HOTAIR Contributes to the Carcinogenesis of Gastric Cancer Via

Total Page:16

File Type:pdf, Size:1020Kb

HOTAIR Contributes to the Carcinogenesis of Gastric Cancer Via Zhang et al. Cell Death and Disease (2020) 11:780 https://doi.org/10.1038/s41419-020-02946-4 Cell Death & Disease ARTICLE Open Access HOTAIR contributes to the carcinogenesis of gastric cancer via modulating cellular and exosomal miRNAs level Jie Zhang1, Wei-qing Qiu1,HongyiZhu1,HuaLiu1, Jian-hua Sun1, Yuanwen Chen1, Huojian Shen1, Chang-lin Qian1 and Zhi-yong Shen1 Abstract Gastric cancer (GC) is one of the most leading malignancies. Long noncoding RNA is related to GC. In this study, 11 miRNAs in the exosomes and six lncRNAs in the tissues was examined by qRT-PCR. Correlation analysis was used to analyze the relationship between miRNAs in exosome and lncRNAs in the tissues. Four miRNAs level in GC tissues were examined by qRT-PCR. MTT was used to determine cell viability. Flow cytometry was used to quantify the apoptotic cells. Transwell assay was used to examine the migration and invasion capacity. Dual-luciferase assay was used to examine the interaction between HOTAIR and miR-30a or -b. Capillary formation was used to determine the capillary formation capacity. Weak negative correlations were found between HOTAIR and miR-30a or -b in GC tissue samples. Interestingly, strong negative correlations were identified between the HOTAIR level in GC tissue samples and the miR- 30a or -b levels in plasma exosomes. HOTAIR knockdown GC cells exhibited decreased migration, invasion, proliferation, and upregulated apoptosis, which released more miR-30a and -b into the exosomes. KRAS was upregulated when co-cultured with exosomes from HOTAIR overexpressed cells, and promoted GC cells proliferation, 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; migration, and invasion. Meanwhile, HUVEC cells expressed increased VEGF-A and formatted more capillaries. Subsequently, we identified a 10mer target site of miR-30a or -b in HOTAIR sequence, and the overexpression of HOTAIR induced the degradation of miR-30a or -b, indicating a ceRNA role of HOTAIR. We report the negative correlation between the plasma miRNAs level and GC tissue HOTAIR expression for the first time and unveiled the ceRNA role of HOTAIR in GC. HOTAIR functions as an onco-lncRNA regulating the level of miR-30a and -b in both GC cells and exosomes. These findings may give insight into understanding the mechanism of GC pathogenesis and provide new biomarkers for clinical diagnosis. Introduction Furthermore, a large number of patients are diagnosed Gastric cancer (GC), also known as stomach cancer, is with advanced gastric cancer and have a poor prognosis. – one of the most common cancer in the world1 3. Due to Thus, more sensitive markers for GC early stage diagnosis, the advancement of medical technology, the mortality of tumor grading, prognostic evaluation after treatment is gastric cancer have gradually decreased, but there are still urgently needed. nearly 700,000 confirmed mortalities annually worldwide4. MicroRNAs (miRNAs) are a group of gene expression negative regulators, which repress gene expression at post-transcriptional level by binding to the 3′-untrans- Correspondence: Chang-lin Qian ([email protected])or Zhi-yong Shen ([email protected]) lated region (UTR) region of target mRNA directly. 1Department of General Surgery, South Campus, Ren Ji Hospital, School of MiRNAs are involved in gene function modulation during Medicine, Shanghai Jiao Tong University, 201112 Shanghai, China many different biological processes, such as proliferation, These authors contributed equally: Jie Zhang, Wei-qing Qiu These authors jointly supervised this work: Chang-lin Qian, Zhi-yong Shen apoptosis, and differentiation. It has been verified that Edited by G. Calin © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a linktotheCreativeCommons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Official journal of the Cell Death Differentiation Association Zhang et al. Cell Death and Disease (2020) 11:780 Page 2 of 15 miRNA expression profile is altered during the initiation, interaction between miRNA and HOTAIR induces progression, and metastasis of human cancers and it is instability of miRNAs was still unknown. believed that miRNAs may function both as tumor sup- In this study, the level of 11 candidate miRNAs in the pressors and oncogenes in cancer development5,6. miR- plasma exosomes and the expression of four lnRNAs in NAs alteration has also been found in the serum samples the GC tissue samples were detected in 87 GC patients. of GC patients, which has the potential to be used as Negative correlation was found between the expression of biomarker for GC diagnosis and classification. 