Salvinia Biological Control Field Guide

Total Page:16

File Type:pdf, Size:1020Kb

Salvinia Biological Control Field Guide Salvinia Biological Control Field Guide www.dpi.nsw.gov.au/weeds Salvinia Biological Control Field Guide Paul Sullivan Invasive Species Officer – Biocontrol NSW Department of Primary Industries, Tamworth Lesley Postle Professional Officer NSW Department of Primary Industries, Menangle © State of New South Wales through Department of Trade and Investment, Regional Infrastructure and Services 2012. You may copy, distribute, and otherwise freely deal with this publication for any purpose, provided that you attribute the Department of Trade and Investment, Regional Infrastructure and Services as the owner. However, you must obtain permission if you wish to charge others for access to the publication (other than at cost); include the publication in advertising or a product for sale; modify the publication; or re-publish the publication on a website. You may freely link to the publication on the NSW DPI website. ISBN 978 1 74256 252 0 Published by the NSW Department of Primary Industries, a part of the Department of Trade and Investment, Regional Infrastructure and Services. Copies available from NSW DPI, Elizabeth Macarthur Agricultural Institute, Menangle and the NSW DPI Bookshop at www.dpi.nsw.gov.au/aboutus/resources/bookshop Disclaimer The information contained in this publication is based on knowledge and understanding at the time of writing (January 2012). However, because of advances in knowledge, users are reminded of the need to ensure that information upon which they rely is up-to-date and to check currency of the information with the appropriate officer of the NSW Department of Primary Industries or the user’s independent adviser. Always read the label Users of agricultural (or veterinary) chemical products must always read the label and any Permit, before using the product and strictly comply with the directions on the label and conditions of any Permit. Users are not absolved from compliance with the directions on the label or conditions of the Permit by reason of any statement made or omitted to be made in this publication. Authors: Paul Sullivan, Invasive Species Officer – Biocontrol, NSW DPI, Tamworth. Lesley Postle, Professional Officer, NSW DPI, Menangle. Production: Barry Jensen, Designer, Publication Services, NSW DPI, Orange. Contents INTRODUCTION 4 What is biocontrol of weeds? . 4 THE SALVINIA PLANT – SALVINIA MOLESTA 4 Growth habit . .4 Reproduction. .4 Ecological damage – problems caused. 5 THE SALVINIA WEEVIL – CYRTOBAGOUS SALVINIAE 5 Life cycle . .5 BIOCONTROL SUCCESS 6 Expectations. 7 HABITAT CONDITIONS 7 Assessing your site. .7 BIOCONTROL AND INTEGRATED CONTROL OPTIONS 9 When can you use biocontrol alone? . 9 When to look at other options . 9 Herbicides plus biocontrol. 9 Harvesting plus biocontrol. 10 CONTROL OPTIONS – PROS AND CONS 10 Herbicides . .10 Mechanical removal . .10 Manual removal . .11 Biocontrol . .11 FREQUENTLY ASKED QUESTIONS 12 IS YOUR SITE SUITABLE FOR A BIOCONTROL PROGRAM? 13 IMPORTANCE OF MANAGEMENT PLAN TO AVOID OTHER WEEDS TAKING OVER 14 ACQUISITION OF SALVINIA WEEVILS 14 Transport and storage of salvinia weevils . .15 HOW TO RELEASE WEEVILS 16 MONITORING METHODOLOGY 16 USEFUL REFERENCES 17 SALVINIA MONITORING SHEET 18 PHOTOCOPIABLE FLYER – HOW TO GET THE BEST OUT OF SALVINIA WEEVILS 19 SALVINIA BIOLOGICAL CONTROL FIELD GUIDE 3 Lesley Postle Lesley Primary form salvinia (top) with secondary form salvinia starting to fold (bottom) Tertiary salvinia Lesley Postle Lesley Salvinia showing egg beater shaped hairs repelling water droplets Introduction This field guide was produced in 2012 and reflects the most recent research and up to date information available. It provides practical advice for those carrying out biological control (biocontrol) of Salvinia molesta D S Mitchell (Pteridophyta). What is biocontrol of weeds? Sullivan Paul Biocontrol of weeds is the use of natural enemies to reduce the vigour or reproductive potential of an Growth habit invasive alien plant. Natural enemies will remove the plant’s competitive advantage until its vigour is Under ideal conditions salvinia grows very fast. reduced to a level comparable to or less than that Infestations can double their size in eight days or less. of the natural vegetation. In doing so, this creates As salvinia develops, the young flat leaves (primary a balance between a weed and its natural enemies form) grow larger and start to fold (secondary form). (referred to hereafter as biocontrol agents or agents). The salvinia leaves get larger and more folded (tertiary When using biocontrol, eradication is not possible form) and large infestations form dense mats which or indeed desirable because an amount of the weed can completely cover the surface of the water. High needs to be present to sustain an ongoing population nutrient levels (especially nitrogen) often found in of biocontrol agents. The agents are imported from the disturbed environments and water bodies near or weed’s native geographic range after extensive testing within farms favour the proliferation