4 Marine Organisms As Biomonitors

Total Page:16

File Type:pdf, Size:1020Kb

4 Marine Organisms As Biomonitors WITPress_BMTA_ch004.qxd 11/26/2007 17:00 Page 81 4 Marine organisms as biomonitors M E Conti & M Iacobucci 1 Introduction Biomonitors are organisms mostly used for the quantitative determination of contaminants in the environment (see Chapter 1). The present chapter discusses mainly the employment of seaweeds, sea phanerogams and molluscs as bioindi- cators of heavy metal contamination, since they are the organisms of choice in most of the programmes of biological monitoring of coastal marine waters (see Water Framework Directive 2000/60 EC (WFD) [1]). Bioindicators provide an integrated view of the presence of micropollutants, and in the aquatic environment they respond only to the fraction presenting a clear ecotoxicological relevance (see Chapter 1). Among the different methodological approaches of biological monitoring of a marine ecosystem, the approach based on the bioaccumulation capacity of some chemical species, as for instance trace metals, is among the most important. This capacity is particularly present among macroalgae, sea phanerogams, molluscs, oysters, etc. These organisms can be proposed as possible bioindicators when the presence of a direct correlation between internal and environmental levels of the various metals has been verified [2]. Therefore, the chemical analysis of the tissues of such organisms represents a method for measuring the integrated bioavailability of trace metals in the marine environment over time, given their remarkable bioconcentration capacity [3–5]. Comparing the levels of metals in the organisms collected at different sites is a very useful way to gather information on the biologically available levels of inor- ganic contaminants in the areas under study. In general, micro and macroalgae, marine phanerogams, mussels, oysters, tellinid bivalves, polychaets and crus- taceans are some of the organisms used as bioindicators of marine ecosystems [4]. Marine organisms can accumulate contaminants present in solution and in the particulate material, thus determining a variation in the level of bioaccumulation depending on the trophic level occupied. Some marine invertebrates can take contaminants from the particulate material of the sediment, especially when their physico-chemical conditions are being altered. Algae and phanerogams take contaminants in solutions and many herbivorous crustaceans reflect their concentrations. Therefore, in order to have a full picture of the bioavailability of the vari- ous pollutants of water ecosystems, it is necessary to use several kinds of WIT Transactions on State of the Art in Science and Engineering, Vol 30, © 2008 WIT Press www.witpress.com, ISSN 1755-8336 (on-line) doi:10.2495/978-1-84564-002-6/04 WITPress_BMTA_ch004.qxd 11/26/2007 17:00 Page 82 82 BIOLOGICAL MONITORING: THEORY & APPLICATIONS bioindicators: macrophytes algae responding mainly to metals in solution, marine phanerogams, which are higher plants provided with a root apparatus and responding also to the amount of metals biologically available in sediments; sus- pensivorous filter feeders (like mussels) responding to dissolved and suspended contaminants and detritivores taking recent deposits on the sediment. 2 Algae and bioaccumulation of heavy metals Heavy metals are natural constituents largely distributed in the environment; when highly concentrated they are harmful to animals and plants. Moreover, they cannot be eliminated from the water body: they settle on the ocean bottom, and currents bring about a slow release which causes serious risks of contamination for the organisms [6]. The existing balance between suspended metals and metals present on the sedi- ments was in many cases broken by human activity which caused a wholesale increase in the concentration levels of metals through uncontrolled discharges, especially in highly industrialized areas. In chronically polluted areas, algae and sea plants tend to accumulate metals in very high and dangerous levels [7, 8]. The levels of bioaccumulation of contaminants in older algal tissues can be compared to the accumulation on more recent tissues of the same individuals and thus help determine the evolution of the contamination process for the organisms present in a given geographical area. Sea macroalgae belong to divisions Chlorophyta, Rhodophyta and Phaeophyta. From Chlorophyta the species of green algae (Chlorophyceae) pertaining to the genera Enteromorpha [6, 9–16], Ulva [11–13, 17–25], Cladophora [10, 12, 26], Codium [11, 27], Caulerpa [11, 12] and Chaetomorpha [10] have been selected as bioindicators of heavy metals in the marine environment. From Phaeophyta the species of brown algae (Phaeophyceae) used in moni- toring studies belong to the genera Dictyota [11, 28], Scytosiphon [28], Colpomenia [29, 30], Padina [16, 31–33], Fucus [34–37], Ascophyllum [38, 39] and Macrocystis [29, 40]. From Rhodophyta the species mostly used were the red algae (Rhodophyceae) of the genera Gracilaria [10, 12, 17–19], Pterocladia [11, 28], Gelidium [28], Gigartina [11, 29, 30] and Porphyra [28]. Not only the selection of the appropriate bioindicators but also the knowledge of biological variables (age, sex, size, seasonality, portion of the plant analysed) related to the specific organism selected or particular features of the algal species (degree of submergence in the sea, tolerance to metal stress) may be taken into account in the sampling design [41, 42]. In algae, apart from sampling considerations (see below), metal concentrations depend both on external factors (pH, salinity, inorganic and organic compounds) and on physico-chemical parameters (temperature, light, oxygen and nutrient) [8]. Metal bioaccumulation is a function of the total enrichment in metal by a specific WIT Transactions on State of the Art in Science and Engineering, Vol 30, © 2008 WIT Press www.witpress.com, ISSN 1755-8336 (on-line) WITPress_BMTA_ch004.qxd 11/26/2007 17:00 Page 83 MARINE ORGANISMS AS BIOMONITORS 83 algal organism, taking into account those metal forms, known as bioavailable species, that are more easily integrated by the organism [43]. Sea life benefits from algae, which are at the basis of the food chain. The net amount of global oxygen produced by algae through photosynthesis is an esti- mated 30–50%. Macroalgae have a multicellular organization, their structures can be complex and quite large in terms of size, and sometimes they have a differen- tiated thallus in organs analogous to those of higher plants [44]. Some chlorophyte like Caulerpa and others are multinucleated unicellular organisms equally able to show complex structures [45]. The degree of metal bioaccumulation in aquatic organisms has been widely studied and can serve as a reference point for further monitoring studies as well as to help prevent potentially harmful effects on higher organisms. The earliest studies, dating back to the 1960s [46, 47] found a linear correla- tion between zinc concentrations in Ulva and Laminaria digitata and mean con- centrations of zinc in the surrounding water. Also Seeliger and Edwards [48] showed an existing correlation of 0.98 for copper and 0.97 for lead between seawater and a number of algal species (Blidingia, Enteromorpha and Fucus). Generally, suspended metals present in water are a function of the kind and quan- tity of sediments and only partially do they depend on climatic and hydrographic processes [8, 48]. Biomonitoring studies require therefore rigorous sampling procedures. Moreover, metal concentration in algae can vary along both the vertical and the horizontal position of the water column, in relation to the variation of the degree of exposure to contaminants [2, 47]. Algae only bind free metal ions whose concentrations depend in turn on the nature of suspended particulate matter which is formed by organic and inorganic compounds [8, 49]. At an early stage, algae accumulate metals on their external surface through a reversible physico-chemical uptake process, followed by a process regulated by cellular metabolism [8, 50]. This kind of uptake has been the object of debate among researchers. Other authors, for instance, found that zinc accumulation in some brown algae is irreversible [35, 51]. In general, it is widely accepted that the metal uptake through cellular mem- branes is mainly due to diffusion rather than an active transport mechanism. The kinetics of uptake through passive diffusion is described by Fick’s law. Depledge and Rainbow [52] suggest that Fick’s equation may require some modification in order to take into account also the differences in the electrical potential existing through many cellular barriers [52]. Figure 1 shows a general model of the distribution of metals in aquatic ecosystems. The accumulation mechanisms of metal on the part of algae takes place through the way metals bind to the external cellular wall. This can be of an ionic kind or through the formation of complexes with the ligands of the cellular wall. The polymers constituting the cellular wall are rich in carboxylic, phosphoryl, aromatic and hydroxyl groups that can bind cationic metals [53, 54]. WIT Transactions on State of the Art in Science and Engineering, Vol 30, © 2008 WIT Press www.witpress.com, ISSN 1755-8336 (on-line) WITPress_BMTA_ch004.qxd 11/26/2007 17:00 Page 84 84 BIOLOGICAL MONITORING: THEORY & APPLICATIONS ORGANIC COMPLEXES SPECIATION IONS OR ION PAIRS SOLUBLE PHASE INORGANIC COMPLEXES M E T PLANKTON A SORPTION L PARTITIONING BY ORGANIC PARTICLES S O INORGANIC U R C E INSOLUBLE DEPOSITION RESUSPENSION PRECIPITATE Figure 1: General
Recommended publications
  • Do We Need to Use Bats As Bioindicators?