3 miRNAs and HOTAIR. We also identified HOTAIR Exosomes are a kind of extracellular vesicle (EV), the functions as a ceRNA modulate the tumor micro- diameter of which ranging from 40–100 nm, secreted by environment by control the level exosomal miRNAs. cells, and transfer signal molecule to targeted cells. Tumor-derived exosomes containing key regulators Materials and methods modulating the process of tumor migration, metastases, Patients and samples angiogenesis, and so on. Meanwhile, a group of miRNAs A total of 87 specimens of primary gastric adenocarci- was found packaged by exosomes and exosomal miRNAs’ noma, corresponding adjacent nontumorous gastric tissue level in serum has been confirmed relates to the devel- and plasma samples were obtained between 2012 and opment and prognosis of cancers7,8. 2014 at Renji Hospital, Shanghai Jiao Tong University Recent genetic study indicates that more than 70% of School of Medicine. Tissue samples were immediately the human genome is transcribed to RNA, but only about snap-frozen in liquid nitrogen and stored in a refrigerator 1% is protein coding, suggesting that a large group of at −80 °C. About 0.1 g tumor and adjacent control tissues RNAs function as gene expression regulators regulating a were selected for RNA extraction followed by qRT-PCR. – relatively small amount of effectors9 11. Long noncoding Control plasma samples were obtained from 87 age and RNA (lncRNAs) is a group of more than 200 nt non- sex matched healthy participants. Tumor staging was protein coding RNA molecules, that have been identified determined according to the tumor–node–metastasis as key regulators of diverse cellular processes including classification system of the American Joint Committee on development, differentiation, and cell fate as well as dis- Cancer, 7th edition23. Follow-up was performed every ease pathogenesis12,13. lncRNAs can serve as enhancers or 6 months by specially trained staff according to standard repressors directly modulating target genes expression; epidemiologic procedures. All samples were Random and they can also function as molecular decoys, scaffold selected. Patients and controls were acquired with and signal mediators14. informed consent, under the protocol approved by Renji HOX antisense intergenic RNA(HOTAIR) is 2158 Hospital, Shanghai Jiao Tong University School of Med- nucleotides long non-protein coding RNA, which is icine research ethics committee. The clinical character- transcribed from the antisense strand of the HOXC gene istics were shown in Table 1 and Table S1. cluster15. HOTAIR has been found as a oncogene over- expressed in both solid tumors and hematologic malig- Plasmid construction nancies. In gastric cancer, HOTAIR expression was higher For HOTAIR overexpression, full length of 2364 in tumor when compared with the adjacent noncancerous HOTAIR sequence was amplified by RT-PCR and cloned tissues, and was significantly correlated with lymph node into pcDNA3.1 vector between Kpn I and EcoR I sites. For metastasis, TNM stage, and invasion16,17. High HOTAIR dual-luciferase assay, wild-type or mutant HOTAIR expression was also used as a predictor of poor overall sequence was cloned into pmirGLO vector, following survival in patients with GC18. HOTAIR was shown to firefly luciferase coding region. directly bind to and inhibit miR-126, thereby promoting To construct KRAS reporter vector, a 521 nucleotides the expression of vascular endothelial growth factor A segment of human KRAS 3′UTR containing the miR-30a/ (VEGF-A) and PI3-K regulatory subunit beta19. HOTAIR b target site was cloned into pmirGLO vector between binds to the multiprotein chromatin modifying complex Xho I and Xba I sites. PRC2, which is responsible for H3K27me3, an epigenetic To construct VEGF-A reporter vector, full length of hallmark of repressed chromatin, thereby repressing fur- 1.9 kb VEGF-A 3′UTR sequence was cloned into pmir- ther the expression of miR-34a in GC16. GLO vector, between Xho I and Xba I sites. It is reported in human cells and fruit fly that, the extensive base pairing between miRNAs and cognate Exosome isolation target mRNAs promotes miRNA decay20. However, EVs were extracted from cell culture supernatant or in vitro and in vivo assays with Caenorhabditis elegans plasma sample using Puro Exo exosome isolation kit showed that targets can also protect miRNAs from active (101Bio, USA) following the manufacture’s instruction. degradation21,22. HOTAIR has been reported relates to Briefly, plasma sample was centrifuge at 3000 × g for abnormal miRNAs level in tumors, but whether the 10 min at 20 °C to remove cells and debris, followed by Official journal of the Cell Death Differentiation Association Zhang et al. Cell Death and Disease (2020) 11:780 Page 3 of 15 Table 1 The association of exosome miR-30a and -b level with clinicopathological features.