of aquatic weeds to ensure host specificity. Host specificity means that including salvinia. biocontrol agents will not live on any other plants. Biocontrol agents can be insects, mites, fungi, bacteria or any other living organisms. Reproduction Reproduction of salvinia is only vegetative. It reproduces by forming new branches which break The Salvinia plant – off. Ferns are non-flowering plants which usually reproduce via spores which are normally contained in Salvinia molesta sporocarps under the leaves. The sporocarps of salvinia Salvinia molesta is a very unusual aquatic fern with are spherical balls attached among the roots, but they tiny egg beater shaped hairs on its leaves which repel are either empty or contain sterile spores. water and enable it to float. It also has false leaves that form roots underwater. Salvinia was introduced into Australia in the 1950s as an ornamental plant for fishponds and aquariums because of its pretty colour and extremely quick growth. It has become highly invasive, is now a Weed of National Significance (WoNS) and is considered to be one of the world’s worst aquatic weeds. 4 SALVINIA BIOLOGICAL CONTROL FIELD GUIDE Paul Sullivan Paul A dense mat of salvinia appears like solid ground Paul Sullivan Paul The salvinia weevil Mature (tertiary form) salvinia with sporocarps Ecological damage – problems caused As the plants mature into tertiary form, they take up more and more space and form a dense mat. These mats prevent most light from entering the water, killing underwater plants. The salvinia leaves which are under the mat get little light and die. They sink to the bottom of the water and create a layer of organic Paul Sullivan Paul matter which rots on the floor of the water body. This rotting matter breaks down using oxygen which it The salvinia weevil, Cyrtobagous salviniae, was chosen gets from the water. As the dissolved oxygen level in for host specificity testing and importation. Adult the water decreases, anaerobic conditions are created weevils feed on the salvinia plant, but most damage which can kill most of the fish, plants and animals comes from larvae tunnelling into the plant’s rhizome, living in the water. (or stem). This causes the plant to turn brown, lose buoyancy and sink. Dense mats of salvinia can have the appearance of solid ground and therefore be a danger to humans and animals. The mats restrict use of the water for irrigation, Life cycle livestock or recreational use. Weevils can live for about six months, and the complete life cycle takes six to eight weeks. Weevils emerge from cocoons attached to the plant The salvinia weevil – ‘roots’. The weevils are brown in colour and darken to black within 5 days. Adult weevils can be found on all Cyrtobagous salviniae parts of the plant both above and below water. CSIRO discovered the native range of salvinia in Brazil in 1979, and collected insects from these plants. Paul Sullivan Paul Lesley Postle Lesley Weevils turn from brown to black in about five days Salvinia weevil (1.5–2.5 mm) SALVINIA BIOLOGICAL CONTROL FIELD GUIDE 5 Lesley Postle Lesley Postle Lesley Weevil egg (0.5 mm) Weevil larva (3 mm long) Eggs are laid in the folds of leaves, or in the rhizome or buds. Larvae are white and grub like and feed initially on the outside of the plant for a few days before tunnelling inside the rhizome to feed. All stages of the weevils’ development are temperature dependent. The optimum temperature range for egg Peter Room Peter laying is between 23–31˚C. Eggs can be laid all year Lake Moondarra, Queensland, Australia, covered with salvinia before round in tropical climates although weevil reproduction biocontrol (above) and 14 months after use of biocontrol (below) does slow down during winter months. In temperate regions of Australia, eggs are laid from early spring and weevils will continue reproducing until daytime temperatures start to drop significantly in the late autumn. Egg production has been observed in the field when mean air temperatures were between 16–17˚C and the mean water temperature was 17–18˚C. Biocontrol success Salvinia weevils were released on Lake Moondarra in Queensland in 1980. They were a spectacular success. Room Peter Within 14 months, 200 hectares of salvinia had been A three year trial in the Hawkesbury–Nepean region converted to open water. of NSW showed that biocontrol can be very successful After years of success in many tropical countries, the in temperate areas if managed appropriately. Weevils weevil has recently been shown to control salvinia in controlled infestations on rivers within four months, temperate areas. Good control has been achieved on while control on most creeks and dams was slower the Hawkesbury–Nepean River and on many creeks and in a few cases uncontrolled after three years due and dams in the Sydney and Hunter regions of NSW. to heavy shading or where the salvinia mat was very dense. Economic benefits of biocontrol ”Last year Australian biocontrol science turned a $4 million investment into a $95 million return…and did the same the year before, and the year before that, effectively all the way back for 100 years.