    biology Perspective Do We Need to Use Bats as Bioindicators? Danilo Russo * , Valeria B. Salinas-Ramos , Luca Cistrone, Sonia Smeraldo, Luciano Bosso * and Leonardo Ancillotto Wildlife Research Unit, Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università, 100, 80055 Portici, Italy; [email protected] (V.B.S.-R.); [email protected] (L.C.); [email protected] (S.S.); [email protected] (L.A.) * Correspondence: [email protected] (D.R.); [email protected] (L.B.) Simple Summary: Bioindicators are organisms that react to the quality or characteristics of the environment and their changes. They are vitally important to track environmental alterations and take action to mitigate them. As choosing the right bioindicators has important policy implications, it is crucial to select them to tackle clear goals rather than selling specific organisms as bioindicators for other reasons, such as for improving their public profile and encourage species conservation. Bats are a species-rich mammal group that provide key services such as pest suppression, pollination of plants of economic importance or seed dispersal. Bats show clear reactions to environmental alterations and as such have been proposed as potentially useful bioindicators. Based on the rel- atively limited number of studies available, bats are likely excellent indicators in habitats such as rivers, forests, and urban sites. However, more testing across broad geographic areas is needed, and establishing research networks is fundamental to reach this goal. Some limitations to using bats as bioindicators exist, such as difficulties in separating cryptic species and identifying bats in flight from their calls.
    [Show full text]
  • Bioindicator
    Bioindicator INTRODUCTION A bioindicator is any species (an indicator species) or group of species whose function, population, or status can reveal the qualitative status of the environment. For example, copepods and other small water crustaceans that are present in many water bodies can be monitored for changes (biochemical, physiological, or behavioural) that may indicate a problem within their ecosystem. Bioindicators can tell us about the cumulative effects of different pollutants in the ecosystem and about how long a problem may have been present, which physical and chemical testing cannot. A biological monitor or biomonitor is an organism that provides quantitative information on the quality of the environment around it. Therefore, a good biomonitor will indicate the presence of the pollutant and can also be used in an attempt to provide additional information about the amount and intensity of the exposure. A biological indicator is also the name given to a process for assessing the sterility of an environment through the use of resistant microorganism strains (eg. Bacillus or Geobacillus). Biological indicators can be described as the introduction of a highly resistant microorganisms to a given environment before sterilization, tests are conducted to measure the effectiveness of the sterilization processes. As biological indicators use highly resistant microorganisms, any sterilization process that renders them inactive will have also killed off more common, weaker pathogens. The advantages associated with using Bioindicators are as follows: (a) Biological impacts can be determined. (b) To monitor synergetic and antagonistic impacts of various pollutants on a creature. (c) Early stage diagnosis as well as harmful effects of toxins to plants, as well as human beings, can be monitored.
