comet Resource valuable insights into our origins, including Earth and of Center” at the Earthrise web site contains information life on Earth, including ourselves; about the brighter comets that are visible in the sky at any given time and, for those who are interested, I will b) we have learned that this process isn’t over yet, and also occasionally share information about the goings-on that there are still objects out there that can impact in my life as I observe these comets. -
Asteroid Regolith Weathering: a Large-Scale Observational Investigation
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2019 Asteroid Regolith Weathering: A Large-Scale Observational Investigation Eric Michael MacLennan University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation MacLennan, Eric Michael, "Asteroid Regolith Weathering: A Large-Scale Observational Investigation. " PhD diss., University of Tennessee, 2019. https://trace.tennessee.edu/utk_graddiss/5467 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Eric Michael MacLennan entitled "Asteroid Regolith Weathering: A Large-Scale Observational Investigation." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Geology. Joshua P. Emery, Major Professor We have read this dissertation and recommend its acceptance: Jeffrey E. Moersch, Harry Y. McSween Jr., Liem T. Tran Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Asteroid Regolith Weathering: A Large-Scale Observational Investigation A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Eric Michael MacLennan May 2019 © by Eric Michael MacLennan, 2019 All Rights Reserved. -
Detecting the Yarkovsky Effect Among Near-Earth Asteroids From
Detecting the Yarkovsky effect among near-Earth asteroids from astrometric data Alessio Del Vignaa,b, Laura Faggiolid, Andrea Milania, Federica Spotoc, Davide Farnocchiae, Benoit Carryf aDipartimento di Matematica, Universit`adi Pisa, Largo Bruno Pontecorvo 5, Pisa, Italy bSpace Dynamics Services s.r.l., via Mario Giuntini, Navacchio di Cascina, Pisa, Italy cIMCCE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universits, UPMC Univ. Paris 06, Univ. Lille, 77 av. Denfert-Rochereau F-75014 Paris, France dESA SSA-NEO Coordination Centre, Largo Galileo Galilei, 1, 00044 Frascati (RM), Italy eJet Propulsion Laboratory/California Institute of Technology, 4800 Oak Grove Drive, Pasadena, 91109 CA, USA fUniversit´eCˆote d’Azur, Observatoire de la Cˆote d’Azur, CNRS, Laboratoire Lagrange, Boulevard de l’Observatoire, Nice, France Abstract We present an updated set of near-Earth asteroids with a Yarkovsky-related semi- major axis drift detected from the orbital fit to the astrometry. We find 87 reliable detections after filtering for the signal-to-noise ratio of the Yarkovsky drift esti- mate and making sure the estimate is compatible with the physical properties of the analyzed object. Furthermore, we find a list of 24 marginally significant detec- tions, for which future astrometry could result in a Yarkovsky detection. A further outcome of the filtering procedure is a list of detections that we consider spurious because unrealistic or not explicable with the Yarkovsky effect. Among the smallest asteroids of our sample, we determined four detections of solar radiation pressure, in addition to the Yarkovsky effect. As the data volume increases in the near fu- ture, our goal is to develop methods to generate very long lists of asteroids with reliably detected Yarkovsky effect, with limited amounts of case by case specific adjustments. -
Astrodynamics of Moving Asteroids
Astrodynamics of Moving Asteroids Damon Landau, Nathan Strange, Gregory Lantoine, Tim McElrath NASA-JPL/CalTech Copyright 2014 California Institute of Technology. Government sponsorship acknowledged. Capture a NEA into Earth orbit Redirect asteroid for a close approach of the Moon natural Most of the DV is to speed up/slow down the NEA to close approach encounter Earth near their MOID (typically a node) of NEA DB Moon Lunar gravity assist captures NEA during Earth flyby 2 2 Capture C3, km /s DV ≈ DB/DT 2 2 Single flyby captures objects from up to ~3 km /s C3 2008 HU4 example, return leg only Double flyby up to ~5 km2/s2, depends on declination Natural approach of 0.15 AU, 1.3 km2/s2 4/8/2014 2 Asteroids and DV and Mass (oh my!) Returnable mass from (10,776) currently known NEAs Returnable Mass, t Returnable Earth-Sun Lunar Earth flybys Number of NEAs Mass, t Lagrange Pts Flyby & “backflips” 2 2 C3 <1 km /s C3 <2.5 C3 <25 10–50 653 NEAs 2564 4067 50–150 62 207 827 150–300 10 16 190 300–500 6 10 75 500–1000 4 8 40 1000+ 0* 0* 10 Minimum DV (km/s) between NEA & Lunar Flyby Phase-free, circular Earth orbit*, 6 t Xe, 5 t SEP, 2000 s Isp Deimos is ~7 km/s, Phobos is ~8 km/s *circular Earth orbit → up to 300 m/s DV errors 2006 RH120 is the known exception for 1000+ t to Lagrange Pts and 2000 SG344 > 1000 t for Lunar flyby Close approaches no longer factor into the equation for high-DV NEAs 4/8/2014 3 Potential Return Opportunities, 2020s Abbreviated List • Atlas 551 Launch to Asteroid Max Return Earth Return Asteroid Return C 200 x 11k km alt., Diameter 3 Capability Escape Date Launch ~1.5 yr before 2007 UN12 4–11 m 2.2 km2/s2 500 t Jun ’17 Sep ’20 escape 2009 BD 5–13 1.7 900 Jun ‘17 Jun ’23 • 40 kW array 2009 BD 5–13 1.7 500 Jan ‘19 Jun ’23 • 3000 s Isp, 60 % eff. -