Recommended publications
  • Hymenoptera: Braconidae: Agathidinae)
    Zootaxa 3916 (1): 001–083 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3916.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:15384700-9D9B-4F77-AA0B-FA6DA317BCCB ZOOTAXA 3916 A revision of the New World species of Cremnops Förster (Hymenoptera: Braconidae: Agathidinae) ERIKA M. TUCKER, ERIC G. CHAPMAN & MICHAEL J. SHARKEY Department of Entomology, University of Kentucky. E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by J. Jennings: 1 Oct. 2014; published: 9 Feb. 2015 ERIKA M. TUCKER, ERIC G. CHAPMAN & MICHAEL J. SHARKEY A revision of the New World species of Cremnops Förster (Hymenoptera: Braconidae: Agathidinae) (Zootaxa 3916) 83 pp.; 30 cm. 9 Feb. 2015 ISBN 978-1-77557-633-4 (paperback) ISBN 978-1-77557-634-1 (Online edition) FIRST PUBLISHED IN 2015 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2015 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 3916 (1) © 2015 Magnolia Press TUCKER ET AL.
    [Show full text]
  • A Critical Study on Chemistry and Distribution of Phenolic Compounds in Plants, and Their Role in Human Health
    IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT) e-ISSN: 2319-2402,p- ISSN: 2319-2399. Volume. 1 Issue. 3, PP 57-60 www.iosrjournals.org A Critical Study on Chemistry and Distribution of Phenolic Compounds in Plants, and Their Role in Human Health Nisreen Husain1, Sunita Gupta2 1 (Department of Zoology, Govt. Dr. W.W. Patankar Girls’ PG. College, Durg (C.G.) 491001,India) email - [email protected] 2 (Department of Chemistry, Govt. Dr. W.W. Patankar Girls’ PG. College, Durg (C.G.) 491001,India) email - [email protected] Abstract: Phytochemicals are the secondary metabolites synthesized in different parts of the plants. They have the remarkable ability to influence various body processes and functions. So they are taken in the form of food supplements, tonics, dietary plants and medicines. Such natural products of the plants attribute to their therapeutic and medicinal values. Phenolic compounds are the most important group of bioactive constituents of the medicinal plants and human diet. Some of the important ones are simple phenols, phenolic acids, flavonoids and phenyl-propanoids. They act as antioxidants and free radical scavengers, and hence function to decrease oxidative stress and their harmful effects. Thus, phenols help in prevention and control of many dreadful diseases and early ageing. Phenols are also responsible for anti-inflammatory, anti-biotic and anti- septic properties. The unique molecular structure of these phytochemicals, with specific position of hydroxyl groups, owes to their powerful bioactivities. The present work reviews the critical study on the chemistry, distribution and role of some phenolic compounds in promoting health-benefits.