    [Show full text]
  • The Amphipod <I>Orchomenella Pinguis</I>
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Valery Forbes Publications Papers in the Biological Sciences 2009 The amphipod Orchomenella pinguis — A potential bioindicator for contamination in the Arctic Lis Bach Aarhus University, [email protected] Valery E. Forbes University of Nebraska-Lincoln, [email protected] Ingela Dahllöf Aarhus University Follow this and additional works at: https://digitalcommons.unl.edu/biosciforbes Part of the Aquaculture and Fisheries Commons, Other Pharmacology, Toxicology and Environmental Health Commons, Terrestrial and Aquatic Ecology Commons, and the Toxicology Commons Bach, Lis; Forbes, Valery E.; and Dahllöf, Ingela, "The amphipod Orchomenella pinguis — A potential bioindicator for contamination in the Arctic" (2009). Valery Forbes Publications. 47. https://digitalcommons.unl.edu/biosciforbes/47 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Valery Forbes Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Marine Pollution Bulletin 58:11 (November 2009), pp. 1664–1670; doi: 10.1016/j.marpolbul.2009.07.001 Copyright © 2009 Elsevier Ltd. Used by permission. The amphipod Orchomenella pinguis — A potential bioindicator for contamination in the Arctic Lis Bach,1,2 Valery E. Forbes,2 and Ingela Dahllöf 1 1. Department of Marine Ecology, National Environmental Research Institute, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark 2. Department of Environmental, Social and Spatial Change, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark Corresponding author — L. Bach, email [email protected] , [email protected] Abstract Indigenous organisms can be used as bioindicators for effects of contaminants, but no such bioindicator has been estab- lished for Arctic areas.
    [Show full text]
  • Ozone Bioindicator Plants (Combined), Version 5.1 October, 2011
    Phase 3 Field Guide – Ozone Bioindicator Plants (combined), Version 5.1 October, 2011 Section 20. Ozone Bioindicator Plants 20.1 Overview .............................................................................................................................................. 3 20.1.1 Scope and Application ................................................................................................................ 3 20.1.2 Summary of Method .................................................................................................................... 4 20.1.3 Summary of PDR Screens and Tally Procedures ....................................................................... 4 20.1.4 Equipment And Supplies ............................................................................................................. 4 20.1.5 Training and Quality Assurance .................................................................................................. 5 20.1.6 Voucher Specimens .................................................................................................................... 5 20.1.7 Communications ......................................................................................................................... 5 20.2 Ozone Biomonitoring Procedures ..................................................................................................... 7 20.2.1 Evaluation Window ...................................................................................................................... 7 20.2.2
    [Show full text]
  • Use of Leaves As Bioindicator to Assess Air Pollution Based on Composite Proxy Measure (APTI), Dust Amount and Elemental Concentration of Metals
    plants Article Use of Leaves as Bioindicator to Assess Air Pollution Based on Composite Proxy Measure (APTI), Dust Amount and Elemental Concentration of Metals Vanda Éva Molnár 1 ,Dávid T˝ozsér 2, Szilárd Szabó 1 ,Béla Tóthmérész 3 and Edina Simon 2,* 1 Department of Physical Geography and Geoinformatics, University of Debrecen, H-4032 Debrecen, Hungary; [email protected] (V.É.M.); [email protected] (S.S.) 2 Department of Ecology, University of Debrecen, H-4032 Debrecen, Hungary; [email protected] 3 MTA-DE Biodiversity and Ecosystem Services Research Group, H-4032 Debrecen, Hungary; [email protected] * Correspondence: [email protected] Received: 15 October 2020; Accepted: 7 December 2020; Published: 9 December 2020 Abstract: Monitoring air pollution and environmental health are crucial to ensure viable cities. We assessed the usefulness of the Air Pollution Tolerance Index (APTI) as a composite index of environmental health. Fine and coarse dust amount and elemental concentrations of Celtis occidentalis and Tilia europaea leaves were measured in June and September at three sampling sites (urban, × industrial, and rural) in Debrecen city (Hungary) to assess the usefulness of APTI. The correlation between APTI values and dust amount and elemental concentrations was also studied. Fine dust, total chlorophyll, and elemental concentrations were the most sensitive indicators of pollution. Based on the high chlorophyll and low elemental concentration of tree leaves, the rural site was the least disturbed by anthropogenic activities, as expected. We demonstrated that fine and coarse dust amount and elemental concentrations of urban tree leaves are especially useful for urban air quality monitoring.
