Unraveling the Functional Role of DNA Methylation Using Targeted DNA Demethylation by Steric Blockage of DNA Methyltransferase with CRISPR/Dcas9
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Specificity and Mechanism of Carbohydrate Demethylation by Cytochrome P450 Monooxygenases
Biochemical Journal (2018) 475 3875–3886 https://doi.org/10.1042/BCJ20180762 Research Article Specificity and mechanism of carbohydrate demethylation by cytochrome P450 monooxygenases Craig S. Robb1,2, Lukas Reisky3, Uwe T. Bornscheuer3 and Jan-Hendrik Hehemann1,2 1Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, Bremen 28359, Germany; 2University of Bremen, Center for Marine Environmental Sciences (MARUM), Bremen Downloaded from http://portlandpress.com/biochemj/article-pdf/475/23/3875/733679/bcj-2018-0762.pdf by guest on 29 September 2021 28359, Germany; 3Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald 17487, Germany Correspondence: Jan-Hendrik Hehemann ( [email protected]; [email protected]) Degradation of carbohydrates by bacteria represents a key step in energy metabolism that can be inhibited by methylated sugars. Removal of methyl groups, which is critical for further processing, poses a biocatalytic challenge because enzymes need to over- come a high energy barrier. Our structural and computational analysis revealed how a member of the cytochrome P450 family evolved to oxidize a carbohydrate ligand. Using structural biology, we ascertained the molecular determinants of substrate specificity and revealed a highly specialized active site complementary to the substrate chemistry. Invariance of the residues involved in substrate recognition across the subfamily suggests that they are critical for enzyme function and when mutated, the enzyme lost substrate recognition. The structure of a carbohydrate-active P450 adds mechanistic insight into monooxygenase action on a methylated monosaccharide and reveals the broad conservation of the active site machinery across the subfamily. Introduction Microbial polysaccharide utilization is a key component of the global carbon cycle. -
180627-Cytochrome P450 Paper Mcgeehan
1. Molecular Biophysics, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, UK 2. National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO,80401 USA 3. Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA 4. Institute of Chemistry, University of Campinas, Campinas, Sao Paulo, 13083-970, Brazil 5. Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA, 90095, USA 6. Department of Microbiology, University of Georgia, Athens, GA, 30602, USA 7. Biosciences Center, National Renewable Energy Laboratory, Golden CO, 80401, USA * Email: [email protected]; [email protected]; [email protected]; [email protected] ‡ These authors contributed equally to this work Abstract: Microbial aromatic catabolism offers a promising approach to convert lignin, a vast source of renewable carbon, into useful products. O-aryl-demethylation is an essential biochemical reaction to ultimately catabolize coniferyl and sinapyl lignin-derived aromatic compounds, and is often a key bottleneck for both native and engineered bioconversion pathways. Here, we report the comprehensive characterization of a promiscuous P450 aryl-O-demethylase, consisting of a cytochrome P450 protein from the family CYP255A (GcoA) and a three-domain reductase (GcoB) that together represent a new two-component P450 class. Though originally described as converting guaiacol to catechol, we show that this system efficiently demethylates both guaiacol and an unexpectedly wide variety of lignin-relevant monomers. Structural, biochemical, and computational studies of this novel two-component system elucidate the mechanism of its broad substrate specificity, presenting it as a new tool for a critical step in biological lignin conversion. -
Transcriptomic and Epigenomic Characterization of the Developing Bat Wing
