Management of Nonobstructive Azoospermia: a Committee Opinion

Total Page:16

File Type:pdf, Size:1020Kb

Management of Nonobstructive Azoospermia: a Committee Opinion ASRM PAGES Management of nonobstructive azoospermia: a committee opinion The Practice Committee of the American Society for Reproductive Medicine American Society for Reproductive Medicine, Birmingham, Alabama The management of nonobstructive azoospermia in the context of fertility treatment is discussed. This document replaces the ASRM document titled ‘‘Evaluation of azoospermia,’’ last published in 2008. (Fertil SterilÒ 2018;110:1239–45. Ó2018 by American Society for Reproductive Medicine.) Earn online CME credit related to this document at www.asrm.org/elearn Discuss: You can discuss this article with its authors and other readers at https://www.fertstertdialog.com/users/16110-fertility- and-sterility/posts/39085-27020 pproximately 5%–10% of men GOALS OF MANAGEMENT health-relevant conditions that are A evaluated for infertility are azoo- FOR MEN WITH NOA discovered during their diagnostic eval- spermic (1, 2).Surveydatafrom uation. These management objectives Men with NOA are entitled to a the United States suggests that there are are best met with a multidisciplinary diagnostic evaluation that targets approximately 600,000 azoospermic clinical team that includes a reproduc- identification of treatable, genetically reproductive-aged U.S. men at any tive urologist or other specialist in transmissible, prognostic, and/or time, most of whom have nonobstructive male reproductive medicine (6). health-relevant conditions. This evalua- azoospermia (NOA) (3). Nonobstructive tion should include a comprehensive azoospermia results from severe deficits clinical history, physical examination, in spermatogenesis that most commonly DIAGNOSIS OF GENETIC serum testing of total testosterone and result from primary testicular dysfunc- ABNORMALITIES IN MEN follicle-stimulating hormone (FSH) tion, but that may also result from levels, and further diagnostic testing in WITH NOA impairment of the hypothalamus or pitu- some cases based on results of the initial The majority of patients with NOA have itary. The development and widespread diagnostic evaluation (4). Each azoo- primary testicular failure. Genetic adoption of intracytoplasmic sperm in- spermic man's female partner should testing is indicated to evaluate for jection (ICSI) has revolutionized treat- also undergo a systematic, cost- transmissible and health-relevant ge- ment for NOA and enabled biological effective evaluation in preparation for netic lesions that are critical to consider paternityinmanymenusingsurgically assisted reproduction using ICSI, which when counseling and treating affected retrieved spermatozoa. is required for reproduction in the vast couples (7). Cytogenetic evaluation by Practice patterns for the manage- majority of NOA cases. Evaluation of karyotyping will identify cytogenetic ment of azoospermic men are variable the female partner should include clin- abnormalities in approximately 5% of within the United States. In some cen- ical assessment of ovulatory function men with NOA (8); nonmosaic Klinefel- ters, procedures for sperm retrieval are and the structure and patency of the fe- ter syndrome (47,XXY) is the most coordinated with oocyte retrieval so male reproductive tract (5). commonly detected cytogenetic anom- that fresh sperm are used for ICSI. In Men with NOA are also entitled to aly (9). The diagnosis of Klinefelter syn- contrast, other centers offer sperm counseling regarding therapeutic alter- drome informs treatment decisions retrieval with cryopreservation with natives to immediate sperm retrieval about sperm retrieval and has impor- the intention of using thawed sperm when appropriate, counseling about tant relevance to the health of affected at a later date. Finally, the methods the advantages and disadvantages of men, who are at increased risk for used for sperm retrieval in men with available sperm-retrieval procedures testosterone deficiency (TD), osteopo- NOA are variable. and protocols, and treatment of rosis, metabolic syndrome, type 2 dia- betes, breast cancer, and extragonadal Received September 14, 2018; accepted September 21, 2018. germ-cell tumors (10). Other cytoge- Correspondence: Practice Committee, American Society for Reproductive Medicine, 1209 Montgom- ery Highway, Birmingham, Alabama 35216 (E-mail: [email protected]). netic abnormalities detected in azoo- spermic men include Robertsonian Fertility and Sterility® Vol. 