    [Show full text]
  • Long-Term Shifts in Water Quality Show Scale-Dependent Bioindicator
    Ecological Indicators 98 (2019) 476–482 Contents lists available at ScienceDirect Ecological Indicators journal homepage: www.elsevier.com/locate/ecolind Original Articles Long-term shifts in water quality show scale-dependent bioindicator responses across Russia – Insights from 40 year-long bioindicator monitoring T program ⁎ Otso Ovaskainena,b, ,1, Benjamin Weigela,1, Oleg Potyutkoc, Yury Buyvolovc a Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, University of Helsinki, P.O. Box 65, Helsinki FI-00014, Finland b Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway c Yu. A. Izrael Institute of Global Climate and Ecology, Glebovskaya str., 20b, Moscow 107258, Russia ARTICLE INFO ABSTRACT Keywords: Scale-related assessment strategies are important contributions to successful ecosystem management. With Bioindicator varying impact of environmental drivers from local to regional scales, a focal task is to understand scale-de- Hierarchical modelling of species communities pendent responses when assessing the state of an ecosystem. In this study we use large-scale monitoring data, Joint species distribution modelling spanning 40 years and including four aquatic bioindicator groups (phytoplankton, zooplankton, periphyton, Phytoplankton zoobenthos) to expose the long-term changes of water quality across Russia. We include four hierarchical spatial Periphyton scales (region, basin, waterbody and observation point) to identify the relative importance of different spatio- Zoobenthos Zooplankton temporal scales for the variation of each bioindicator and patterns of co-variation among the bioindicators at different hierarchical levels. We analysed the data with Hierarchical Modelling of Species Communities (HMSC), an approach that belongs to the framework of joint species distribution models.
    [Show full text]
  • The Agricultural Impact of Pesticides on Physalaemus Cuvieri Tadpoles (Amphibia: Anura) Ascertained by Comet Assay
    ZOOLOGIA 34: e19865 ISSN 1984-4689 (online) zoologia.pensoft.net RESEARCH ARTICLE The agricultural impact of pesticides on Physalaemus cuvieri tadpoles (Amphibia: Anura) ascertained by comet assay Macks W. Gonçalves1,4, Priscilla G. Gambale3, Fernanda R. Godoy4, Alessandro Arruda Alves1,4, Pedro H. de Almeida Rezende1, Aparecido D. da Cruz4, Natan M. Maciel2, Fausto Nomura2, Rogério P. Bastos2, Paulo de Marco-Jr2, Daniela de M. Silva1,4 1Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética e Mutagênese, Instituto de Ciências Biológicas, Universidade Federal de Goiás. Estrada do Campus, Campus Universitário, 74690-900 Goiânia, GO, Brazil. 2Programa de Pós-Graduação em Ecologia e Evolução e Programa de Pós-Graduação em Biodiversidade Animal, Instituto de Ciências Biológicas, Universidade Federal de Goiás. Estrada do Campus, Campus Universitário, 74690- 900 Goiânia, GO, Brazil. 3Universidade Estadual de Mato Grosso do Sul. Rua General Mendes de Moraes 370, Jardim Aeroporto, 74000000 Coxim, MS, Brazil. 4Núcleo de Pesquisas Replicon, Departamento de Biologia, Pontifícia Universidade Católica de Goiás. Rua 235, 40, Bloco L, Setor Leste Universitário, 74605-050 Goiânia, GO, Brazil. Corresponding author: Daniela de M. Silva ([email protected], [email protected]) http://zoobank.org/A65FFC07-75B6-4DE4-BE59-8CE6BB2D4448 ABSTRACT. Amphibians inhabiting agricultural areas are constantly exposed to large amounts of chemicals, which reach the aquatic environment during the rainy season through runoff, drainage, and leaching. We performed a comet assay on the erythrocytes of tadpoles found in the surroundings of agricultural fields (soybean and corn crops), where there is an intense release of several kinds of pesticides in different quantities. We aimed to detect differences in the genotoxic parameters be- tween populations collected from soybeans and cornfields, and between them and tadpoles sampled from non-agricultural areas (control group).