ARTICLES OPEN Transcriptomic and epigenomic characterization of the developing bat wing Walter L Eckalbar1,2,9, Stephen A Schlebusch3,9, Mandy K Mason3, Zoe Gill3, Ash V Parker3, Betty M Booker1,2, Sierra Nishizaki1,2, Christiane Muswamba-Nday3, Elizabeth Terhune4,5, Kimberly A Nevonen4, Nadja Makki1,2, Tara Friedrich2,6, Julia E VanderMeer1,2, Katherine S Pollard2,6,7, Lucia Carbone4,8, Jeff D Wall2,7, Nicola Illing3 & Nadav Ahituv1,2 Bats are the only mammals capable of powered flight, but little is known about the genetic determinants that shape their wings. Here we generated a genome for Miniopterus natalensis and performed RNA-seq and ChIP-seq (H3K27ac and H3K27me3) analyses on its developing forelimb and hindlimb autopods at sequential embryonic stages to decipher the molecular events that underlie bat wing development. Over 7,000 genes and several long noncoding RNAs, including Tbx5-as1 and Hottip, were differentially expressed between forelimb and hindlimb, and across different stages. ChIP-seq analysis identified thousands of regions that are differentially modified in forelimb and hindlimb. Comparative genomics found 2,796 bat-accelerated regions within H3K27ac peaks, several of which cluster near limb-associated genes. Pathway analyses highlighted multiple ribosomal proteins and known limb patterning signaling pathways as differentially regulated and implicated increased forelimb mesenchymal condensation in differential growth. In combination, our work outlines multiple genetic components that likely contribute to bat wing formation, providing insights into this morphological innovation. The order Chiroptera, commonly known as bats, is the only group of To characterize the genetic differences that underlie divergence in mammals to have evolved the capability of flight. -
The Genetic Basis of Emotional Behaviour in Mice
European Journal of Human Genetics (2006) 14, 721–728 & 2006 Nature Publishing Group All rights reserved 1018-4813/06 $30.00 www.nature.com/ejhg REVIEW The genetic basis of emotional behaviour in mice Saffron AG Willis-Owen*,1 and Jonathan Flint1 1Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Headington, Oxford, UK The last decade has witnessed a steady expansion in the number of quantitative trait loci (QTL) mapped for complex phenotypes. However, despite this proliferation, the number of successfully cloned QTL has remained surprisingly low, and to a great extent limited to large effect loci. In this review, we follow the progress of one complex trait locus; a low magnitude moderator of murine emotionality identified some 10 years ago in a simple two-strain intercross, and successively resolved using a variety of crosses and fear-related phenotypes. These experiments have revealed a complex underlying genetic architecture, whereby genetic effects fractionate into several separable QTL with some evidence of phenotype specificity. Ultimately, we describe a method of assessing gene candidacy, and show that given sufficient access to genetic diversity and recombination, progression from QTL to gene can be achieved even for low magnitude genetic effects. European Journal of Human Genetics (2006) 14, 721–728. doi:10.1038/sj.ejhg.5201569 Keywords: mouse; emotionality; quantitative trait locus; QTL Introduction tude genetic effects and their interactions (both with other Emotionality is a psychological trait of complex aetiology, genetic loci (ie epistasis) and nongenetic (environmental) which moderates an organism’s response to stress. Beha- factors) ultimately producing a quasi-continuously distrib- vioural evidence of emotionality has been documented uted phenotype. -
The Combined Cardiac Effect of the Anabolic Steroid, Nandrolone And
ù1. v -¿. rlc) 77.- *n*hi.rnool oowol,ù*o ffi"/fu -lo *rn*(o fii'o fio¿o¿¿, /v&"ùún lonno **al cooaiæe';¿vfl"- oã. Benjamin D. Phillis, B.Sc. (Hons) Phatmacology Depattment of Clinical & Experimental Pharmacology Ftome Rd. , Medical School Noth Adelaide Univetsity ADEIAIDE SA 5OOO û.)r.'-*hr/7enveltîù Foremost, I would like to thank my two supervisors for the direction that they have given this ptojecr. To Rod, for his unfailing troubleshooting abiJity and to Jenny fot her advice and ability to add scientific rigour' Many thanks to Michael Adams for his technical assistance and especially fot performing the surgery for the ischaemia-reperfusion projects and for his willingness to work late nights and public holidays. Lastly I would like to thank my v¡ife for her extreme patience during the tumult of the last 5 years. Her love, suppoït, patience and undetstanding have been invaluable in this endeavout. Beniamin D. Phillis Octobet,2005 ADE,I-AIDE ii T*(¿t of Ao,t",tù DECI.ARATION I ACKNOWLEDGEMENTS il TABLE OF CONTENTS UI ABBREVIATIONS x ABSTRACT )ilr CÉIAPTER t-l Inttoduction 1-1 1.1 Background 1,-1, 1.2What ate anabolic stetoids? 