Exceptionally Well-Preserved Brittle Stars from the Pliensbachian
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ophioderma Peruana, a New Species of Brittlestar
A peer-reviewed open-access journal ZooKeys 357: 53–65 (2013) Ophioderma peruana, a new species of brittlestar... 53 doi: 10.3897/zookeys.357.6176 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research Ophioderma peruana, a new species of brittlestar (Echinodermata, Ophiuroidea, Ophiodermatidae) from the Peruvian coast Tania Pineda-Enríquez1,†, Francisco A. Solís-Marín1,‡, Yuri Hooker2,§, Alfredo Laguarda-Figueras1,| 1 Colección Nacional de Equinodermos “M. Elena Caso M.”, Laboratorio de Sistemática y Ecología de Equinodermos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad Universitaria s/n Deleg. Coyoacán CP 04510 México 2 Laboratorio de Biología Marina, Facultad de Ciencias y Filosofía, Universidad Peruana Caytano Heredia, Av. Honorio Delgado 430, Urb. Ingeniería, S.M.P. Lima, Perú † http://zoobank.org/29C721AC-5981-485C-B257-C496113060EA ‡ http://zoobank.org/A2417F0D-CA2A-4BE2-A6F0-C8991F4B90EA § http://zoobank.org/094F1EA7-A5E6-4625-B36A-898EA2F93AC2 | http://zoobank.org/D8F6D077-9DA7-4BDB-B7BA-73009E7EE032 Corresponding author: Tania Pineda-Enríquez ([email protected]) Academic editor: Yves Samyn | Received 2 September 2013 | Accepted 11 November 2013 | Published 2 December 2013 http://zoobank.org/6455E2A2-D412-4DEF-816A-A49410923991 Citation: Pineda-Enríquez T, Solís-Marín FA, Hooker Y, Laguarda-Figueras A (2013) Ophioderma peruana, a new species of brittlestar (Echinodermata, Ophiuroidea, Ophiodermatidae) from the Peruvian coast. ZooKeys 357: 53–65. doi: 10.3897/zookeys.357.6176 Abstract Ophioderma peruana sp. n. is a new species of Ophiodermatidae, extending the distribution of the genus Ophioderma to Lobos de Afuera Island, Peru, easily distinguishable from its congeners by its peculiarly fragmented dorsal arm plates. -
Brittle-Star Mass Occurrence on a Late Cretaceous Methane Seep from South Dakota, USA Received: 16 May 2018 Ben Thuy1, Neil H
www.nature.com/scientificreports OPEN Brittle-star mass occurrence on a Late Cretaceous methane seep from South Dakota, USA Received: 16 May 2018 Ben Thuy1, Neil H. Landman2, Neal L. Larson3 & Lea D. Numberger-Thuy1 Accepted: 29 May 2018 Articulated brittle stars are rare fossils because the skeleton rapidly disintegrates after death and only Published: xx xx xxxx fossilises intact under special conditions. Here, we describe an extraordinary mass occurrence of the ophiacanthid ophiuroid Brezinacantha tolis gen. et sp. nov., preserved as articulated skeletons from an upper Campanian (Late Cretaceous) methane seep of South Dakota. It is uniquely the frst fossil case of a seep-associated ophiuroid. The articulated skeletons overlie centimeter-thick accumulations of dissociated skeletal parts, suggesting lifetime densities of approximately 1000 individuals per m2, persisting at that particular location for several generations. The ophiuroid skeletons on top of the occurrence were preserved intact most probably because of increased methane seepage, killing the individuals and inducing rapid cementation, rather than due to storm-induced burial or slumping. The mass occurrence described herein is an unambiguous case of an autochthonous, dense ophiuroid community that persisted at a particular spot for some time. Thus, it represents a true fossil equivalent of a recent ophiuroid dense bed, unlike other cases that were used in the past to substantiate the claim of a mid-Mesozoic predation-induced decline of ophiuroid dense beds. Brittle stars, or ophiuroids, are among the most abundant and widespread components of the marine benthos, occurring at all depths and latitudes of the world oceans1. Most of the time, however, ophiuroids tend to live a cryptic life hidden under rocks, inside sponges, epizoic on corals or buried in the mud (e.g.2) to such a point that their real abundance is rarely appreciated at frst sight. -
A New Bathyal Ophiacanthid Brittle Star (Ophiuroidea: Ophiacanthidae) with Caribbean Affinities from the Plio-Pleistocene of the Mediterranean