    [Show full text]
  • Lichen Bioindication of Biodiversity, Air Quality, and Climate: Baseline Results from Monitoring in Washington, Oregon, and California
    United States Department of Lichen Bioindication of Biodiversity, Agriculture Forest Service Air Quality, and Climate: Baseline Pacific Northwest Results From Monitoring in Research Station General Technical Washington, Oregon, and California Report PNW-GTR-737 Sarah Jovan March 2008 The Forest Service of the U.S. Department of Agriculture is dedicated to the principle of multiple use management of the Nation’s forest resources for sus- tained yields of wood, water, forage, wildlife, and recreation. Through forestry research, cooperation with the States and private forest owners, and manage- ment of the national forests and national grasslands, it strives—as directed by Congress—to provide increasingly greater service to a growing Nation. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination write USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W. Washington, DC 20250-9410, or call (800) 795- 3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. Author Sarah Jovan is a research lichenologist, Forestry Sciences Laboratory, 620 SW Main, Suite 400, Portland, OR 97205.
    [Show full text]
  • 3 Biomonitoring of Freshwater Environment
    WITPress_BMTA_ch003.qxd 12/1/2007 13:06 Page 47 3 Biomonitoring of freshwater environment M E Conti 1 Principles of the Water Framework Directive The Water Framework Directive 2000/60 EC (WFD) [1] is an important opportunity to reorganize the basic integrated resource management. The key issue of the Directive is an extremely wide-ranging and integrated approach based on a sustainable use of the aquatic resource, 1. first of all, it introduces quality standards that will serve as points of reference for the quality assessment of bodies of water in the UE member countries. The objective is for the artificial and heavily polluted water bodies to regain a good ecological potential. In view of this, a ‘maximum ecological potential’ has to be established as a reference condition; 2. it therefore defines quality objectives to be met; quality classes have been ranked in a five-class-system ecological status (high, good, moderate, poor and bad); 3. it establishes criteria for the identification of significant water bodies and the assessment of their environmental quality status. The environmental quality status is defined on the basis of the chemical and ecological status of the water body. For superficial water bodies, the assessment of the chemical status is carried out on the basis of the presence – beyond a given threshold value – of harmful substances. The ecological status is the expression of the various components of the aquatic ecosystem (physical and chemical nature of waters and sediments, characteristics of the water flow, structure of the river bed). The use of bioindicators, as effective means for the evaluation of human impact on the water body, is provided for in view of a clas- sification of running water, within the framework of the definition of the ecological status.
    [Show full text]
  • Bioluminescent Bacteria, Algae, and Honeybees
    Proceedings of the 14th International Conference on Environmental Science and Technology Rhodes, Greece, 3-5 September 2015 BIOINDICATORS IN ENVIRONMENTAL MONITORING: BIOLUMINESCENT BACTERIA, ALGAE AND HONEYBEES GIROTTI S.1, BOLELLI L.1, FERRI E.1, CARPENÉ E.2 and ISANI G.2 1 Department of Pharmacy and Biotechnology, University of Bologna, Via S. Donato, 15- 40127 Bologna, Italy. 2 Dipartimento di Scienze Mediche Veterinarie, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Bologna, Italy. E-mail: [email protected] ABSTRACT Environment protection actions can result effective and adequate when based on a complete awareness about the extension, intensity, quality and respective quantity of chemicals involved, fate during time, and above all about the real impact on the biosphere of the pollution to be removed or to make harmless. Sophisticated analytical methodologies can offer a multianalyte, traces detections, but a monitoring plan requires the collection of a high number of samples and rapid, low-cost screening analyses before to employ them. To this aim biosensors and bioindicators can be very useful tools. Among the several organisms which can be employed as bioindicators we have along research experience about luminescent bacteria, microalgae, and honeybees [1-2]. Luminescent bacteria started to be employed for environmental monitoring in the middle eighties and now their use in sediment and water analysis is recognized officially by European and international policies as a reference toxicity test. We performed various monitoring activities [1] by using a bioluminescent bacteria (BLB) based assay, performed at room temperature, rapid and versatile even unspecific. The use of 96 wells microplates allowed to test several sample at one time, to reduce the working volumes and therefore the cost per assay.