110, No. 7, December 2018 0015-0282/$36.00 Copyright ©2018 American Society for Reproductive Medicine, Published by Elsevier Inc. translocations, reciprocal transloca- https://doi.org/10.1016/j.fertnstert.2018.09.012 tions, and chromosomal inversions. VOL. 110 NO. 7 / DECEMBER 2018 1239 ASRM PAGES Some of these genetic lesions predispose to sperm and embryo pathophysiology of NOA (16). It is therefore rational that ther- aneuploidy that can affect the genetic health of offspring apy directed at improving the hormonal environment for conceived with assisted reproductive technology (ART) (11– spermatogenesis might be beneficial. Ejaculated sperm have 13). been reported in men with NOA after treatment with the aro- Men with NOA associated with primary testicular failure matase inhibitor letrozole (17–19). One small nonrandomized should also undergo Y chromosome microdeletion testing. study reported successful sperm retrieval after human Testing for Y chromosome microdeletions is essential for chorionic gonadotropin (hCG) therapy in 6 of 28 men who counseling affected men about the risk of infertility in poten- had previously undergone failed sperm-retrieval attempts, tial male offspring, and to avoid unnecessary surgery in pa- compared with 0 of 20 men (P<.05) in whom a second sperm tients with a very poor prognosis for sperm retrieval. retrieval was attempted without any hormonal therapy (20). Approximately 4% of American men with NOA carry trans- In a larger nonrandomized multicenter study of 442 men missible azoospermia factor (AZF) C deletions that will be in- with NOA who underwent sperm retrieval, sperm-retrieval herited by any sons conceived with ART, and approximately rates were superior in the hormonal-optimization group 6% of men with NOA carry more severe Y-chromosome mi- (57%) to the group that underwent immediate sperm-retrieval crodeletions involving the complete AZFa and AZFb regions surgery without hormonal therapy (34%). In this study, that confer a very poor prognosis for sperm retrieval (14). hormonal-optimization therapy was administered using a Genetic testing should also be considered in NOA associ- stepwise protocol starting with clomiphene citrate and ated with congenital forms of hypogonadotropic hypogonad- titrated to biochemical response using hCG and human meno- ism (HH), to inform patients about the risks of HH in their pausal gonadotropin in nonresponders (21). Despite these sig- offspring. Mutations in a number of genes have been nals from the literature that hormonal-optimization therapy described, including but not limited to the Kallman syndrome may be beneficial in men with NOA, the quantity and quality (KAL) family of genes that is implicated in anosmic congenital of the availability of evidence is insufficient to recommend hypogoandism. Overall, genetic lesions with variable inheri- hormonal-optimization therapy as standard clinical practice. tance patterns are detectable in one third of cases. Testing af- fords clinicians the opportunity to counsel patients about the MEDICAL THERAPY FOR NOA ASSOCIATED risks of HH in their offspring, and empowers clinicians to WITH HYPOGONADOTROPIC screen for unaffected embryos using preimplantation genetic testing for aneuploidy (PGT-A) (15). HYPOGONADISM Hypogonadotropic hypogonadism is an uncommon cause of MANAGEMENT OF DETECTED GENETIC male infertility, affecting approximately 1%–2% of infertile ABNORMALITIES IN MEN WITH NOA men. HH is characterized by hypothalamic or pituitary dysfunction, low/suppressed serum gonadotropins, and Detection of any genetic abnormality during the diagnostic decreased testicular function that manifests clinically as evaluation of NOA should prompt genetic counseling by an testosterone deficiency, oligospermia/azoospermia and/or appropriately trained health-care provider before treatment. decreased testicular volume. Failure of spermatogenesis Counseling should focus on the impact of the specifically de- results from lack of gonadotropin stimulation. HH may be tected genetic lesion on the patient's health and his prognosis congenital, acquired, or idiopathic. Common notable etio- for sperm retrieval, and on the risks posed by the detected ge- logies of HH are Kallman syndrome, which results from defi- netic lesion to the health and fertility of any potential cient gonadotropin-releasing hormone (GnRH) secretion from offspring conceived using surgically retrieved sperm. Detec- the hypothalamus, and anabolic steroidÀinduced hypogo- tion of cytogenetic abnormalities seen on peripheral blood nadism (ASIH), which results from prolonged suppression of karyotyping should trigger consideration of PGT-A during the hypothalamicÀpituitaryÀgonadal axis from exogenous in vitro fertilization (IVF). Men discovered to harbor complete androgen excess. Other acquired forms of HH are related to AZFa or AZFb deletions upon Y chromosome microdeletion trauma, radiation, chronic opioid use, and cerebral tumors. testing should be counseled to consider use of donor sperm Management strategies are tailored to the age of presentation or adoption, given that sperm identification is rare. Physi- and underlying etiology. cians treating men with AZFc
