Steven Kealey

Total Page:16

File Type:pdf, Size:1020Kb

Steven Kealey Synthesis and Coordination Chemistry of Scorpionate Ligands and their Applications in 11C—Positron Emission Tomography Steven Kealey Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy Supervisor: Prof. N. J. Long Department of Chemistry Imperial College London April 2008 STATEMENT OF COPYRIGHT The copyright of this thesis rests with the author. No quotation from it should be published without the prior written consent of the author and information derived from it should be acknowledged appropriately. DECLARATION The work described in this thesis was carried out in the Department of Chemistry, Imperial College London, between October 2004 and December 2007. The entire body of work is my own unless otherwise stated to the contrary and has not been submitted previously for a degree at this or any other university. i ABSTRACT This thesis is concerned with the synthesis and coordination chemistry of a range of poly(pyrazolyl)borate scorpionate' ligands and examines their suitability in facilitating rapid [11C]carbonylation reactions to form radiotracers for application in positron emission tomography (PET). The synthesis of a series of tris(pyrazolyl)borate (Tp) ligands and their corresponding copper(I) carbonyl complexes is described. The copper(I) carbonyls were formed by reaction of potassium Tp salts with copper chloride in the presence of carbon monoxide. The second part of this thesis concerns the use of a copper(I)-Tp system for selectively solubilising "CO from nitrogen-rich gas streams for subsequent use in palladium-catalysed carbonylation reactions between amines and aryl-halides to form amides. These reactions were performed on a microfluidic device and in Schlenk apparatus using unlabelled carbon monoxide. These reactions were transferred to the radiochemical laboratory whereby efficient "CO trapping was observed prior to the formation of 11C-radiolabelled amides. The third part of this thesis explores the coordination chemistry of palladium(II) towards a novel hybrid ligand consisting of pyrazolyl and triphenylphosphine moieties. The potential hemilabile behaviour of this ligand and its derivatives towards palladium was investigated and the use of these complexes as catalysts for carbonylation reactions is described. The final part of this thesis examines the coordination chemistry of poly(pyrazolyl)borates bearing additional coordinating groups appended to the 3- or 5-position of the pyrazolyl rings. Reactions of the 3-substituted derivatives were carried out with a range of metals and found to display varied coordination behaviour depending on the specific coordination requirements of the metal. ii PUBLICATIONS Publications resulting from this work are listed below and are reproduced in full in the appendix (Chapter 8). Variable Coordination Behaviour of Pyrazole-Containing N,P and N,P(0) Ligands Towards Palladium(H), Steven Kealey, Nicholas J. Long, Philip W. Miller, Andrew J. P. White, Peter B. Hitchcock, Antony D. Gee. Dalton Transactions, 2007, 2823. A Novel Tetrakis(pyrazolyl)borate Ligand Bearing Triphenylphosphine Oxide Substituents, Steven Kealey, Nicholas J. Long, Andrew J. P. White and Antony D. Gee. Dalton Transactions, 2007, 4763. ScorpoPhos: A Novel Phosphine-Nitrogen Ligand Containing a Tris(pyrazolyl)borate Ligand Core, Steven Kealey, Nicholas J. Long, Philip W. Miller, Andrew J. P. White and Antony D. Gee. Dalton Transactions, 2008, 2677. iii ABBREVIATIONS A angstrom, 1040 m AD Alzheimer's disease ADME absorption, distribution, metabolism and excretion AIBN azobis(isobutyronitrile) Ani anilinyl Ar aryl Bp bis(pyrazolyl)borate Bp* bis(3,5-dimethyl(pyrazoly1))borate Bq Becquerel (one disintegration per second) tBu tert-butyl, C(CH3)3 COD 1,5-cyclooctadiene CORM