7-1 1,3 General pharmacology of Anabolic steroids t-2 '1,-2 1.3.1 Genomic effects of anabolic steroids 1.3.2 Non-genomic effects of anabolic steroids 1-3 1.4 Clinical use of AS 1.-4 1.5 Patterns of AS abuse 1.-4 1.5.1 Steroid abuse by athletes 1.-+ 1.5.2 Stetoid abuse by sedentary teenagers r-6 1.5.3 Prevalence of abuse 1-6 1.5.4 Abuse ptevalence in Australia 1.-9 1.6 Cardiotoxicity of anabolic steroids r-9 1.6.1 Reduced cotonary flow 1.-1.1, 1,.6.2 Dtect myocatdial eff ects 1-1 5 1.6.3 Hypertension 1-21 1.7 Difficulties associated with anabolic steroid research 1.-24 1-25 1.8 The polydrug abuse Phenomenon 1.9 The pharmacology of cocaine 1-26 1.10 Pteparations 1-28 1-29 1.11 Metabolism lll 1-30 1. -
Different Contribution of BRINP3 Gene in Chronic
Casado et al. BMC Oral Health (2015) 15:33 DOI 10.1186/s12903-015-0018-6 RESEARCH ARTICLE Open Access Different contribution of BRINP3 gene in chronic periodontitis and peri-implantitis: a cross- sectional study Priscila L Casado1,2, Diego P Aguiar2, Lucas C Costa3, Marcos A Fonseca3, Thays CS Vieira2,4, Claudia CK Alvim-Pereira5, Fabiano Alvim-Pereira6, Kathleen Deeley7, José M Granjeiro1,9, Paula C Trevilatto8 and Alexandre R Vieira7,10* Abstract Background: Peri-implantitis is a chronic inflammation, resulting in loss of supporting bone around implants. Chronic periodontitis is a risk indicator for implant failure. Both diseases have a common etiology regarding inflammatory destructive response. BRINP3 gene is associated with aggressive periodontitis. However, is still unclear if chronic periodontitis and peri-implantitis have the same genetic background. The aim of this work was to investigate the association between BRINP3 genetic variation (rs1342913 and rs1935881) and expression and susceptibility to both diseases. Methods: Periodontal and peri-implant examinations were performed in 215 subjects, divided into: healthy (without chronic periodontitis and peri-implantitis, n = 93); diseased (with chronic periodontitis and peri-implantitis, n = 52); chronic periodontitis only (n = 36), and peri-implantitis only (n = 34). A replication sample of 92 subjects who lost implants and 185 subjects successfully treated with implants were tested. DNA was extracted from buccal cells. Two genetic markers of BRINP3 (rs1342913 and rs1935881) were genotyped using TaqMan chemistry. Chi-square (p < 0.05) compared genotype and allele frequency between groups. A subset of subjects (n = 31) had gingival biopsies ΔΔCT harvested. The BRINP3 mRNA levels were studied by CT method (2 ). -
Castration Delays Epigenetic Aging and Feminizes DNA
RESEARCH ARTICLE Castration delays epigenetic aging and feminizes DNA methylation at androgen- regulated loci Victoria J Sugrue1, Joseph Alan Zoller2, Pritika Narayan3, Ake T Lu4, Oscar J Ortega-Recalde1, Matthew J Grant3, C Simon Bawden5, Skye R Rudiger5, Amin Haghani4, Donna M Bond1, Reuben R Hore6, Michael Garratt1, Karen E Sears7, Nan Wang8, Xiangdong William Yang8,9, Russell G Snell3, Timothy A Hore1†*, Steve Horvath4†* 1Department of Anatomy, University of Otago, Dunedin, New Zealand; 2Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, United States; 3Applied Translational Genetics Group, School of Biological Sciences, Centre for Brain Research, The University of Auckland, Auckland, New Zealand; 4Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States; 5Livestock and Farming Systems, South Australian Research and Development Institute, Roseworthy, Australia; 6Blackstone Hill Station, Becks, RD2, Omakau, New Zealand; 7Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, United States; 8Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles (UCLA), Los Angeles, United States; 9Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, United States *For correspondence: Abstract In mammals, females generally live longer than males. Nevertheless, the mechanisms [email protected] (TAH); underpinning sex-dependent longevity are currently unclear. Epigenetic clocks are powerful [email protected] (SH) biological biomarkers capable of precisely estimating chronological age and identifying novel †These authors contributed factors influencing the aging rate using only DNA methylation data. In this study, we developed the equally to this work first epigenetic clock for domesticated sheep (Ovis aries), which can predict chronological age with a median absolute error of 5.1 months. -