Recommended publications
  • Long Non-Coding RNA HOTAIR Regulates Polycomb-Dependent Chromatin
    Author Manuscript Published OnlineFirst on August 23, 2011; DOI: 10.1158/0008-5472.CAN-11-1021 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Kogo et al. 1 Long non-coding RNA HOTAIR regulates Polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Ryunosuke Kogo1, 4, 6, Teppei Shimamura2, 6, Koshi Mimori1, 6, Kohichi Kawahara3, Seiya Imoto2, Tomoya Sudo1, Fumiaki Tanaka1, Kohei Shibata1, Akira Suzuki3, Shizuo Komune4, Satoru Miyano2, and Masaki Mori5 Authors’ Affiliations 1 Department of Surgery, Medical Institute of Bioregulation, Kyushu University, 4546, Tsurumihara, Beppu 874-0838, Japan. 2 Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan. 3 Division of Cancer Genetics, Medical Institute Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan. 4 Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan. 5 Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka Downloaded from cancerres.aacrjournals.org on September 28, 2021. © 2011 American Association for Cancer Research. Author Manuscript Published OnlineFirst on August 23, 2011; DOI: 10.1158/0008-5472.CAN-11-1021 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Kogo et al. 2 University, 2-2 Yamadaoka, Suita, 565-0871, Japan 6) These authors contributed equally to this work. Running title: HOTAIR in colorectal cancer Key words: HOTAIR, ncRNA, colorectal cancer, PRC2, liver metastasis Disclosure: There are no potential conflicts of interest to disclose.
    [Show full text]
  • HOTAIR Launches Lncrnas
    Annotated Classic HOTAIR Launches lncRNAs Irene Bozzoni1,* 1Department of Biology and Biotechnology, “Charles Darwin” Sapienza - University of Rome, P. le A. Moro 5, 00185 Rome, Italy *Correspondence: [email protected] We are pleased to present a series of Annotated Classics celebrating 40 years of exciting biology in the pages of Cell. This install- ment revisits “Functional Demarcation of Active and Silent Chromatin Domains in Human HOX Loci by Noncoding RNAs” from Howard Chang’s lab. Here, Irene Bozzoni comments on how Rinn et al. ignited our appreciation for the ability of noncoding RNAs to regulate key cellular and developmental processes in trans. Each Annotated Classic offers a personal perspective on a groundbreaking Cell paper from leader in the field with notes on what stood out at the time of first reading and retrospective comments regarding the longer term influence of the work. To see Irene Bozzoni’s thoughts on different parts of the manuscript, just download the PDF and then hover over or double-click the highlighted text and comment boxes on the following pages. You can also view the annotations by opening the Comments navigation panel in Acrobat. Cell 159, November 20, 2014 ©2014 Elsevier Inc. Functional Demarcation of Active and Silent Chromatin Domains in Human HOX Loci by Noncoding RNAs John L. Rinn,1 Michael Kertesz,3,5 Jordon K. Wang,1,5 Sharon L. Squazzo,4 Xiao Xu,1 Samantha A. Brugmann,2 L. Henry Goodnough,2 Jill A. Helms,2 Peggy J. Farnham,4 Eran Segal,3,* and Howard Y. Chang1,* 1 Program in Epithelial Biology 2 Department of Surgery Stanford University School of Medicine, Stanford, CA 94305, USA 3 Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel 4 Department of Pharmacology and Genome Center, University of California, Davis, CA 95616, USA 5 These authors contributed equally to this work.