CO-releasing molecule CT computed tomography DCEA bis(2-cyanoethyl)amine DCM dichloromethane DRIFT diffuse reflectance infrared fourier transformation DMA-DMA dimethylacetamide dimethylacetal DMF dimethylformamide DMF-DMA dimethylformamide dimethylacetal DMSO dimethylsulphoxide dppp 1 ,3 -bi s (diphenylpho sphino)prop ane EGDMA ethylene glycol dimethacrylate EI electron ionization EOB end of bombardment ESI electrospray ionisation Et ethyl, CH2CH3 eV electron volt FAB fast atom bombardment FDG fluoro-2-deoxy-D-glucose GC gas chromatography HOMO highest occupied molecular orbital HPLC high performance liquid chromatography iv IR infra red 'Pr iso-propyl, CH(CH3)2 1 litre L ligand LUMO lowest unoccupied molecular orbital M metal Me methyl, CH3 MeCN acetonitrile MLCT metal to ligand charge transfer MO molecular orbital MRI magnetic resonance imaging m/z mass to charge ratio NMR nuclear magnetic resonance s singlet d doublet dd double doublet t triplet Hz hertz 8 chemical shift ppm parts per million OAc acetate, CH3C00" PET positron emission tomography Ph phenyl Py pyridyl pz pyrazolyl TACN 1,4-diisopropy1-1,4,7-triazacyclononane THE tetrahydrofuran Tim tris(imidazole-2-ylidene)borate TMPA tris(2-pyridylmethyl)amine Tp tris(pyrazolyl)borate Tp* tris(3,5-dimethyl(pyrazoly1))borate Tkp tetrakis(pyrazolyl)borate UV-vis ultra violet-visible vibrational frequency, cm-1 ACKNOWLEDGEMENTS Probably the most challenging aspect of any thesis is to construct an acknowledgements section that is not overwhelmingly cringe-worthy when re-read in years to come. Having failed at this in less than two lines I shall carry on regardless. Firstly, I would like to thank my supervisors Nick and Tony who have provided me with so much support throughout my project and for allowing me to work with a fantastic amount of freedom. Thanks to Nick and Phil for putting up with my constant knocking on their doors to provide the tiniest update on the progress of any given reaction. My thanks to Phil especially for so much help with syntheses and for those countless discussions which usually started with 'I think you should try making...'. Sometimes I did, and sometimes it worked, so for that, I am most grateful. Obviously I'd like to thank all the members of the Long group, past and present, whom I have been most fortunate to work with, and go to the Holland Club with, over the years. I'm very grateful to GSK, EPSRC and the Department of Chemistry for providing funding for my project. Within the chemistry department I would like to thank Dick and especially Pete for going above-and-beyond their duties in helping me with all matters NMR. Thanks to Andrew White for X-ray analysis of my compounds, without which my thesis would be substantially barer. I am also grateful to John Barton and Stephen Boyer for mass spectrometry and elemental analysis. Outside the department there are so many people who have made my last few years in London so enjoyable that I can't possibly name them all — In my head I am very grateful to you. More specifically, I would like to thank my housemates of years gone by, especially Mark, Dan and Dom for so many good laughs and probably an equal number of unaccountable headaches the next day. I would like to thank my family for being brilliant all of the time and for coming to visit me, taking me to concerts and buying me dinner. Finally, and this almost goes without saying, thank you Sophie for being so loving and supportive and managing to do so even when sharing the same living space as me. I feel extremely lucky. vi TABLE OF CONTENTS Declaration i Abstract ii Publications iii Abbreviations iv Acknowledgements vi 1. Introduction 1 1.1 Positron Emission Tomography 2 1.1.1 Positron Emitting Isotopes 4 1.1.2 Applications of PET 5 1.1.3 "C-Radiolabelling 9 1.2 Carbon Monoxide 10 1.2.1 [11C]Carbon Monoxide as a Reagent 10 1.2.2 Palladium—Mediated [11C] Carbonyl ations 11 1.2.3 Alternative [11C]Carbonylation Methods 17 1.2.4 Coordination Chemistry of Carbon Monoxide 18 1.2.5 Metal Carbonyl Complexes in Nature 19 1.3 Copper(I) Carbonyl Complexes 25 1.3.1 Background 25 1.3.2 No Supporting Ligand 27 1.3.3 Bidentate Ligands 28 1.3.4 Tridentate Ligands 30 1.3.5 Flexible Tetradentate Ligands 31 1.3.6 Macrocyclic Tetradentate Ligands 34 1.3.7 Immobilized Copper(I) Complexes 35 1.3.8 Summary 37 1.4 Poly(pyrazolyl)borate Ligands 37 1.4.1 Background 37 1.4.2 Features 38 1.4.3 Naming of Scorpionates 39 1.4.4 Tris(pyrazolyl)borates 40 1.4.5 Tp-Supported Copper Carbonyls 41 vii 1.4.6 Applications of Tp Ligands 43 1.5 Research Objectives 45 1.6 References 46 2. Synthesis and Copper Coordination Chemistry of Scorpionate Ligands 51 2.1 Synthesis of Known Scorpionates 53 2.1.1 Tris(pyrazolyl)borates 53 2.1.2 Bis(pyrazolyl)borates 55 2.2 Synthesis of Novel Tp Ligands 56 2.2.1 Background 56 2.2.2 Attempted Synthesis of Alkoxy-Substituted Tp 57 2.2.3 Synthesis of Methylthio-Substituted Tp 59 2.2.4 Summary 65 2.3 Synthesis of Copper Carbonyls 66 2.3.1 Synthesis of CuTpCO (2.10) 67 2.3.2 Synthesis of CuTp*CO (2.11) 68 2.3.3 Synthesis of Cu[TpPh'sme]C0 (2.12) 69 2.3.4 Summary of Carbonyls 74 2.4 Rapid Carbonylation Reactions 75 2.4.1 Background 75 2.4.2 Rapid Carbonylation with Tp* 75 2.5 CO Displacement Reactions 77 2.5.1 Decarbonylation of CuTp*C0 78 2.5.2 Decarbonylation of Cu[TpPh'smeiC0 80 2.5.3 Summary 81 2.6 Future Work 81 2.6.1 Novel Electron-Rich Tps 81 2.6.2 Carbene Chemistry 83 2.6.3 UV-Triggered Decarbonylation 84 2.7 References 85 3. Palladium-Mediated Carbonylation Reactions 87 3.1 "CO Trapping Reactions 88 3.1.1 Background 88 viii 3.1.2 Reaction Setup 90 3.1.3 Calculations 91 3.1.4 Results and Discussion 92 3.2 'Cold' Amide Syntheses 93 3.2.1 Background 93 3.2.2 Microfluidic Reactions 94 3.2.3 Schlenk Reactions 98 3.2.4 Carbonylation Summary 100 3.3 'Hot' Amide Syntheses 101 3.3.1 Reaction Setup 101 3.3.2 Results and Discussion 102 3.3.3 Summary 105 3.4 Future Work 107 3.4.1 [11C]Carbonylations 107 3.5 References 108 4.
Recommended publications
  • Heavier Group 2 Metal Complexes with a Flexible Scorpionate
    RSC Advances View Article Online PAPER View Journal | View Issue Heavier group 2 metal complexes with a flexible scorpionate ligand based on 2-mercaptopyridine† Cite this: RSC Adv.,2015,5,51413 Kishor Naktode,a Th. Dhileep N. Reddy,a Hari Pada Nayek,b Bhabani S. Mallik*a and Tarun K. Panda*a 2 We report the synthesis of novel alkaline earth metal complexes [k -SS-(Bmp)2M(THF)n][M¼ Ca (2), Sr (3) n ¼ 2; M ¼ Ba (4), n ¼ 3] of a flexible dihydrobis(2-thiopyridone)borate (Bmp) ligand based on 2- mercaptopyridine. Complexes 2–4 were isolated in good yield by the reaction between sodium dihydrobis(2-thiopyridone)borate, [{(Bmp)Na(THF)}2]n (1) and the corresponding alkaline earth metal diiodides in toluene at ambient temperature. The solid-state structures of the strontium and barium complexes, complexes 3 and 4 respectively, were established using single-crystal X-ray diffraction analysis. The solid-state structure of sodium complex 1 was also confirmed using X-ray techniques. The solid-state structures of complexes 3 and 4 revealed that the Bmp ligand coordinates through sulphur atoms to the metal ions in k2 fashion. The strontium ion is attached symmetrically and the barium ion is Creative Commons Attribution 3.0 Unported Licence. asymmetrically linked with the Bmp ligand, manifesting the 2-thiopyridone and pyridine-2-thiolate tautomeric form of the Bmp ligand. The strontium ion in complex 3 adopts a distorted octahedral geometry whereas the geometry around the barium ion can best be described as a distorted pentagonal Received 17th March 2015 bipyramidal.