    [Show full text]
  • Water Spangles (Salvinia Minima) ERSS
    Water Spangles (Salvinia minima) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, December 2014 Revised, April 2018 Web Version, 8/19/2019 Photo: Kurt Stüber. Licensed under Creative Commons Attribution-Share Alike 3.0 Unported. Available: https://commons.wikimedia.org/wiki/File:Salvinia_minima_1.jpg. (April 2018). 1 Native Range and Status in the United States Native Range GISD (2018) lists Salvinia minima as native to Argentina, Belize, Bolivia, Brazil, Colombia, Cuba, Ecuador, El Salvador, Guatemala, Honduras, Mexico, Nicaragua, Panama, Paraguay, Peru, Puerto Rico, Uruguay, and Venezuela. From Howard Morgan (2018): “Native Range: Central and South America; common and wide-ranging from southern Mexico to northern Argentina and Brazil (Mickel a[n]d Beitel 1988, [Stoltze] 1983). De la Sota (1976) 1 remarked that, in Argentina, the natural range of Salvinia minima could not be precisely determined due to its frequency in the watergarden and aquarium trade.” Status in the United States GISD (2018) lists Salvinia minima as alien, invasive and established in Alabama, Florida, Louisiana, Minnesota, New York, and Texas. Howard Morgan (2018) list Salvinia minima as present in the wild in Alabama (first report in 1982), Arkansas (first report in 1998), California (first report in 2008), Florida (first report in 1930), Georgia (first report in 1936), Idaho (first report in 2004), Louisiana (first report in 1980), Maryland (first report in 1984), Massachusetts (first report in 1992), Mississippi (first report in 1999), New Mexico (first report in 1999), New York (first report in 1990), Ohio (first report in 2017), Oklahoma (first report in 1989), Puerto Rico (first report in 1998), South Carolina (first report in 1997), and Texas (first report in 1992).
    [Show full text]
  • The Adventive Status of Salvinia Minima and S. Molesta in The
    The Adventive Status of Salvinia minima and S. molesta in the Southern United States and the Related Distribution of the Weevil Cyrtobagous salviniae Author(s): Colette C. Jacono, Tracy R. Davern and Ted D. Center Source: Castanea, Vol. 66, No. 3 (Sep., 2001), pp. 214-226 Published by: Southern Appalachian Botanical Society Stable URL: http://www.jstor.org/stable/4033946 . Accessed: 29/09/2014 14:51 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Southern Appalachian Botanical Society is collaborating with JSTOR to digitize, preserve and extend access to Castanea. http://www.jstor.org This content downloaded from 158.135.136.72 on Mon, 29 Sep 2014 14:51:58 PM All use subject to JSTOR Terms and Conditions CASTANEA 66(3): 214-226. SEPTEMBER 2001 The Adventive Status of Salvinia minima and S. molesta in the Southern United States and the Related Distribution of the Weevil Cyrtobagous salviniae COLETTE C. JACONO,1 TRACY R. DAVERN,2 and TED D. CENTER2 'USGS, Florida Caribbean Science Center, 7920 NW 71st St., Gainesville, Florida 32653; 2USDA-ARS,Invasive Plant Research Laboratory,3205 College Ave., Fort Lauderdale, Florida 33314 ABSTRACT The recent introduction of Salvinia molesta constitutes a serious threat to aquatic systems in the warm temperate regions of the United States.
    [Show full text]
  • Salvinia Molesta. Retrieved From
    Aquatic Plant Salvinia I. Current Status and Distribution Salvinia molesta, S. minima, S. herzogii, S. natans a. Range Global/Continental Wisconsin Native Range S. molesta: South America (Southern Brazil)1 S. minima: Central and South America2 S. herzogii: South America3 S. natans: Eurasia4 Not recorded in Wisconsin Figure 1: U.S and Canada Distribution Map5 Also reported from Virginia & Colorado6 (S. molesta, S. minima, S. herzogii, and S. natans) Abundance/Range Widespread: Tropics, subtropics Not applicable Locally Abundant: Warm temperatures, high nutrients7 Not applicable Sparse: Frost-limited Not applicable Range Expansion Date Introduced: Late 19th century8; 1930s2; late 1970s to early Not applicable 1980s9 Rate of Spread: Extremely rapid; doubling time of 2.9 days (S. Not applicable herzogii)10 Density Risk of Monoculture: High; capable of 30,000 plants/m2; can result Unknown in mats 3 feet thick9 Facilitated By: High temperatures, nutrients Unknown b. Habitat Lakes, reservoirs, wetlands, low energy systems Tolerance Chart of tolerances: Increasingly dark color indicates increasingly optimal range11,12 Preferences Low energy freshwater systems; high nutrient input (nitrogen) and high temperatures10,13; intolerant of salinity8 Page 1 of 5 Wisconsin Department of Natural Resources – Aquatic Invasive Species Literature Review c. Regulation Noxious/Regulated5: Federal Noxious Weed List; AL, AZ, CA, CO, CT, FL, MA, MS, NV, NC, OR, SC, TX, VT Minnesota Regulations: Prohibited; One may not possess, import, purchase, propagate, or transport Michigan Regulations: Prohibited; One may not knowingly possess or introduce Washington Regulations: Secondary Species of Concern II. Establishment Potential and Life History Traits a. Life History Floating leaf aquatic fern; subtle differences exist between species but in general they are very closely related13; S.