Recommended publications
  • Impact of Infection on the Secretory Capacity of the Male Accessory Glands
    Clinical�������������� Urolo�y Infection and Secretory Capacity of Male Accessory Glands International Braz J Urol Vol. 35 (3): 299-309, May - June, 2009 Impact of Infection on the Secretory Capacity of the Male Accessory Glands M. Marconi, A. Pilatz, F. Wagenlehner, T. Diemer, W. Weidner Department of Urology and Pediatric Urology, University of Giessen, Giessen, Germany ABSTRACT Introduction: Studies that compare the impact of different infectious entities of the male reproductive tract (MRT) on the male accessory gland function are controversial. Materials and Methods: Semen analyses of 71 patients with proven infections of the MRT were compared with the results of 40 healthy non-infected volunteers. Patients were divided into 3 groups according to their diagnosis: chronic prostatitis NIH type II (n = 38), chronic epididymitis (n = 12), and chronic urethritis (n = 21). Results: The bacteriological analysis revealed 9 different types of microorganisms, considered to be the etiological agents, isolated in different secretions, including: urine, expressed prostatic secretions, semen and urethral smears: E. Coli (n = 20), Klebsiella (n = 2), Proteus spp. (n = 1), Enterococcus (n = 20), Staphylococcus spp. (n = 1), M. tuberculosis (n = 2), N. gonorrhea (n = 8), Chlamydia tr. (n = 16) and, Ureaplasma urealyticum (n = 1). The infection group had significantly (p < 0.05) lower: semen volume, alpha-glucosidase, fructose, and zinc in seminal plasma and, higher pH than the control group. None of these parameters was sufficiently accurate in the ROC analysis to discriminate between infected and non- infected men. Conclusion: Proven bacterial infections of the MRT impact negatively on all the accessory gland function parameters evaluated in semen, suggesting impairment of the secretory capacity of the epididymis, seminal vesicles and prostate.
    [Show full text]
  • CUA Guideline: the Workup and Management of Azoospermic Males
    Originalcua guideline research CUA Guideline: The workup and management of azoospermic males Keith Jarvi, MD, FRCSC;* Kirk Lo, MD, FRCSC;* Ethan Grober, MD;* Victor Mak, MD, FRCSC;* Anthony Fischer, MD, FRCSC;¥ John Grantmyre, MD, FRCSC;± Armand Zini, MD, FRCSC;+ Peter Chan, MD, FRCSC;+ Genevieve Patry, MD, FRCSC;£ Victor Chow, MD, FRCSC;§ Trustin Domes, MD, FRCSC# *Department of Urology, Mount Sinai Hospital, University of Toronto, Toronto, ON; ¥Division of Urology, McMaster University, Hamilton, ON; ±Department of Urology, Dalhousie University, Halifax, NS; +Division of Urology, McGill University Health Centre, Montreal, QC; £Hôtel-Dieu De Lévis, Lévis, QC; §Department of Urologic Sciences, University of British Columbia, Vancouver, BC; #Saskatoon Health Region, Saskatoon, SK Cite as: Can Urol Assoc J 2015;9(7-8):229-35. http://dx.doi.org/10.5489/cuaj.3209 A further group of men have a failure to ejaculate. These Published online August 10, 2015. may be men with spinal cord injury, psychogenic failure to ejaculate, or neurological damage (sympathetic nerve committee was established at the request of the damage from, for example, a retroperitoneal lymph node Canadian Urological Association to develop guide- dissection). A lines for the investigation and management of azo- To understand the management of azoospermia, it is ospermia. Members of the committee, all of whom have important to also understand the role of assisted reproduc- special expertise in the investigation and management of tive technologies (ARTs) (i.e., in-vitro fertilization) in the male infertility, were chosen from different communities treatment of azoospermia. Since the 1970s, breakthroughs across Canada. The members represent different practices in the ARTs have allowed us to offer potentially successful in different communities.