    [Show full text]
  • Complexes Of
    www.nature.com/scientificreports OPEN Heteroleptic Copper(I) Complexes of “Scorpionate” Bis-pyrazolyl Carboxylate Ligand with Auxiliary Received: 13 December 2016 Accepted: 21 February 2017 Phosphine as Potential Anticancer Published: 24 March 2017 Agents: An Insight into Cytotoxic Mode Rais Ahmad Khan1, Mohammad Usman2, Rajakumar Dhivya3, Perumalsamy Balaji3, Ali Alsalme1, Hamad AlLohedan1,4, Farukh Arjmand2, Khalid AlFarhan1, Mohammad Abdulkader Akbarsha3, Fabio Marchetti5, Claudio Pettinari5 & Sartaj Tabassum1,2,4 New copper(I) complexes [CuCl(PPh3)(L)] (1: L = LA = 4-carboxyphenyl)bis(3,5-dimethylpyrazolyl) methane; (2: L = LB = 3-carboxyphenyl)bis(3,5-dimethylpyrazolyl)methane) were prepared and characterised by elemental analysis and various spectroscopic techniques such as FT-IR, NMR, UV–Vis, and ESI-MS. The molecular structures of complexes 1 and 2 were analyzed by theoretical B3LYP/DFT method. Furthermore, in vitro DNA binding studies were carried out to check the ability of complexes 1 and 2 to interact with native calf thymus DNA (CT-DNA) using absorption titration, fluorescence quenching and circular dichroism, which is indicative of more avid binding of the complex 1. Moreover, DNA mobility assay was also conducted to study the concentration-dependent cleavage pattern of pBR322 DNA by complex 1, and the role of ROS species to have a mechanistic insight on the cleavage pattern, which ascertained substantial roles by both hydrolytic and oxidative pathways. Additionally, we analyzed the potential of the interaction of complex 1 with DNA and enzyme (Topo I and II) with the aid of molecular modeling. Furthermore, cytotoxic activity of complex 1 was tested against HepG2 cancer cell lines.
    [Show full text]
  • Reversible Metalation and Catalysis with a Scorpionate-Like Metallo- Ligand in a Metal−Organic Framework Chenyue Sun, Grigorii Skorupskii, Jin-Hu Dou, Ashley M
    Communication Cite This: J. Am. Chem. Soc. 2018, 140, 17394−17398 pubs.acs.org/JACS Reversible Metalation and Catalysis with a Scorpionate-like Metallo- ligand in a Metal−Organic Framework Chenyue Sun, Grigorii Skorupskii, Jin-Hu Dou, Ashley M. Wright, and Mircea Dinca*̆ Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States *S Supporting Information these supports makes any attempts to understand and control − ABSTRACT: The installation of metallo-ligands in the active site difficult.12 16 metal−organic frameworks (MOFs) is an effective One class of hybrid solids that provide exceptional structural means to create site-isolated metal centers toward uniformity are metal−organic frameworks (MOFs).17 These single-site heterogeneous catalysis. Although trispyrazoly- materials’ ability to preserve a molecule-like coordination borate (Tp) and tripyrazolylmethane (Tpm) form one of environment in a rigid and well-defined solid is highlighted by the most iconic classes of homogeneous catalysts, neither their utility as single-site heterogeneous catalysts18,19 and as has been used as a metallo-ligand for the generation of catalyst promoters.20 The anionic Tp itself is mimicked by the MOFs thus far. Here, we show that upon in situ coordination environment of secondary building units (SBUs) I metalation with Cu , a tricarboxylated Tpm ligand reacts of a series of azolate-based MOFs.21,22 Metal substitution at 23,24 with ZrOCl2 to generate a new MOF exhibiting neutral these SBUs provided heterogeneous catalysts for a range of scorpionate-like chelating sites. These sites undergo for processes including ethylene oligomerization, polymerization, − facile demetalation and remetalation with retention of and C−H amination.25 27 It is harder, however, to devise or I crystallinity and porosity.