    [Show full text]
  • Salvinia Molesta D. Mitch. (Salviniaceae): Impact and Control
    CAB Reviews 2020 15, No. 033 Salvinia molesta D. Mitch. (Salviniaceae): impact and control Julie A. Coetzee1* and Martin P. Hill2 Address: 1Botany Department, Centre for Biological Control, Rhodes University, Grahamstown, P.O. Box 94, 6140, South Africa. 2Department of Zoology and Entomology, Centre for Biological Control, Rhodes University, Grahamstown, P.O. Box 94, 6140, South Africa. ORCID information: Julie A. Coetzee (orcid: 0000-0002-0364-3349); Martin P. Hill (orcid: 0000-0003-0579-5298) *Correspondence: Julie A. Coetzee. Email: [email protected] Received: 15 November 2019 Accepted: 07 July 2020 doi: 10.1079/PAVSNNR202015033 The electronic version of this article is the definitive one. It is located here: http://www.cabi.org/cabreviews © CAB International 2020 (Online ISSN 1749-8848) Abstract Salvinia molesta D.S. Mitchell (Salviniaceae) (giant salvinia), a floating aquatic fern of Brazilian origin, has been dispersed to much of the tropical and subtropical parts of the world since the mid-1900s, where it is invasive and damaging. Herbicide application and mechanical control of this weed are labor intensive and expensive, but biological control using the host-specific weevil, Cyrtobagous salviniae (Calder and Sands), provides an effective and sustainable solution. The weevil was first released as a biological control agent onto S. molesta in Australia in 1980 and has subsequently been released in further 22 countries affected by the weed. The biological control program against S. molesta has been an extraordinary success story where a single weevil species has resulted in the weed no longer being considered invasive in most countries in a relatively short time of under 3 years.
    [Show full text]
  • 2 Floating Fern (Salvinia)
    2 FLOATING FERN (SALVINIA) M. H. Julien,1 T. D. Center,2 and P. W. Tipping2 1 CSIRO Entomology, Indooroopilly, Australia 2 U.S. Department of Agriculture, Agriculture Research Service, Fort Lauderdale, Florida, USA PEST STATUS OF WEED tats for vectors of human disease with serious socio- economic impacts. Salvinia molesta D. S. Mitchell is a floating fern na- In developing countries, the impact of salvinia tive to South America that in the last half of the twen- can be devastating because weed mats block the use tieth century spread widely throughout the tropics of waterways for transportation, cutting off access and subtropics, moved in part by the trade in orna- to important services, farm lands, and hunting mental plants for fish tanks and ponds. It forms dense grounds. The harm from salvinia mats to fisheries also mats over lakes and slow moving rivers and causes can be very significant to communities dependent on large economic losses and a wide range of ecological fish for local consumption (sometimes as the main problems to native species and communities. It is of source of protein) or in areas where fish sales are the interest in the United States because of its recent es- main source of cash income (Bennett, 1966; Thomas tablishment in east Texas. and Room, 1986). Salvinia also is a weed of paddy Nature of Damage rice that reduces production by competing for wa- ter, nutrients and space (Anon., 1987). Economic damage. Mats of S. molesta (referred to Ecological damage. The ability to grow very hereafter as salvinia) impede access to and use of wa- quickly (Cary and Weerts, 1983; Mitchell and Tur, terways for commercial and recreational purposes 1975; Mitchell, 1978/9; Room, 1986) and blanket wa- and degrade waterside aesthetics (Fig.