Zootaxa 4820 (1): 019–030 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4820.1.2 http://zoobank.org/urn:lsid:zoobank.org:pub:ED703EC8-3124-413F-8B17-3C1695B789C5 A new bathyal ophiacanthid brittle star (Ophiuroidea: Ophiacanthidae) with Caribbean affinities from the Plio-Pleistocene of the Mediterranean LEA D. NUMBERGER-THUY & BEN THUY* Natural History Museum Luxembourg, Department of Palaeontology, 25, rue Münster, 2160 Luxembourg, Luxembourg; https://orcid.org/0000-0001-6097-995X *corresponding author: [email protected]; https://orcid.org/0000-0001-8231-9565 Abstract Identifiable remains of large deep-sea invertebrates are exceedingly rare in the fossil record. Thus, every new discovery adds to a better understanding of ancient deep-sea environments based on direct fossil evidence. Here we describe a collection of dissociated skeletal parts of ophiuroids (brittle stars) from the latest Pliocene to earliest Pleistocene of Sicily, Italy, preserved as microfossils in sediments deposited at shallow bathyal depths. The material belongs to a previously unknown species of ophiacanthid brittle star, Ophiacantha oceani sp. nov. On the basis of morphological comparison of skeletal microstructures, in particular spine articulations and vertebral articular structures of the lateral arm plates, we conclude that the new species shares closest ties with Ophiacantha stellata, a recent species living in the present-day Caribbean at bathyal depths. Since colonization of the deep Mediterranean following the Messinian crisis at the end of the Miocene was only possibly via the Gibraltar Sill, the presence of tropical western Atlantic clades in the Plio-Pleistocene of the Mediterranean suggests a major deep-sea faunal turnover yet to be explored. -
Phylogenomic Resolution of the Class Ophiuroidea Unlocks a Global Microfossil Record
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Current Biology 24, 1874–1879, August 18, 2014 ª2014 Elsevier Ltd All rights reserved http://dx.doi.org/10.1016/j.cub.2014.06.060 Report Phylogenomic Resolution of the Class Ophiuroidea Unlocks a Global Microfossil Record Timothy D. O’Hara,1,* Andrew F. Hugall,1 Ben Thuy,2 We used a phylogenomic approach to address these defi- and Adnan Moussalli1 ciencies, obtaining 52 de novo ophiuroid transcriptomes and 1Museum Victoria, GPO Box 666, Melbourne, VIC 3001, three from other echinoderm classes, in addition to three pub- Australia lically available transcriptomes and three genomes (see Table 2Section Pale´ ontologie, Muse´ e National d’Histoire Naturelle du S1 available online). Twenty-nine of the ophiuroid transcrip- Luxembourg, 24 Rue Mu¨ nster, 2160 Luxembourg tomes were obtained from deep-sea (>500 m) samples, to ensure adequate taxonomic representation across the class. We identified and aligned 425 orthologous genes that could Summary be annotated using available sea urchin, hemichordate, or actinopterygian genomes (Table S2). After trimming, we used Our understanding of the origin, evolution, and biogeog- 102,143 amino acid positions to reconstruct a phylogeny of raphy of seafloor fauna is limited because we have insuf- the Echinodermata, with a focus on the ophiuroids (Figure 1). ficient spatial and temporal data to resolve underlying The resulting sequence matrix is 85% complete (Figure S1) processes [1]. The abundance and wide distribution of mod- and is the largest genetic data set ever assembled to analyze ern and disarticulated fossil Ophiuroidea [2], including brittle phylogenetic relationships within echinoderms. -
Key to the Common Shallow-Water Brittle Stars (Echinodermata: Ophiuroidea) of the Gulf of Mexico and Caribbean Sea
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/228496999 Key to the common shallow-water brittle stars (Echinodermata: Ophiuroidea) of the Gulf of Mexico and Caribbean Sea Article · January 2007 CITATIONS READS 10 702 1 author: Christopher Pomory University of West Florida 34 PUBLICATIONS 303 CITATIONS SEE PROFILE All content following this page was uploaded by Christopher Pomory on 21 May 2014. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. 1 Key to the common shallow-water brittle stars (Echinodermata: Ophiuroidea) of the Gulf of Mexico and Caribbean Sea CHRISTOPHER M. POMORY 2007 Department of Biology, University of West Florida, 11000 University Parkway, Pensacola, FL 32514, USA. [email protected] ABSTRACT A key is given for 85 species of ophiuroids from the Gulf of Mexico and Caribbean Sea covering a depth range from the intertidal down to 30 m. Figures highlighting important anatomical features associated with couplets in the key are provided. 