    [Show full text]
  • Ozone Bioindicators and Forest Health: a Guide to the Evaluation, Analysis, and Interpretation of the Ozone Injury Data in the Forest Inventory and Analysis Program
    United States Department of Agriculture Ozone Bioindicators and Forest Forest Service Health: A Guide to the Evaluation, Northern Research Station Analysis, and Interpretation of the General Technical Report NRS-34 Ozone Injury Data in the Forest Inventory and Analysis Program Gretchen C. Smith John W. Coulston Barbara M. O’Connell Abstract In 1994, the Forest Inventory and Analysis (FIA) and Forest Health Monitoring programs of the U.S. Forest Service implemented a national ozone (O3) biomonitoring program designed to address specific questions about the area and percent of forest land subject to levels of O3 pollution that may negatively affect the forest ecosystem. This is the first and only nationally consistent effort to monitor O3 stress on the forests of the United States. This report provides background information on O3 and its effects on trees and ecosystems, and describes the rationale behind using sensitive bioindicator plants to detect O3 stress and assess the risk of probable O3 impact. Also included are a description of field methods, analytic techniques, estimation procedures, and how to access, use and interpret the ozone bioindicator attributes and data outputs such as the national ozone risk map. The Authors GRETCHEN C. SMITH, National Ozone Field Advisor, University of Massachusetts, Department of Natural Resources Conservation, Amherst, MA. [email protected] JOHN W. COULSTON, National Ozone Advisor and Supervisory Research Forester, U.S. Forest Service, Southern Research Station, Knoxville, TN. [email protected] BARBARA M. O’CONNELL, Forester, U.S. Forest Service, Northern Research Station, Newtown Square, PA. [email protected] Acknowledgments The ozone biomonitoring program began in the early 1990s and has succeeded due to the persistent efforts of numerous investigators, regional trainers, and state forest health coordinators.
    [Show full text]
  • Using Seagrasses to Understand the Condition of the Estuary
    Department of Water 21 Science supporting estuary management IssueIssue 1, February 21, April 2000 2013 Using seagrasses to understand the condition of the estuary Macrophytes are aquatic plants that may have fully effectively as an indicator of ecological health. These Contents submerged, emergent or floating growth forms. This include understanding: article will deal primarily with one species of fully Seagrasses within the • the natural variability of the characteristic/s estuary...............................1 submerged macrophyte, the seagrass Halophila measured ovalis (common name ‘paddleweed’), which is Seagrass distribution ........2 found within the shallows of the Swan-Canning • the expected response of the organism to changes Seagrass depth range ......2 estuary, Western Australia. For information on the in environmental condition Seagrass growth biology and historical distribution of this species • the sensitivity of the species (a successful indicator requirements .....................4 in the Swan-Canning estuary see River Science 20. has the response to environmental changes greater Measures of ecophysiology: a pilot study .......................4 Estuarine environments are particularly vulnerable than the natural variability for the measured to human impacts. Eutrophication has increased characteristic). Halophila ovalis physiological responses ....5 nutrient and organic matter deposition within This article reports on work (undertaken between Sediment conditions affect estuaries worldwide. Associated changes in the 2006 to 2008) to understand the distribution and seagrass growth ................6 condition of the sediment and decreased light physiological behaviour of H. ovalis and examines Future directions ...............6 availability results in additional stresses for benthic the potential of using this seagrass as an indicator organisms. of estuarine health in the Swan-Canning estuary. Glossary ............................7 H.
    [Show full text]