Cyclic Antidepressant Drugs SI Conversion: [AUQ: Dr
834 II: THERAPEUTIC DRUGS 127. Spiker DG, Pugh DD. Combining tricyclic and monoamine oxidase inhibi- 145. Chambost M, Liron L, Peillon D, et al. [Serotonin syndrome during fluoxetine tor antidepressants. Arch Gen Psychiatry 1976;33(7):828–830. poisoning in a patient taking moclobemide.] Can J Anaesth 2000;47(3):246– 128. Peebles-Brown AE. Hyperpyrexia following psychotropic drug overdose. 250. Anaesthesia 1985;40(11):1097–1099. 146. Myrenfors PG, Eriksson T, Sandsted CS, et al. Moclobemide overdose. J 129. Tuck JR, Punell G. Uptake of (3H)5-hydroxytryptamine and (3H)noradrenaline Intern Med 1993;233(2):113–115. by slices of rat brain incubated in plasma from patients treated with chlorimi- 147. Pounder DJ, Jones GR. Post-mortem drug redistribution––a toxicological pramine, imipramine or amitriptyline. J Pharm Pharmacol 1973;25(7):573–574. nightmare. Forensic Sci Int 1990;45(3):253–263. 130. Gillman PK. Successful treatment of serotonin syndrome with chlorproma- 148. Lichtenwalner MR, Tully RG, Cohn RD, et al. Two fatalities involving zine. Med J Aust 1996;165(6):345–346. phenelzine. J Anal Toxicol 1995;19(4):265–266. 131. Graham PM. Successful treatment of the toxic serotonin syndrome with 149. Yonemitsu K, Pounder DJ. Postmortem changes in blood tranylcypromine chlorpromazine. Med J Aust 1997;166(3):166–167. concentration: competing redistribution and degradation effects. Forensic 132. Tackley RM, Tregaskis B. Fatal disseminated intravascular coagulation fol- Sci Int 1993;59(2):177–184. lowing a monoamine oxidase inhibitor/tricyclic interaction. Anaesthesia 150. Baselt RC, Shaskan E, Gross EM. Tranylcypromine concentrations and 1987;42(7):760–763. -
Idep: an Integrated Web Application for Differential Expression and Pathway Analysis of RNA-Seq Data Steven Xijin Ge* , Eun Wo Son and Runan Yao
Ge et al. BMC Bioinformatics (2018) 19:534 https://doi.org/10.1186/s12859-018-2486-6 METHODOLOGY ARTICLE Open Access iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data Steven Xijin Ge* , Eun Wo Son and Runan Yao Abstract Background: RNA-seq is widely used for transcriptomic profiling, but the bioinformatics analysis of resultant data can be time-consuming and challenging, especially for biologists. We aim to streamline the bioinformatic analyses of gene-level data by developing a user-friendly, interactive web application for exploratory data analysis, differential expression, and pathway analysis. Results: iDEP (integrated Differential Expression and Pathway analysis) seamlessly connects 63 R/Bioconductor packages, 2 web services, and comprehensive annotation and pathway databases for 220 plant and animal species. The workflow can be reproduced by downloading customized R code and related pathway files. As an example, we analyzed an RNA-Seq dataset of lung fibroblasts with Hoxa1 knockdown and revealed the possible roles of SP1 and E2F1 and their target genes, including microRNAs, in blocking G1/S transition. In another example, our analysis shows that in mouse B cells without functional p53, ionizing radiation activates the MYC pathway and its downstream genes involved in cell proliferation, ribosome biogenesis, and non-coding RNA metabolism. In wildtype B cells, radiation induces p53-mediated apoptosis and DNA repair while suppressing the target genes of MYC and E2F1, and leads to growth and cell cycle arrest. iDEP helps unveil the multifaceted functions of p53 and the possible involvement of several microRNAs such as miR-92a, miR-504, and miR-30a. -
Biocatalytic Methylation and Demethylation Via a Shuttle Catalysis Concept Involving Corrinoid Proteins
ARTICLE DOI: 10.1038/s42004-018-0083-2 OPEN Biocatalytic methylation and demethylation via a shuttle catalysis concept involving corrinoid proteins Judith E. Farnberger1, Nina Richter1, Katharina Hiebler 2, Sarah Bierbaumer2, Mathias Pickl2, Wolfgang Skibar3, 1234567890():,; Ferdinand Zepeck3 & Wolfgang Kroutil 2 Synthetically established methods for methylation of phenols and demethylation of methyl phenyl ethers rely in general on hazardous reagents or/and harsh reaction conditions and are irreversible. Consequently, alternative regioselective methods for the reversible formation and breakage of C-O-ether bonds to be performed under mild and sustainable conditions are highly desired. Here we present a biocatalytic shuttle concept making use of corrinoid- dependent methyl transferases from anaerobic bacteria. The two-component enzymatic system consists of a corrinoid protein carrying the cofactor and acting as methyl group shuttle, and a methyltransferase catalyzing both methylation and demethylation in a rever- sible fashion. Various phenyl methyl ethers are successfully demethylated and serve in addition as sustainable methylating agents for the functionalization of various substituted catechols. Therefore, this methyl transfer approach represents a promising alternative to common chemical protocols and a valuable add-on for the toolbox of available biocatalysts. 