    [Show full text]
  • NF-Κb-HOTAIR Axis Links DNA Damage Response, Chemoresistance and Cellular Senescence in Ovarian Cancer
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Oncogene Manuscript Author . Author manuscript; Manuscript Author available in PMC 2016 October 14. Published in final edited form as: Oncogene. 2016 October 13; 35(41): 5350–5361. doi:10.1038/onc.2016.75. NF-κB-HOTAIR axis links DNA damage response, chemoresistance and cellular senescence in ovarian cancer Ali R. Özeş1, David F. Miller2, Osman N. Özeş3, Fang Fang2, Yunlong Liu4,5,6, Daniela Matei6,7,8, Tim Huang9, and Kenneth P. Nephew1,2,6,8,10,* 1Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA 2Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA 3Department of Medical Biology and Genetics, Akdeniz University, Antalya, Turkey 4Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA 5Center for Computational Biology and Bioinformatics, Indianapolis, Indiana 46202, USA 6Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana 46202, USA 7Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA 8Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA 9Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900 10Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA Abstract The transcription factor nuclear factor kappa B (NF-κB) and the long non-coding RNA (lncRNA) HOTAIR (HOX transcript antisense RNA) play diverse functional roles in cancer. In this study, we show that upregulation of HOTAIR induced platinum resistance in ovarian cancer, and increased HOTAIR levels were observed in recurrent platinum-resistant ovarian tumors vs.
    [Show full text]
  • KDM1A Microenvironment, Its Oncogenic Potential, And
    Ismail et al. Epigenetics & Chromatin (2018) 11:33 https://doi.org/10.1186/s13072-018-0203-3 Epigenetics & Chromatin REVIEW Open Access KDM1A microenvironment, its oncogenic potential, and therapeutic signifcance Tayaba Ismail1, Hyun‑Kyung Lee1, Chowon Kim1, Taejoon Kwon2, Tae Joo Park2* and Hyun‑Shik Lee1* Abstract The lysine-specifc histone demethylase 1A (KDM1A) was the frst demethylase to challenge the concept of the irreversible nature of methylation marks. KDM1A, containing a favin adenine dinucleotide (FAD)-dependent amine oxidase domain, demethylates histone 3 lysine 4 and histone 3 lysine 9 (H3K4me1/2 and H3K9me1/2). It has emerged as an epigenetic developmental regulator and was shown to be involved in carcinogenesis. The functional diversity of KDM1A originates from its complex structure and interactions with transcription factors, promoters, enhancers, onco‑ proteins, and tumor-associated genes (tumor suppressors and activators). In this review, we discuss the microenviron‑ ment of KDM1A in cancer progression that enables this protein to activate or repress target gene expression, thus making it an important epigenetic modifer that regulates the growth and diferentiation potential of cells. A detailed analysis of the mechanisms underlying the interactions between KDM1A and the associated complexes will help to improve our understanding of epigenetic regulation, which may enable the discovery of more efective anticancer drugs. Keywords: Histone demethylation, Carcinogenesis, Acute myeloid leukemia, KDM1A, TLL Background X-chromosome, that are involved in the regulation of Epigenetic modifcations are crucial for physiological development. Additionally, these alterations may repre- development and steady-state gene expression in eukary- sent aberrant markers indicating the development of dif- otes [1] and are required for various biological processes ferent types of cancer and other diseases [5–7].
    [Show full text]
  • Long Non-Coding RNA HOTAIR: a Novel Oncogene (Review)
    MOLECULAR MEDICINE REPORTS 12: 5611-5618, 2015 Long non-coding RNA HOTAIR: A novel oncogene (Review) XIN YU1,2* and ZHENG LI1* 1Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing 100730; 2State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China Received July 29, 2014; Accepted April 20, 2015 DOI: 10.3892/mmr.2015.4161 Abstract. Long non-coding RNAs (lncRNAs) have been found 1. Introduction to be pervasively transcribed in the genome and are critical regulators of the epigenome. Increasing evidence suggests An oncogene is defined as a mutated gene, whose product that lncRNAs are aberrantly expressed in several types of contributes to the initiation or progression of cancer (1). human cancer and that they are important in the initiation, Activation of oncogenes are critical in the molecular development and metastasis of human cancer. Previous studies pathogenesis of human neoplasms (2). Known oncogene, have revealed that HOX transcript antisense intergenic RNA including Ras, BRAF, β-catenin, and Myc, are predominantly (HOTAIR) was frequently upregulated in various types of protein-coding genes, the functions of which are mediated cancer, including breast cancer, esophageal cancer, lung cancer by their gene products-proteins (3-6). Genome sequencing and gastric cancer. In addition, patients with high expression projects have revealed that the human genome contains levels of HOTAIR have a significantly poorer prognosis, <2% protein coding genes, while>90% of the genome is tran- compared with those with low levels of expression.