    [Show full text]
  • (GISD) 2021. Species Profile Salvinia Molesta. Available
    FULL ACCOUNT FOR: Salvinia molesta Salvinia molesta System: Terrestrial Kingdom Phylum Class Order Family Plantae Pteridophyta Filicopsida Hydropteridales Salviniaceae Common name foug?re d?eau (French, Burkina Faso), koi kandy (English), African pyle (English), aquarium watermoss (English, United States), salvinia (English), giant salvinia (English, United States), giant salvinia (English), water fern (English), water spangles (English), kariba weed (English), African payal (English) Synonym Salvinia auriculata , Aubl. Similar species Salvinia biloba, Salvinia herzogii, Salvinia auriculata Summary Salvinia molesta is a floating aquatic fern that thrives in slow- moving, nutrient-rich, warm, freshwater. A rapidly growing competitive plant, it is dispersed long distances within a waterbody (via water currents) and between waterbodies (via animals and contaminated equipment, boats or vehicles). Salvinia molesta is cultivated by aquarium or pond owners and it is sometimes released by flooding, or by intentional dumping. Salvinia molesta may form dense vegetation mats that reduce water-flow and lower the light and oxygen levels in the water. This stagnant dark environment negatively affects the biodiversity and abundance of freshwater species, including fish and submerged aquatic plants. Salvinia molesta can alter wetland ecosystems and cause wetland loss and also poses a severe threat to socio-economic activities dependent on open, flowing and/or high quality waterbodies, including hydro- electricity generation, fishing and boat transport. view this species on IUCN Red List Global Invasive Species Database (GISD) 2021. Species profile Salvinia molesta. Pag. 1 Available from: http://www.iucngisd.org/gisd/species.php?sc=569 [Accessed 05 October 2021] FULL ACCOUNT FOR: Salvinia molesta Species Description Salvinia molesta is a free floating aquatic fern.
    [Show full text]
  • Cyrtobagous Salviniae) (Salvinia Molesta), a Free-Floating
    Salvinia Weevil A natural enemy of SALVINIA (Cyrtobagous salviniae) (Salvinia molesta), a free-floating fern, in South Africa. 25 DOSSIERS ON BIOLOGICAL CONTROL AGENTS AVAILABLE TO AID ALIEN PLANT CONTROL Description The adult weevils are small, about 2mm in length and black. Newly emerged adults are light brown on emergence and then turn black. Life Cycle Adults can live for several months. On salvinia they are found on Cyrtobagous salviniae or near the growth tips or amongst the roots. Eggs are deposited singly on salvinia in cavities chewed by the female in unopened buds or amongst roots. Eggs hatch in about 10 days. Females lay 2-5 eggs per day over 60 days. On average the white crescentric larvae complete three instars (stages) in 23 days before pupating in a cocoon. The cocoon is spun beneath the water surface in close contact with or amongst the roots. The prepupae and pupal stage is completed in 10-15 days. The total life cycle, dependant on temperature, is completed in 31-68 days. Dispersal of adults is rarely by flight, but mostly by the weevils walking or dispersed with their free-floating host plant. Feeding Damage Salvinia molesta. Inset shows weevil damage. Young larvae feed on the buds (growth tips) and roots while older larvae tunnel into the rhizomes causing leaves to darken and drop off. Adult feeding damages the growth tips and young leaves. Damaged plants become waterlogged and sink. The presence of damaged growth tips is the most characteristic indicator of the presence of the weevils. Effect on Salvinia (Salvinia molesta).
    [Show full text]
  • Giant Salvinia Including an Aquatic INVASIVE SPECIES FACT SHEET Grasshopper (Paulinia Acuminate De Geer), the Pyralid Moth (Samea Multiplicalis Guenee)
    MANAGEMENT Biological Control: A few biological control agents exist for the potential control of giant salvinia including an aquatic INVASIVE SPECIES FACT SHEET grasshopper (Paulinia acuminate De Geer), the pyralid moth (Samea multiplicalis Guenee). The moth and the grass- hopper were primarily investigated in Australia and currently are not approved for use in the United States. Herbivo- Giant Salvinia (Salvinia molesta D. S. Mitchell) rous fish including the grass carp (Ctenopharyngodon idella Val.), and tilapia (Oreochromis niloticus Trewavas); the last has shown promise as a biological control agent (Table 1). However, the salvinia weevil (Cyrtobagous salviniae Calder Description, Distribution, and Management and Sands) is the most notable and only organism that has demonstrated success in giant salvinia control. Both adult and larval damage can reduce giant salvinia infestations when conditions are optimal for weevil growth. Optimal condi- Ryan M. Wersal and John D. Madsen, Ph.D., GeoResources Institute, Mississippi State University tions include water temperatures between 61 and 86°F. Water temperatures outside this range results in decreased GRI Publication #5006 weevil performance. Similarly, feeding and larval damage depend on levels of nitrogen in plant tissues; low levels of plant nitrogen result in low densities of the salvinia weevil. Mechanical Control: Manual (hand pulling) or mechanical (wire nets and floating booms) control of giant salvinia is only INTRODUCTION practical during the early stages of growth (Table 1). After giant salvinia is established in a given area, increased bio- Giant salvinia (Salvinia molesta D.S. Mitchell) is an aquatic fern native to southern Brazil. Giant salvinia is free-floating mass and rapid growth makes harvesting and hand pulling unfeasible.