2 INTRODUCTION The Caribbean region is one of the major coral reef zoogeographic provinces and a region of intensive human use of marine resources for tourism and fisheries (Aide and Grau, 2004). With the world-wide decline of coral reefs, and deterioration of shallow-water marine habitats in general, ecological and biodiversity studies have become more important than ever before (Bellwood et al., 2004). Ecological and biodiversity studies require identification of collected specimens, often by biologists not specializing in taxonomy, and therefore identification guides easily accessible to a diversity of biologists are necessary. -
Crinoids from the Middle Jurassic (Bajocian–Lower Callovian) of Arde`Che, France
Swiss J Palaeontol (2012) 131:211–253 DOI 10.1007/s13358-012-0044-9 Crinoids from the Middle Jurassic (Bajocian–Lower Callovian) of Arde`che, France Hans Hess Received: 24 February 2012 / Accepted: 25 April 2012 / Published online: 6 June 2012 Ó Akademie der Naturwissenschaften Schweiz (SCNAT) 2012 Abstract Several Middle Jurassic outcrops in the Arde`che results demonstrate that the Middle Jurassic crinoids from Department near La Voulte-sur-Rhoˆne and St-E´tienne-de- the Arde`che are one of the important and diverse Mesozoic Boulogne are rich in the remains of crinoids, but these were crinoid faunas. Some forms bridge the gap between the known from surface collections only and were not descri- Early Jurassic and the Late Jurassic hardground faunas of bed using present standards of systematics. This paper cyrtocrinids. Cyrtocrinus praenutans n. sp., a form similar brings the taxonomic status of the previously described to Cyrtocrinus nutans (GOLDFUSS) from the Oxfordian, is crinoids up to date, reassesses the systematic position of described as a separate species despite some overlapping some of the species based on cups and describes new phenotypic variability of cups and columnals. Pathological forms. Sampling and washing of bulk material from the deformations on all types of ossicles of C. praenutans n. sp. Lower Bathonian of the La Pouza locality yielded nearly are ascribed to the epizoan commensal Oichnus para- 100,000 crinoid ossicles. Among them are rare comatulids boloides BROMLEY. Different species are dominant at the with the following recognized as new: Andymetra galei n. different Bathonian localities, namely C. praenutans n. -
Echinodermata, Asteroidea) and Ophiuroids (Echino Dermata, Ophiuroidea) from the Late Jurassic (Volgian / Tithonian) of Central Spitsbergen
European Journal of Taxonomy 411: 1–26 ISSN 2118-9773 https://doi.org/10.5852/ejt.2018.411 www.europeanjournaloftaxonomy.eu 2018 · Rousseau J. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Research article urn:lsid:zoobank.org:pub:20D7A744-CE8B-4E6C-92DA-71A9B8C3D805 New articulated asteroids (Echinodermata, Asteroidea) and ophiuroids (Echino dermata, Ophiuroidea) from the Late Jurassic (Volgian / Tithonian) of central Spitsbergen Julie ROUSSEAU 1,*, Andrew Scott GALE 2 & Ben THUY 3 1 1111 Belle Pre Way, Apt. 537, Alexandria, VA, 22314, United States of America. 2 School of Earth & Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth, PO1 3QL, United Kingdom. 3 Department of Palaeontology, Natural History Museum Luxembourg, Luxembourg-City, Luxembourg. * Corresponding author: [email protected] 2 Email: [email protected] 3 Email: [email protected] 1 urn:lsid:zoobank.org:author:C58AF561-3A85-4615-B5A4-BA3D323F7A25 2 urn:lsid:zoobank.org:author:092855B9-CBE4-41F9-9861-3BEA1FDE50F1 3 urn:lsid:zoobank.org:author:04186A8C-3F0D-485E-834A-08414A217ACA Abstract. The Late Jurassic–Early Cretaceous Slottsmøya Member of the Agardhfjellet Formation in central Spitsbergen has yielded two new species of asteroids and two species of ophiuroids, one of which is described as new. Polarasterias janusensis Rousseau & Gale gen. et sp. nov. is a forcipulatid neoasteroid with elongated arms, small disc and very broad ambulacral grooves with narrow adambulacrals. Savignaster septemtrionalis Rousseau & Gale sp. nov. is a pterasterid with well- developed interradial chevrons. The Spitsbergen specimens are the fi rst described articulated material of Savignaster and reveal the overall arrangement of the ambulacral groove ossicles. -