    [Show full text]
  • HOTAIR Is a Negative Prognostic Factor and Exhibits Pro-Oncogenic Activity in Pancreatic Cancer
    Oncogene (2013) 32, 1616–1625 & 2013 Macmillan Publishers Limited All rights reserved 0950-9232/13 www.nature.com/onc ORIGINAL ARTICLE HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer K Kim1, I Jutooru2, G Chadalapaka2, G Johnson3, J Frank3, R Burghardt3, S Kim4 and S Safe1,2 HOTAIR is a long intervening non-coding RNA (lincRNA) that associates with the Polycomb Repressive Complex 2 (PRC2) and overexpression is correlated with poor survival for breast, colon and liver cancer patients. In this study, we show that HOTAIR expression is increased in pancreatic tumors compared with non-tumor tissue and is associated with more aggressive tumors. Knockdown of HOTAIR (siHOTAIR) by RNA interference shows that HOTAIR has an important role in pancreatic cancer cell invasion, as reported in other cancer cell lines. In contrast, HOTAIR knockdown in Panc1 and L3.6pL pancreatic cancer cells that overexpress this lincRNA decreased cell proliferation, altered cell cycle progression and induced apoptosis, demonstrating an expanded function of HOTAIR in pancreatic cancer cells compared with other cancer cell lines. Results of gene array studies showed that there was minimal overlap between HOTAIR-regulated genes in pancreatic cells and breast cancer cells, and HOTAIR uniquely suppressed several interferon-related genes and gene sets related to cell cycle progression in pancreatic cancer cells and tumors. Analysis of selected genes suppressed by HOTAIR in Panc1 and L3.6pL cells showed by knockdown of EZH2 and chromatin immunoprecipitation assays that HOTAIR-mediated gene repression was both PRC2-dependent and -independent. HOTAIR knockdown in L3.6pL cells inhibited tumor growth in mouse xenograft model, further demonstrating the pro-oncogenic function of HOTAIR in pancreatic cancer.
    [Show full text]
  • Long Non-Coding RNA Epigenetics
    International Journal of Molecular Sciences Review Long Non-Coding RNA Epigenetics Marek Kazimierczyk and Jan Wrzesinski * Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Pozna´n,Poland; [email protected] * Correspondence: [email protected] Abstract: Long noncoding RNAs exceeding a length of 200 nucleotides play an important role in ensuring cell functions and proper organism development by interacting with cellular compounds such as miRNA, mRNA, DNA and proteins. However, there is an additional level of lncRNA regulation, called lncRNA epigenetics, in gene expression control. In this review, we describe the most common modified nucleosides found in lncRNA, 6-methyladenosine, 5-methylcytidine, pseudouridine and inosine. The biosynthetic pathways of these nucleosides modified by the writer, eraser and reader enzymes are important to understanding these processes. The characteristics of the individual methylases, pseudouridine synthases and adenine–inosine editing enzymes and the methods of lncRNA epigenetics for the detection of modified nucleosides, as well as the advantages and disadvantages of these methods, are discussed in detail. The final sections are devoted to the role of modifications in the most abundant lncRNAs and their functions in pathogenic processes. Keywords: lncRNA epigenetics; RNA modyfiing enzymes; detection modified nucleotides 1. General Remarks Citation: Kazimierczyk, M.; Although almost 80% of the human genome has been transcribed, only 2% of it Wrzesinski, J. Long Non-Coding RNA (mRNA) codes proteins [1,2]. All of the remaining RNAs belong to a vast group of noncod- Epigenetics. Int. J. Mol. Sci. 2021, 22, ing RNAs (ncRNAs). Based on their functions, ncRNAs can be classified as housekeeping 6166.