    [Show full text]
  • Strong Agostic-Type Interactions in Ruthenium Benzylidene Complexes Containing 7-Azaindole Based Scorpionate Ligands
    Strong agostic-type interactions in ruthenium benzylidene complexes containing 7-azaindole based scorpionate ligands TSOUREAS, Nikolaos, NUNN, Joshua, BEVIS, Thomas, HADDOW, Mairi F., HAMILTON, Alex and OWEN, Gareth R. Available from Sheffield Hallam University Research Archive (SHURA) at: http://shura.shu.ac.uk/9925/ This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it. Published version TSOUREAS, Nikolaos, NUNN, Joshua, BEVIS, Thomas, HADDOW, Mairi F., HAMILTON, Alex and OWEN, Gareth R. (2011). Strong agostic-type interactions in ruthenium benzylidene complexes containing 7-azaindole based scorpionate ligands. Dalton Transactions, 40 (4), 951-958. Copyright and re-use policy See http://shura.shu.ac.uk/information.html Sheffield Hallam University Research Archive http://shura.shu.ac.uk View Article Online / Journal Homepage / Table of Contents for this issue Dalton Dynamic Article Links Transactions Cite this: Dalton Trans., 2011, 40, 951 www.rsc.org/dalton PAPER Strong agostic-type interactions in ruthenium benzylidene complexes containing 7-azaindole based scorpionate ligands† Nikolaos Tsoureas, Joshua Nunn, Thomas Bevis, Mairi F. Haddow, Alex Hamilton and Gareth R. Owen*‡ Received 1st September 2010, Accepted 5th November 2010 DOI: 10.1039/c0dt01148g Ph The complexes [Ru(Tai)Cl{=C(H)Ph}(PCy3)] (4) and [Ru( Bai)Cl{=C(H)Ph}(PCy3)] (5)[whereTai = Ph HB(7-azaindolyl)3 and Bai = Ph(H)B(7-azaindolyl)2] have been prepared and structurally characterised. The borohydride unit is located in the coordination site trans to the chloride ligand in both complexes. The degree of interaction between the borohydride group and the metal centre was found to be significantly large in both cases.