Late Turonian Ophiuroids (Echinodermata) from the Bohemian Cretaceous Basin, Czech Republic
Late Turonian ophiuroids (Echinodermata) from the Bohemian Cretaceous Basin, Czech Republic RICHARD TORC & JIØÍ ÍTT Diverse ophiuroid faunules from the basal Teplice Formation, of Late Turonian age, exposed at Úpohlavy in the north- western part of the Bohemian Cretaceous Basin, northwest Bohemia, are based on only dissociated lateral arm plates, vertebrae and some other skeletal elements of the disc. The material can be ascribed to ten species, including a new taxon named Stegophiura? nekvasilovae sp. nov. Three additional species are represented in the material but these are left in open nomenclature. Relative species abundance is evaluated and discussed. • Key words: Echinodermata, Ophiuroidea, Upper Cretaceous, taxonomy, Bohemian Cretaceous Basin, Czech Republic. ŠTORC,R.&ŽÍTT, J. 2008. Late Turonian ophiuroids (Echinodermata) from the Bohemian Cretaceous Basin, Czech Re- public. Bulletin of Geosciences 83(2), 123–140 (8 figures). Czech Geological Survey, Prague. ISSN 1214-1119. Manu- script received January 3, 2008; accepted in revised form February 27, 2008; issued June 30, 2008. Richard Štorc, Smetanova 380, CZ-251 64 Mnichovice, Czech Republic; [email protected] • Jiří Žítt, Institute of Geology of the Academy of Sciences of the Czech Republic, v.v.i., Rozvojová 269, CZ-165 02 Praha 6, Czech Repub- lic; [email protected] Until recently, knowledge of ophiuroids from the Bohe- Geographical and stratigraphical setting mian Cretaceous Basin (BCB) was poor although skele- tal remains of such echinoderms had already been record- The material described here was collected from the large ed by Reuss (1845–46) and Frič (1895). Recent work by working quarry of Čížkovické cementárny, a.s. -
Accepted Manuscript
Accepted Manuscript Predation in the marine fossil record: Studies, data, recognition, environmental factors, and behavior Adiël A. Klompmaker, Patricia H. Kelley, Devapriya Chattopadhyay, Jeff C. Clements, John W. Huntley, Michal Kowalewski PII: S0012-8252(18)30504-X DOI: https://doi.org/10.1016/j.earscirev.2019.02.020 Reference: EARTH 2803 To appear in: Earth-Science Reviews Received date: 30 August 2018 Revised date: 17 February 2019 Accepted date: 18 February 2019 Please cite this article as: A.A. Klompmaker, P.H. Kelley, D. Chattopadhyay, et al., Predation in the marine fossil record: Studies, data, recognition, environmental factors, and behavior, Earth-Science Reviews, https://doi.org/10.1016/j.earscirev.2019.02.020 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Predation in the marine fossil record: studies, data, recognition, environmental factors, and behavior Adiël A. Klompmakera,*, Patricia H. Kelleyb, Devapriya Chattopadhyayc, Jeff C. Clementsd,e, John W. Huntleyf, Michal Kowalewskig aDepartment of Integrative Biology & Museum of Paleontology, University of California, Berkeley, 1005 Valley Life -
Early Toarcian Oceanic Anoxic Event): New Microfossils from the Dudelange Drill Core, Luxembourg
Downloaded from http://sp.lyellcollection.org/ by guest on September 29, 2021 Brittlestar diversity at the dawn of the Jenkyns Event (early Toarcian Oceanic Anoxic Event): new microfossils from the Dudelange drill core, Luxembourg Ben Thuy* and Lea D. Numberger-Thuy Department of Palaeontology, Natural History Museum Luxembourg, 25 rue Münster, 2160 Luxembourg City, Luxembourg BT, 0000-0001-8231-9565; LDN-T, 0000-0001-6097-995X *Correspondence: [email protected] Abstract: Ophiuroids, the slender-armed cousins of starfish, constitute an important component of modern marine benthos and have been used successfully in the exploration of (palaeo)-ecological and evolutionary trends, yet their fossil record is still poorly known. One of the major gaps in the known palaeobiodiversity of this group coincides with a global palaeoenvironmental crisis during the early Toarcian (Early Jurassic, 183 myr ago), known as the Jenkyns Event. Here we describe ophiuroid remains retrieved