    [Show full text]
  • Forest Health Technology Enterprise Team Biological Control of Invasive
    Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control Biological Control of Invasive Plants in the Eastern United States Roy Van Driesche Bernd Blossey Mark Hoddle Suzanne Lyon Richard Reardon Forest Health Technology Enterprise Team—Morgantown, West Virginia United States Forest FHTET-2002-04 Department of Service August 2002 Agriculture BIOLOGICAL CONTROL OF INVASIVE PLANTS IN THE EASTERN UNITED STATES BIOLOGICAL CONTROL OF INVASIVE PLANTS IN THE EASTERN UNITED STATES Technical Coordinators Roy Van Driesche and Suzanne Lyon Department of Entomology, University of Massachusets, Amherst, MA Bernd Blossey Department of Natural Resources, Cornell University, Ithaca, NY Mark Hoddle Department of Entomology, University of California, Riverside, CA Richard Reardon Forest Health Technology Enterprise Team, USDA, Forest Service, Morgantown, WV USDA Forest Service Publication FHTET-2002-04 ACKNOWLEDGMENTS We thank the authors of the individual chap- We would also like to thank the U.S. Depart- ters for their expertise in reviewing and summariz- ment of Agriculture–Forest Service, Forest Health ing the literature and providing current information Technology Enterprise Team, Morgantown, West on biological control of the major invasive plants in Virginia, for providing funding for the preparation the Eastern United States. and printing of this publication. G. Keith Douce, David Moorhead, and Charles Additional copies of this publication can be or- Bargeron of the Bugwood Network, University of dered from the Bulletin Distribution Center, Uni- Georgia (Tifton, Ga.), managed and digitized the pho- versity of Massachusetts, Amherst, MA 01003, (413) tographs and illustrations used in this publication and 545-2717; or Mark Hoddle, Department of Entomol- produced the CD-ROM accompanying this book.
    [Show full text]
  • Giant Salvinia, Salvinia Molesta (Salviniaceae)
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 10-30-2017 Giant Salvinia, Salvinia molesta (Salviniaceae): Evaluation Of Sub-Optimum Temperatures on Survival of the Giant Salvinia Weevil, Cyrtobagous salviniae (Coleoptera: Curculionidae) and Integration of Management Practices with Aquatic Herbicides Lauren W. Cozad Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Biology Commons, Entomology Commons, Other Plant Sciences Commons, and the Weed Science Commons Recommended Citation Cozad, Lauren W., "Giant Salvinia, Salvinia molesta (Salviniaceae): Evaluation Of Sub-Optimum Temperatures on Survival of the Giant Salvinia Weevil, Cyrtobagous salviniae (Coleoptera: Curculionidae) and Integration of Management Practices with Aquatic Herbicides" (2017). LSU Master's Theses. 4329. https://digitalcommons.lsu.edu/gradschool_theses/4329 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. GIANT SALVINIA, SALVINIA MOLESTA (SALVINIACEAE): EVALUATION OF SUB-OPTIMUM TEMPERATURES ON SURVIVAL OF THE GIANT SALVINIA WEEVIL, CYRTOBAGOUS SALVINIAE (COLEOPTERA: CURCULIONIDAE) AND INTEGRATION OF MANAGEMENT PRACTICES WITH AQUATIC HERBICIDES A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements of the degree of Master of Science in The Department of Plant, Environmental and Soil Sciences by Lauren W Cozad B.S., Northwestern State University, 2010 December 2017 To my best friend and husband, without your love and support throughout this journey, this dream could not have become a reality.
    [Show full text]