    [Show full text]
  • Restoration of Fertility by Gonadotropin Replacement in a Man With
    J Rohayem and others Fertility in hypogonadotropic 170:4 K11–K17 Case Report CAH with TARTs Restoration of fertility by gonadotropin replacement in a man with hypogonadotropic azoospermia and testicular adrenal rest tumors due to untreated simple virilizing congenital adrenal hyperplasia Julia Rohayem1, Frank Tu¨ ttelmann2, Con Mallidis3, Eberhard Nieschlag1,4, Sabine Kliesch1 and Michael Zitzmann1 Correspondence should be addressed 1Center of Reproductive Medicine and Andrology, Clinical Andrology, University of Muenster, Albert-Schweitzer- to J Rohayem Campus 1, Building D11, D-48149 Muenster, Germany, 2Institute of Human Genetics and 3Institute of Reproductive Email and Regenerative Biology, Center of Reproductive Medicine and Andrology, University of Muenster, Muenster, Julia.Rohayem@ Germany and 4Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia ukmuenster.de Abstract Context: Classical congenital adrenal hyperplasia (CAH), a genetic disorder characterized by 21-hydroxylase deficiency, impairs male fertility, if insufficiently treated. Patient: A 30-year-old male was referred to our clinic for endocrine and fertility assessment after undergoing unilateral orchiectomy for a suspected testicular tumor. Histopathological evaluation of the removed testis revealed atrophy and testicular adrenal rest tumors (TARTs) and raised the suspicion of underlying CAH. The remaining testis was also atrophic (5 ml) with minor TARTs. Serum 17-hydroxyprogesterone levels were elevated, cortisol levels were at the lower limit of normal range, and gonadotropins at prepubertal levels, but serum testosterone levels were within the normal adult range. Semen analysis revealed azoospermia. CAH was confirmed by a homozygous mutation g.655A/COG (IVS2-13A/COG) in European Journal of Endocrinology CYP21A2. Hydrocortisone (24 mg/m2) administered to suppress ACTH and adrenal androgen overproduction unmasked deficient testicular testosterone production.
    [Show full text]
  • Male Infertility
    www.livestrong.org.livestrong.org Male Infertility Some male cancer survivors find that they are not able to have children due to the effects of cancer treatment. By identifying your risk for infertility, you can take steps before treatment to preserve your fertility. For survivors who have already completed treatment, there are other options for having children. Male Infertility: Detailed Information This infinformationormation is meant to be a general introduction to this topic. The purpose is to provide a starting point for you to become more informed about important matters that may be affecting your life as a survivor and to provide ideas about steps you can take to learn more. This information is not intended nor should it be interpreted as providing professional medical, legal and financial advice. You should consult a trained professional for more information. Please read the Suggestions (http://www.livestrong.org/Get-Help/Learn-About-Cancer/Cancer-Support-Topics/Physical-Effects-of- Cancer/Male-Infertility#a#a) and Additional Resources (http://www.livestrong.org/Get-Help/Learn- About-Cancer/Cancer-Support-Topics/Physical-Effects-of-Cancer/Male-Infertility#a#a) sections for questions to ask and for more resources. Cancer and treatment may put survivors at risk for infertility. Male infertility generally means an inability to produce healthy sperm or to ejaculate sperm. There are many different causes of infertility in cancer survivors including physical and emotional. Certain treatments can cause or contribute to this condition. It is best to discuss the risks of infertility with your doctor before cancer treatment begins. However, there are options for survivors who experience infertility as a result of cancer or treatment.