    [Show full text]
  • A Genome-Wide Database for RNA Structural Inference
    www.nature.com/scientificreports OPEN RNAStructuromeDB: A genome- wide database for RNA structural inference Received: 21 September 2017 Ryan J. Andrews1, Levi Baber 2 & Walter N. Moss1 Accepted: 27 November 2017 RNA plays important roles in almost every aspect of biology, and every aspect of RNA biology is Published: xx xx xxxx infuenced by its folding. This is a particularly important consideration in the era of high-throughput sequencing, when the discovery of novel transcripts far outpaces our knowledge of their functions. To gain a comprehensive picture of biology requires a structural framework for making functional inferences on RNA. To this end we have developed the RNA Structurome Database (https:// structurome.bb.iastate.edu), a comprehensive repository of RNA secondary structural information that spans the entire human genome. Here, we compile folding information for every base pair of the genome that may be transcribed: coding, noncoding, and intergenic regions, as well as repetitive elements, telomeres, etc. This was done by fragmenting the GRCh38 reference genome into 154,414,320 overlapping sequence fragments and, for each fragment, calculating a set of metrics based on the sequence’s folding properties. These data will facilitate a wide array of investigations: e.g. discovery of structured regulatory elements in diferential gene expression data or noncoding RNA discovery, as well as allow genome-scale analyses of RNA folding. Once thought to be solely an intermediary between the genome and proteome, RNA is now known to be a key player in the biology of all living things (as well as viruses, viroids and transposable elements). In addition to carrying the genetic information needed to generate proteins, RNA can also act as a catalyst1,2, encode signals for subcellular localization3–5, and regulate gene expression6.
    [Show full text]
  • Lncrna HOTAIR: a Master Regulator of Chromatin Dynamics and Cancer
    Biochim Biophys Acta. Author manuscript; available in PMC 2016 Aug 1. PMCID: PMC4544839 Published in final edited form as: NIHMSID: NIHMS713397 Biochim Biophys Acta. 2015 Aug; 1856(1): 151–164. PMID: 26208723 Published online 2015 Jul 21. doi: 10.1016/j.bbcan.2015.07.001 LncRNA HOTAIR: a master regulator of chromatin dynamics and cancer Arunoday Bhan and Subhrangsu S. Mandal* Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019 *Corresponding author. [email protected]; Tel: 817-272-3804; Fax: 817-272-3808 Copyright notice Publisher's Disclaimer The publisher's final edited version of this article is available at Biochim Biophys Acta See other articles in PMC that cite the published article. Abstract Go to: Go to: Non-coding RNAs (ncRNAs) are emerging classes of regulatory RNA that play key roles in various cellular and physiological processes such as in gene regulation, chromatin dynamics, cell differentiation, development etc. NcRNAs are dysregulated in a variety of human disorders including cancers, neurological disorders, and immunological disorders. The mechanisms through which ncRNAs regulate various biological processes and human diseases still remain elusive. HOX antisense intergenic RNA (HOTAIR) is a recently discovered long non-coding RNA (lncRNA) that plays critical role in gene regulation and chromatin dynamics, appears to be misregulated in a variety of cancers. HOTAIR interacts with key epigenetic regulators such as histone methyltransferase PRC2 and histone demethylase LSD1 and regulates gene silencing. Here, we have reviewed recent advancements in understanding the functions and regulation of HOTAIR and its association with cancer and other diseases. 1.