The Population of Near Earth Asteroids in Coorbital Motion with Venus
ARTICLE IN PRESS YICAR:7986 JID:YICAR AID:7986 /FLA [m5+; v 1.65; Prn:10/08/2006; 14:41] P.1 (1-10) Icarus ••• (••••) •••–••• www.elsevier.com/locate/icarus The population of Near Earth Asteroids in coorbital motion with Venus M.H.M. Morais a,∗, A. Morbidelli b a Grupo de Astrofísica da Universidade de Coimbra, Observatório Astronómico de Coimbra, Santa Clara, 3040 Coimbra, Portugal b Observatoire de la Côte d’Azur, BP 4229, Boulevard de l’Observatoire, Nice Cedex 4, France Received 13 January 2006; revised 10 April 2006 Abstract We estimate the size and orbital distributions of Near Earth Asteroids (NEAs) that are expected to be in the 1:1 mean motion resonance with Venus in a steady state scenario. We predict that the number of such objects with absolute magnitudes H<18 and H<22 is 0.14 ± 0.03 and 3.5 ± 0.7, respectively. We also map the distribution in the sky of these Venus coorbital NEAs and we see that these objects, as the Earth coorbital NEAs studied in a previous paper, are more likely to be found by NEAs search programs that do not simply observe around opposition and that scan large areas of the sky. © 2006 Elsevier Inc. All rights reserved. Keywords: Asteroids, dynamics; Resonances 1. Introduction object with a theory based on the restricted three body problem at high eccentricity and inclination. Christou (2000) performed In Morais and Morbidelli (2002), hereafter referred to as a 0.2 Myr integration of the orbits of NEAs in the vicinity of Paper I, we estimated the population of Near Earth Asteroids the terrestrial planets, namely (3362) Khufu, (10563) Izhdubar, (NEAs) that are in the 1:1 mean motion resonance (i.e., are 1994 TF2 and 1989 VA, showing that the first three could be- coorbital1) with the Earth in a steady state scenario where come coorbitals of the Earth while the fourth could become NEAs are constantly being supplied by the main belt sources coorbital of Venus. -
Radar Detection of Asteroid 2002 AA29
Icarus 166 (2003) 271–275 www.elsevier.com/locate/icarus Radar detection of Asteroid 2002 AA29 Steven J. Ostro,a,∗ Jon D. Giorgini,a Lance A.M. Benner,a Alice A. Hine,b Michael C. Nolan,b Jean-Luc Margot,c Paul W. Chodas,a and Christian Veillet d a Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109-8099, USA b National Astronomy and Ionosphere Center, Arecibo Observatory, HC3 Box 53995, Arecibo, PR 00612, USA c California Institute of Technology, Pasadena, CA 91125, USA d Canada–France–Hawaii Telescope Corporation, 65-1238 Mamaloha Hwy, Kamuela, HI 96743, USA Received 24 June 2003; revised 27 August 2003 Abstract − Radar echoes from Earth co-orbital Asteroid 2002 AA29 yield a total-power radar cross section of 2.9 × 10 5 km2 ±25%, a circular polarization ratio of SC/OC = 0.26 ± 0.07, and an echo bandwidth of at least 1.5 Hz. Combining these results with the estimate of its visual absolute magnitude, HV = 25.23 ± 0.24, from reported Spacewatch photometry indicates an effective diameter of 25 ± 5 m, a rotation period − no longer than 33 min, and an average surface bulk density no larger than 2.0 g cm 3; the asteroid is radar dark and optically bright, and its statistically most likely spectral class is S. The HV estimate from LINEAR photometry (23.58 ± 0.38) is not compatible with either Spacewatch’s HV or our radar results. If a bias this large were generally present in LINEAR’s estimates of HV for asteroids it has discovered or observed, then estimates of the current completeness of the Spaceguard Survey would have to be revised downward. -
(2000) Forging Asteroid-Meteorite Relationships Through Reflectance