    [Show full text]
  • Indications for the Use of Human Chorionic Gonadotropic Hormone for the Management of Infertility in Hypogonadal Men
    352 Review Article Indications for the use of human chorionic gonadotropic hormone for the management of infertility in hypogonadal men John Alden Lee, Ranjith Ramasamy Department of Urology, University of Miami Miller School of Medicine, Miami, FL, USA Contributions: (I) Conception and design: All authors; (II) Administrative support: All authors; (III) Provision of study materials or patients: All authors; (IV) Collection and assembly of data: All authors; (V) Data analysis and interpretation: All authors; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Ranjith Ramasamy, MD. Department of Urology, University of Miami Miller School of Medicine, 1120 NW 14th Street, Room 1560, Miami, FL 33136, USA. Email: [email protected]. Abstract: Hypogonadism among men desiring fertility preservation presents a unique challenge to physicians. Over the past decade the number of younger men with hypogonadism has increased dramatically. These men are often treated with testosterone replacement therapy (TRT) which can result in azoospermia and potentially infertility. Human chorionic gonadotropin (hCG) therapy can help re-establish or maintain spermatogenesis in hypogonadal men. We review the indications, and discuss the current evidence for the role of hCG in men with hypogonadisms. Keywords: Human chorionic gonadotropin (hCG); hypogonadism; testosterone replacement therapy (TRT); hypogonadal hypogonadism; anabolic androgenic steroids (AAS); infertility Submitted Jan 17, 2018. Accepted for publication
    [Show full text]
  • Intracytoplasmic Sperm Injection (ICSI)
    Brian Acacio, M.D. Laguna Niguel Office 27882 Forbes Road Suite #200 Laguna Niguel, CA 92677 Phone: (949) 249-9200 Fax: (949) 249-9203 Mission Viejo Office Bakersfield Office 26800 Crown Valley Parkway Suite, 560 2225 19th Street Mission Viejo, CA 92691 Bakersfield, CA 93301 Tel (949) 249 9200 Tel (661) 326-8066 Fax (949) 249 9203 Fax (661) 843-7706 Intracytoplasmic Sperm Injection (ICSI) The procedure of ICSI involves the direct injection of a single sperm into each egg under direct microscopic vision. The successful performance of ICSI requires a high level of technical expertise. In centers of excellence, when ICSI is employed, the IVF birth rate is unaffected by the presence and severity of male infertility. In fact, even when there is an absence of sperm in the ejaculate such as occurs in cases of Congenital Absence of the Vas deferens; when a man is born without these major sperm collecting ducts; in cases where the vasa deferentia are obstructed (such as follwing vasectomy or trauma), and in some cases of testicular failure or where the man has impotency, ICSI can be performed with sperm obtained through Testicular Sperm Extraction (TESE), or aspiration (TESA). In such cases, the birth rate is usually no different than when IVF is performed for indications other than male infertility. The introduction of ICSI has made it possible to fertilize eggs with sperm derived from men with the severest degrees of male infertility and in the process to achieve pregnancy rates as high, if not higher than that which can be achieved through conventional IVF performed in cases of non- male factor related infertility.
    [Show full text]
  • How to Investigate Azoospermia in Stallions
    NON-PREGNANT MARE AND STALLION How to Investigate Azoospermia in Stallions Terry L. Blanchard, DVM, MS, Diplomate ACT; Steven P. Brinsko, DVM, MS, PhD, Diplomate ACT; Dickson D. Varner, DVM, MS, Diplomate ACT; and Charles C. Love, DVM, PhD, Diplomate ACT Authors’ address: Department of Large Animal Medicine and Surgery, College of Veterinary Medicine, Texas A&M University, College Station, Texas 77843-4475; e-mail: stalliondoc@ gmail.com. © 2009 AAEP. 1. Introduction did not ejaculate.3 A number of reports describe In a review of ejaculatory dysfunction, McDonnell1 therapy indicated for ejaculation failure, but they reported that ϳ25% of stallions referred to a fertility are not the subject of this report. Briefly, they in- clinic had evidence of ejaculatory problems. The clude breeding and/or pharmacological management vast majority of cases were anejaculatory (failure to to increase sexual stimulation before and during the ejaculate). Less than 1% of horses in that survey breeding process, treatment and/or breeding man- were truly azoospermic (i.e., ejaculated seminal flu- agement to minimize potential musculoskeletal pain ids devoid of sperm). Failure to ejaculate sperm that could interrupt the emission and ejaculatory can be a troublesome problem that requires accurate process, and pharmacologic manipulation to lower diagnosis, determination of prognosis for correction the threshold to emission and ejaculation.1–3 Tech- (sometimes necessitating retirement as a breeding niques used to manage repeated ejaculatory failure stallion), and arduous treatment and/or breeding can be arduous and time consuming, and they are management to correct.2,3 Figure 1 represents an reviewed by Varner et al.3 attempt at a schematic overview of an approach to When breeding behavior and apparent ejaculation diagnosis of lack of sperm in ejaculates.