from a series of sam- ples from the Dudelange (Luxembourg) drill core, which spans the lower part of the Toarcian, between the top of the Pliensbachian and the onset of the Jenkyns Event. A total of 21 species are recorded, including three new genera and 12 new species. Ophiuroid diversity and abundance fluctuate in parallel with depositional facies, with lowest values coinciding with black shales. Highest diversities, including exceptional occurrences of taxa nowadays restricted to deep-sea areas, are recorded from just below the black shales, corresponding to the onset of the Jenkyns Event. Our results show that even small (100 g) bulk sediment samples retrieved from drill cores can yield numerous identifiable ophiuroid remains, thus unlocking this group for the study of faunal change across palaeoenvironmental crises. -
Echinodermata, Ophiuroidea)
Vol. 16: 105–113, 2012 AQUATIC BIOLOGY Published online July 19 doi: 10.3354/ab00435 Aquat Biol Slow arm regeneration in the Antarctic brittle star Ophiura crassa (Echinodermata, Ophiuroidea) Melody S. Clark*, Terri Souster British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK ABSTRACT: Regeneration of arms in brittle stars is thought to proceed slowly in low temperature environments. Here a survey of natural arm damage and arm regeneration rates is documented in the Antarctic brittle star Ophiura crassa. This relatively small ophiuroid, a detritivore found amongst red macroalgae, displays high levels of natural arm damage and repair. This is largely thought to be due to ice damage in the shallow waters it inhabits. The time scale of arm regener- ation was measured in an aquarium-based 10 mo experiment. There was a delayed regeneration phase of 7 mo before arm growth was detectable in this species. This is 2 mo longer than the longest time previously described, which was in another Antarctic ophiuroid, Ophionotus victo- riae. The subsequent regeneration of arms in O. crassa occurred at a rate of approximately 0.16 mm mo−1. To date, this is the slowest regeneration rate known of any ophiuroid. The confir- mation that such a long delay before arm regeneration occurs in a second Antarctic species pro- vides strong evidence that this phenomenon is yet another characteristic feature of Southern Ocean species, along with deferred maturity, slowed growth and development rates. It is unclear whether delayed initial regeneration phases are adaptations to, or limitations of, low temperature environments. -
Benthic Field Guide 5.5.Indb
Field Identifi cation Guide to Heard Island and McDonald Islands Benthic Invertebrates Invertebrates Benthic Moore Islands Kirrily and McDonald and Hibberd Ty Island Heard to Guide cation Identifi Field Field Identifi cation Guide to Heard Island and McDonald Islands Benthic Invertebrates A guide for scientifi c observers aboard fi shing vessels Little is known about the deep sea benthic invertebrate diversity in the territory of Heard Island and McDonald Islands (HIMI). In an initiative to help further our understanding, invertebrate surveys over the past seven years have now revealed more than 500 species, many of which are endemic. This is an essential reference guide to these species. Illustrated with hundreds of representative photographs, it includes brief narratives on the biology and ecology of the major taxonomic groups and characteristic features of common species. It is primarily aimed at scientifi c observers, and is intended to be used as both a training tool prior to deployment at-sea, and for use in making accurate identifi cations of invertebrate by catch when operating in the HIMI region. Many of the featured organisms are also found throughout the Indian sector of the Southern Ocean, the guide therefore having national appeal. Ty Hibberd and Kirrily Moore Australian Antarctic Division Fisheries Research and Development Corporation covers2.indd 113 11/8/09 2:55:44 PM Author: Hibberd, Ty. Title: Field identification guide to Heard Island and McDonald Islands benthic invertebrates : a guide for scientific observers aboard fishing vessels / Ty Hibberd, Kirrily Moore. Edition: 1st ed. ISBN: 9781876934156 (pbk.) Notes: Bibliography. Subjects: Benthic animals—Heard Island (Heard and McDonald Islands)--Identification.