Forging Asteroid-Meteorite Relationships through Reflectance Spectroscopy by Thomas H. Burbine Jr. B.S. Physics Rensselaer Polytechnic Institute, 1988 M.S. Geology and Planetary Science University of Pittsburgh, 1991 SUBMITTED TO THE DEPARTMENT OF EARTH, ATMOSPHERIC, AND PLANETARY SCIENCES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN PLANETARY SCIENCES AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY FEBRUARY 2000 © 2000 Massachusetts Institute of Technology. All rights reserved. Signature of Author: Department of Earth, Atmospheric, and Planetary Sciences December 30, 1999 Certified by: Richard P. Binzel Professor of Earth, Atmospheric, and Planetary Sciences Thesis Supervisor Accepted by: Ronald G. Prinn MASSACHUSES INSTMUTE Professor of Earth, Atmospheric, and Planetary Sciences Department Head JA N 0 1 2000 ARCHIVES LIBRARIES I 3 Forging Asteroid-Meteorite Relationships through Reflectance Spectroscopy by Thomas H. Burbine Jr. Submitted to the Department of Earth, Atmospheric, and Planetary Sciences on December 30, 1999 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Planetary Sciences ABSTRACT Near-infrared spectra (-0.90 to ~1.65 microns) were obtained for 196 main-belt and near-Earth asteroids to determine plausible meteorite parent bodies. These spectra, when coupled with previously obtained visible data, allow for a better determination of asteroid mineralogies. Over half of the observed objects have estimated diameters less than 20 k-m. Many important results were obtained concerning the compositional structure of the asteroid belt. A number of small objects near asteroid 4 Vesta were found to have near-infrared spectra similar to the eucrite and howardite meteorites, which are believed to be derived from Vesta. -
Near-Earth Object (NEO) Hazard Background2
Near-Earth Object (NEO) Hazard Background2 DANIEL D. MAZANEK NASA Langley Research Center Introduction The fundamental problem regarding NEO hazards is that the Earth and other planets, as well as their moons, share the solar system with a vast number of small planetary bodies and orbiting debris. Objects of substantial size are typically classified as either comets or asteroids. Although the solar system is quite expansive, the planets and moons (as well as the Sun) are occasionally impacted by these objects. We live in a cosmic shooting gallery where collisions with Earth occur on a regular basis. Because the num- ber of smaller comets and asteroids is believed to be much greater than larger objects, the frequency of impacts is significantly higher. Fortunately, the smaller objects, which are much more numerous, are usually neutralized by the Earth’s protective atmosphere. It is estimated that between 1000 and 10 000 tons of debris fall to Earth each year, most of it in the form of dust particles and extremely small meteorites (ref. 1). With no atmosphere, the Moon’s surface is continuously impacted with dust and small debris. On November 17 and 18, 1999, during the annual Leonid meteor shower, several lunar sur- face impacts were observed by amateur astronomers in North America (ref. 2). The Leonids result from the Earth’s passage each year through the debris ejected from Comet Tempel-Tuttle. These annual show- ers provide a periodic reminder of the possibility of a much more consequential cosmic collision, and the heavily cratered lunar surface acts a constant testimony to the impact threat. -
Arxiv:1611.07413V1
Noname manuscript No. (will be inserted by the editor) Trojan capture by terrestrial planets Schwarz, R. · Dvorak, R. the date of receipt and acceptance should be inserted later Abstract The paper is devoted to investigate the capture of asteroids by Venus, Earth and Mars into the 1:1 mean motion resonance especially into Trojan orbits. Current theoretical studies predict that Trojan asteroids are a frequent by-product of the planet formation. This is not only the case for the outer giant planets, but also for the terrestrial planets in the inner Solar System. By using numerical integrations, we investigated the capture efficiency and the stability of the captured objects. We found out that the capture efficiency is larger for the planets in the inner Solar System compared to the outer ones, but most of the captured Trojan asteroids are not long term stable. This temporary captures caused by chaotic behaviour of the objects were investigated without any dissipative forces. They show an interesting dynamical behaviour of mixing like jumping from one Lagrange point to the other one. Keywords Trojan capture · terrestrial planets · Near Earth asteroids · 1:1 mean motion resonance 1 Introduction In February 1906, Max Wolf [38] discovered the first Trojan asteroid named 588 Achilles, after the hero of the Trojan war. Almost a century later, in 1990, the first Martian Trojan (5261 Eureka) was observed by Bowell et al. [4]. In 2001 the first Neptune Trojan was discovered by the Lowell Observatory Deep Ecliptic R. Schwarz T¨urkenschanzstrasse 17, 1180 Vienna Tel.: +43-1-427751841 Fax: +43-1-42779518 E-mail: [email protected] R.