    [Show full text]
  • Effects of Hydrocele on Morphology and Function of Testis
    OriginalReview ArticleArticle Effects of Hydrocele on Morphology and Function of Testis Bader Aldoah1 and Rajendran Ramaswamy2* 1Department of Surgery, University of Najran, Saudi Arabia; 2Department of Pediatric and Neonatal Surgery, Maternity and Children’s Hospital (MCH) (Under Ministry of Health), Najran, Saudi Arabia Corresponding author: Abstract Rajendran Ramaswamy, Department of Pediatric and Neonatal Surgery, Hydrocele is generally believed as innocent. But there is increasing evidence of noxious Maternity and Children’s Hospital influences of hydrocele on testis resulting in morphological, structural and functional (MCH) (Under Ministry of Health), Najran, Saudi Arabia, consequences. These effects are due to increased intrascrotal pressure and higher Tel: +966 536427602; Fax: temperature-exposure of the testis. Increased intrascrotal pressure can cause testicular 0096675293915; E-mail: [email protected] dysmorphism and even testicular atrophy. The testicular dysmorphism is reversible by early hydrocele surgery, but when persist, possibly indicate negative influence on future spermatogenesis. Spermatic cord compression by hydrocele is responsible for testicular volume increase. Such testes lose 15%-21% volume after hydrocele surgery. Tense scrotal hydrocele can cause acute scrotal pain from testicular compartment syndrome, which is relieved by evacuation of hydrocele. Higher resistivity index of subcapsular artery of testis and higher elasticity index of testicular tissue are caused by large hydrocele. As an aftermath, testis suffers ischaemia with long-term effect on spermatogenesis. High pressure of hydrocele along with ischaemia and oedema is found to result in histopathological damage to testis like total/partial arrest of spermatogenesis, small seminiferous tubules, disorganized spermatogenetic cells, basement membrane thickening and low fertilty index in children. Higher temperature exposure of testis interferes with spermatogenesis.
    [Show full text]
  • Aspermia: a Review of Etiology and Treatment Donghua Xie1,2, Boris Klopukh1,2, Guy M Nehrenz1 and Edward Gheiler1,2*
    ISSN: 2469-5742 Xie et al. Int Arch Urol Complic 2017, 3:023 DOI: 10.23937/2469-5742/1510023 Volume 3 | Issue 1 International Archives of Open Access Urology and Complications REVIEW ARTICLE Aspermia: A Review of Etiology and Treatment Donghua Xie1,2, Boris Klopukh1,2, Guy M Nehrenz1 and Edward Gheiler1,2* 1Nova Southeastern University, Fort Lauderdale, USA 2Urological Research Network, Hialeah, USA *Corresponding author: Edward Gheiler, MD, FACS, Urological Research Network, 2140 W. 68th Street, 200 Hialeah, FL 33016, Tel: 305-822-7227, Fax: 305-827-6333, USA, E-mail: [email protected] and obstructive aspermia. Hormonal levels may be Abstract impaired in case of spermatogenesis alteration, which is Aspermia is the complete lack of semen with ejaculation, not necessary for some cases of aspermia. In a study of which is associated with infertility. Many different causes were reported such as infection, congenital disorder, medication, 126 males with aspermia who underwent genitography retrograde ejaculation, iatrogenic aspemia, and so on. The and biopsy of the testes, a correlation was revealed main treatments based on these etiologies include anti-in- between the blood follitropine content and the degree fection, discontinuing medication, artificial inseminization, in- of spermatogenesis inhibition in testicular aspermia. tracytoplasmic sperm injection (ICSI), in vitro fertilization, and reconstructive surgery. Some outcomes were promising even Testosterone excreted in the urine and circulating in though the case number was limited in most studies. For men blood plasma is reduced by more than three times in whose infertility is linked to genetic conditions, it is very difficult cases of testicular aspermia, while the plasma estradiol to predict the potential effects on their offspring.