1 Austrian Centre of Industrial Biotechnolgy, ACIB GmbH, c/o University of Graz, Heinrichstrasse 28, 8010 Graz, Austria. 2 Institute of Chemistry, University of Graz, NAWI -
Homozygous Deletions Implicate Non-Coding Epigenetic Marks In
www.nature.com/scientificreports OPEN Homozygous deletions implicate non‑coding epigenetic marks in Autism spectrum disorder Klaus Schmitz‑Abe1,2,3,4, Guzman Sanchez‑Schmitz3,5, Ryan N. Doan1,3, R. Sean Hill1,3, Maria H. Chahrour1,3, Bhaven K. Mehta1,3, Sarah Servattalab1,3, Bulent Ataman6, Anh‑Thu N. Lam1,3, Eric M. Morrow7, Michael E. Greenberg6, Timothy W. Yu1,3*, Christopher A. Walsh1,3,4,8,9* & Kyriacos Markianos1,3,4,10* More than 98% of the human genome is made up of non‑coding DNA, but techniques to ascertain its contribution to human disease have lagged far behind our understanding of protein coding variations. Autism spectrum disorder (ASD) has been mostly associated with coding variations via de novo single nucleotide variants (SNVs), recessive/homozygous SNVs, or de novo copy number variants (CNVs); however, most ASD cases continue to lack a genetic diagnosis. We analyzed 187 consanguineous ASD families for biallelic CNVs. Recessive deletions were signifcantly enriched in afected individuals relative to their unafected siblings (17% versus 4%, p < 0.001). Only a small subset of biallelic deletions were predicted to result in coding exon disruption. In contrast, biallelic deletions in individuals with ASD were enriched for overlap with regulatory regions, with 23/28 CNVs disrupting histone peaks in ENCODE (p < 0.009). Overlap with regulatory regions was further demonstrated by comparisons to the 127‑epigenome dataset released by the Roadmap Epigenomics project, with enrichment for enhancers found in primary brain tissue and neuronal progenitor cells. Our results suggest a novel noncoding mechanism of ASD, describe a powerful method to identify important noncoding regions in the human genome, and emphasize the potential signifcance of gene activation and regulation in cognitive and social function. -
022036Orig1s000
CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 022036Orig1s000 CLINICAL PHARMACOLOGY AND BIOPHARMACEUTICS REVIEW(S) Biopharmaceutics Review NDA: 22-036 Sequence No: 0019 Submission Date: June 4, 2009 Type of Submission: Resubmission following Complete Response 3S Product name Silenor™ (doxepin HCl) Dosage Form: Tablet Dosage Strengths: 1 mg, 3 mg, and 6 mg Sponsor: Somaxon Pharmaceuticals, Inc. Background Silenor (doxepin HCl) is indicated for the treatment of insomnia. It is an immediate release tablet available in three strengths (1 mg, 3 mg, and 6 mg). The tablet formulation was developed using standard (b) (4) (b) (4) (b) (4) the comparability protocol described the sponsor intent to make some changes to the drug product. The sponsor is planning to add a colored, (b) (4) film-coat as a mean to visually distinguish between different strengths. However, in order to make this addition, the sponsor has to perform other changes to the manufacturing process, including the following: (b) (4) 1 (b) (4) According to the CMC reviewer, Dr. Sherita McLamore, the above proposed changes are considered Level 2 according to SUPAC IR and require Prior Approval Supplement. Assessing Solubility The solubility of doxepin hydrochloride was determined in a non-GLP manner. The aqueous solubility of doxepin hydrochloride was tested at pHs of 1.0, 6.8, and 7.4 using the shake-flask method. Triplicate samples were prepared for each buffer system and at equilibration, and the pH was verified using a calibrated pH meter. The sponsor reported that the thermodynamic pKa values for doxepin and its metabolite desmethyl doxepin are 8.96 and 9.75, respectively, at 25 ºC.