    [Show full text]
  • 4. Defining a Binding Interaction Between KDM1A and the Long Non-Coding RNA HOTAIR
    Probing the Interfaces of Epigenetic Complexes: Efforts Towards Elucidating and Targeting Critical Protein:Protein and Protein:lncRNA Interactions of Lysine-Specific Demethylase 1 (KDM1A/LSD1) By Meghan Frances Lawler Department of Chemistry Duke University Date:_______________________ Approved: ___________________________ Dewey G. McCafferty, Supervisor ___________________________ Emily Derbyshire ___________________________ Michael Lynch ___________________________ Qiu Wang Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry in the Graduate School of Duke University 2019 ABSTRACT Probing the Interfaces of Epigenetic Complexes: Efforts Towards Elucidating and Targeting Critical Protein:Protein and Protein:lncRNA Interactions of Lysine-Specific Demethylase 1 (KDM1A/LSD1) by Meghan Frances Lawler Department of Chemistry Duke University Date:_______________________ Approved: ___________________________ Dewey G. McCafferty, Supervisor ___________________________ Emily Derbyshire ___________________________ Michael Lynch ___________________________ Qiu Wang An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry in the Graduate School of Duke University 2019 Copyright by Meghan Frances Lawler 2019 Abstract The post translational modification (PTM) of histone proteins is a highly dynamic process that is utilized in the control of gene transcription. This epigenetic process involves enzymatic ‘writers’ and ‘erasers’ which place or remove chemical modifications to the unstructured tails of histone proteins which protrude out from the nucleosomal core. In a highly dynamic manner, each PTM is spatiotemporally regulated and combinations of PTMs at a gene promotor or enhancer region leads to transcriptional enhancement or repression. The gene targets as well as selectivity and specificity of epigenetic enzymes is regulated by the multimeric complexes each enzyme is co-opted.
    [Show full text]
  • Long Non-Coding RNA HOTAIR Is a Powerful Predictor of Metastasis and Poor Prognosis and Is Associated with Epithelial-Mesenchymal Transition in Colon Cancer
    ONCOLOGY REPORTS 32: 395-402, 2014 Long non-coding RNA HOTAIR is a powerful predictor of metastasis and poor prognosis and is associated with epithelial-mesenchymal transition in colon cancer ZE-HUA WU1*, XIAO-LIANG WANG1*, HUA-MEI TANG2, TAO JIANG1, JIAN CHEN1, SU LU2, GUO-QIANG QIU1, ZHI-HAI PENG1 and DONG-WANG YAN1 Departments of 1General Surgery, and 2Pathology, Shanghai Jiao Tong University Affiliated First People's Hospital, Shanghai 200080, P.R. China Received January 25, 2014; Accepted April 15, 2014 DOI: 10.3892/or.2014.3186 Abstract. Colon cancer is one of the most frequently diag- also be a valuable predictor for colon cancer management; nosed cancer and the third most fatal malignancy worldwide. furthermore, this lncRNA may be a potential target for cancer HOTAIR, a cancer-associated long non-coding RNA prevention and treatment. (lncRNA), is a powerful biomarker of metastasis and poor prognosis in a diverse group of cancers. Nevertheless, an Introduction understanding of how HOTAIR is involved in colon cancer progression is limited. In the present study, we hypothesized Colon cancer is one of the most frequently diagnosed cancer that HOTAIR plays a crucial role in colon cancer development. and the third most fatal malignancy worldwide (1). Growing We evaluated the expression of HOTAIR in 120 colon cancer urbanization and industrialization have led to the steady samples, matched adjacent non-tumor mucosa and 32 lymph rise in colon cancer incidence in China during the last 20 node metastasis tissues by real-time PCR. Increased HOTAIR years (2). In certain high incidence areas, colon cancer has expression was significantly correlated with the depth of tumor become the second leading cause of cancer-related mortality.
    [Show full text]
  • HOTAIR Ancient Sequence Suggests Regulatory Roles Both in Cis and Trans
    bioRxiv preprint doi: https://doi.org/10.1101/250621; this version posted January 22, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. HOTAIR ancient sequence suggests regulatory roles both in cis and trans Chirag Nepal1, Yavor Hadzhiev2, Sachin Pundhir1, Piotr Mydel3,4, Boris Lenhard5, Ferenc Müller2, Jesper B Andersen1 1. Biotech Research and Innovation Centre, Department of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark 2. Institute of Cancer and Genomics Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, United Kingdom 3. Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway 4. Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, and Malopolska Centre of Biotechnology, Jagiellonian University, Karkow, Poland 5. Institute of Clinical Sciences MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, United Kingdom Correspondence to: Chirag Nepal [email protected] Biotech Research and Innovation Centre University of Copenhagen Ole Maaløes Vej 5, DK-2200 Copenhagen N Denmark Keywords: HOTAIR, lncRNA, conservation, CNE, sequence complementarity, enhancer 1 bioRxiv preprint doi: https://doi.org/10.1101/250621; this version posted January 22, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]