    [Show full text]
  • EAU Guidelines on Male Infertility$ W
    European Urology European Urology 42 (2002) 313±322 EAU Guidelines on Male Infertility$ W. Weidnera,*, G.M. Colpib, T.B. Hargreavec, G.K. Pappd, J.M. Pomerole, The EAU Working Group on Male Infertility aKlinik und Poliklinik fuÈr Urologie und Kinderurologie, Giessen, Germany bOspedale San Paolo, Polo Universitario, Milan, Italy cWestern General Hospital, Edinburgh, Scotland, UK dSemmelweis University Budapest, Budapest, Hungary eFundacio Puigvert, Barcelona, Spain Accepted 3 July 2002 Keywords: Male infertility; Azoospermia; Oligozoospermia; Vasectomy; Refertilisation; Varicocele; Hypogo- nadism; Urogenital infections; Genetic disorders 1. Andrological investigations and 2.1. Treatment spermatology A wide variety of empiric drug approaches have been tried (Table 1). Assisted reproductive techniques, Ejaculate analysis and the assessment of andrological such as intrauterine insemination, in vitro fertilisation status have been standardised by the World Health (IVF) and intracytoplasmic sperm injection (ICSI) are Organisation (WHO). Advanced diagnostic spermato- also used. However, the effect of any infertility treat- logical tests (computer-assisted sperm analysis (CASA), ment must be weighed against the likelihood of spon- acrosome reaction tests, zona-free hamster egg penetra- taneous conception. In untreated infertile couples, the tion tests, sperm-zona pellucida bindings tests) may be prediction scores for live births are 62% to 76%. necessary in certain diagnostic situations [1,2]. Furthermore, the scienti®c evidence for empirical approaches is low. Criteria for the analysis of all therapeutic trials have been re-evaluated. There is 2. Idiopathic oligoasthenoteratozoospermia consensus that only randomised controlled trials, with `pregnancy' as the outcome parameter, can accepted Most men presenting with infertility are found to for ef®cacy analysis. have idiopathic oligoasthenoteratozoospermia (OAT).
    [Show full text]
  • Evaluation Prior to Sperm Retrieval
    Medical Economics 10.14.03 16:17 Date Relevance Search Advanstar Medical Economics Magazines | Search Tips Contemporary OB/GYN® Archive April 15, 1997 Sperm retrieval for assisted reproductive technologies Jump Choose article section... Go to: Ejaculated or surgically retrieved spermatozoa, including immature sperm retrieved from the epididymis and testis, may be used for intracytoplasmic sperm injection. By Yefim Sheynkin, MD, Peter N. Schlegel, MD One in every six married couples in the US will seek medical evaluation for assistance with fertility, and in up to 50% of couples a male factor is identified. The most severe expression of male factor infertility is azoospermia, where no sperm are present in the ejaculate. Causes of azoospermia include congenital and acquired reproductive tract obstruction as well as spermatogenic failure. Less than a decade ago, patients with azoospermia were often unable to be successfully treated. Since the introduction of intracytoplasmic sperm injection, treatment of most men with azoospermia can now be considered for treatment, even if the azoospermia is caused by testicular failure. 1 2 Intracytoplasmic sperm injection (ICSI), a technique performed as part of an in vitro fertilization (IVF) cycle, has revolutionized the treatment of severe male factor infertility. ICSI involves the injection of a single sperm into each oocyte, in vitro, during an IVF cycle. ICSI essentially bypasses all natural barriers to fertilization, such as sperm interaction with the zona pellucida and sperm-egg fusion. As long as there is sperm viability, fertilization rates with ICSI will be comparable with those achieved during IVF with normal spermatozoa. Subsequent pregnancy rates then depend primarily on female factors, emphasizing the tremendous value of ICSI in overriding specific sperm defects that heretofore may have limited treatment of severe male factor infertility.
    [Show full text]
  • Androgen Signaling in Sertoli Cells Lavinia Vija
    Androgen Signaling in Sertoli Cells Lavinia Vija To cite this version: Lavinia Vija. Androgen Signaling in Sertoli Cells. Human health and pathology. Université Paris Sud - Paris XI, 2014. English. NNT : 2014PA11T031. tel-01079444 HAL Id: tel-01079444 https://tel.archives-ouvertes.fr/tel-01079444 Submitted on 2 Nov 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE PARIS-SUD ÉCOLE DOCTORALE : Signalisation et Réseaux Intégratifs en Biologie Laboratoire Récepteurs Stéroïdiens, Physiopathologie Endocrinienne et Métabolique Reproduction et Développement THÈSE DE DOCTORAT Soutenue le 09/07/2014 par Lavinia Magdalena VIJA SIGNALISATION ANDROGÉNIQUE DANS LES CELLULES DE SERTOLI Directeur de thèse : Jacques YOUNG Professeur (Université Paris Sud) Composition du jury : Président du jury : Michael SCHUMACHER DR1 (Université Paris Sud) Rapporteurs : Serge LUMBROSO Professeur (Université Montpellier I) Mohamed BENAHMED DR1 (INSERM U1065, Université Nice)) Examinateurs : Nathalie CHABBERT-BUFFET Professeur (Université Pierre et Marie Curie) Gabriel
    [Show full text]