    [Show full text]
  • Joshua Telser Curriculum Vitae
    JOSHUA TELSER CURRICULUM VITAE Department of Biological, Physical, and Health Sciences voice: 1 312 341 3687 Roosevelt University fax: 1 312 341 4358 430 S. Michigan Ave. E-mail: [email protected] Chicago, IL 60605-1394 USA Website: http://blogs.roosevelt.edu/jtelser/ EDUCATION: Northwestern University, Evanston, IL; USPHS/NIH Postdoctoral Fellow, September 1984 – September 1986. Postdoctoral advisor: Prof. Brian M. Hoffman. University of Florida, Gainesville, FL; Ph.D. in Inorganic Chemistry, December 1984. University of Illinois, Urbana, IL; graduate student in Inorganic Chemistry, 1980 – 1983. Thesis advisor: Prof. Russell S. Drago (deceased). Cornell University, Ithaca, NY; A.B. in Chemistry (with distinction), May 1980. WORK EXPERIENCE: 9/95 – present: Associate Professor of Chemistry, Roosevelt University, Chicago/Schaumburg, IL; Chemistry Program Coordinator, 1998 – 2000. Assistant Chair, Department of Biological, Chemical and Physical Sciences, 2005 – 2012; 2016 – 2018; Assistant Chair, Department of Biological, Physical, and Health Sciences, 2018 – present. 9/90 – 9/95: Assistant Professor of Chemistry. Taught General Chemistry I and II (CHEM 201, 202), Organic Chemistry Survey (CHEM 210), Inorganic Chemistry (CHEM 341/441), Organometallic Chemistry (CHEM 319/419), Bioinorganic Chemistry (BCHM/CHEM 344/444), and Analytical, Organic, Inorganic, and Physical Chemistry Laboratory courses (CHEM 203, 210, 347, 325), Chemistry Seminar (CHEM 393/493). Research in paramagnetic resonance and magnetic properties of inorganic and biological systems. 9/89 – 9/90: Research Associate, Department of Biochemistry, University of Chicago, Chicago, IL. Research on enzyme catalysis using nitroxide spin-labeled substrates and vanadyl-nucleotide complexes. 4/88 – 9/89: Research Investigator, Contrast Media Department, Squibb Institute for Medical Research, New Brunswick, NJ.
    [Show full text]
  • Tris(Pyrazolyl)Borate-Containing Complexes of Ruthenium and Tungsten As Covalent Labels for Biomolecules
    Tris(pyrazolyl)borate-containing Complexes of Ruthenium and Tungsten as Covalent Labels for Biomolecules Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften der Fakultät für Chemie und Biochemie der Ruhr-Universität Bochum vorgelegt von Master of Science (M. Sc.) Johannes Zagermann Bochum, Januar 2011 Diese Arbeit wurde von November 2007 bis Januar 2011 am Lehrstuhl für Anorganische Chemie I der Ruhr-Universität Bochum angefertigt. Referent: Prof. Dr. Nils Metzler-Nolte Koreferent: Prof. Dr. William S. Sheldrick Meiner Familie und Janine You live and learn. At any rate, you live. Douglas Adams ACKNOWLEDGEMENTS Ich bedanke mich herzlichst bei: Nils Metzler-Nolte für die Vergabe eines vielseitigen und interessanten Themas, den Freiraum und die Unterstützung bei der Erstellung dieser Arbeit und die Erfindung von Nils@Nine, Matt Kuchta for introducing me to the world of scorpionates and the CalTex life-style, Klaus Merz und Mariusz Molon für die Lösung und Deutung der Kristallstrukturen, Johanna Niesel für späte CV- und ESI-Messungen und die Kultur in Büro und Stadion, Andrea Ewald für ESI-Messungen und Fußballfachgespräche, Bauke Albada für Hilfe bei der HPLC und „zijn vriendschap“, Christian Gemel für aufschlussreiche Diskussionen und Anregungen zur [TpRu]-Chemie, Kathrin Klein für ihre Mitarbeit und die Ergebnisse ihrer Bachelor-Arbeit, Max Lieb und Malay Patra für ihre Zeit nicht nur am Montagmorgen, Nina, Jessica, Maya, Andrea G. und Jan für die entspannte Atmosphäre im „Kopflabor rechts“ und das Ertragen meiner Musik, Gregor Barchan, Martin Gartmann und Hans-Jochen Hauswald für Hilfe und Antworten rund ums NMR, Jochen Lügger und Gerd Bollmann für „gelebten Ruhrpott“ und Beistand in technischen Fragen, Kerstin Brauner und Veronika Hiltenkamp für Elementaranalysen, allen Mitarbeitern der AC I für die gute Zusammenarbeit und unterhaltsame außeruniversitäre Aktivitäten, meinem Freundeskreis für ein Leben außerhalb der Chemie, sowie den Jungs von milhaven für unvergessliche Momente und Melodien.
    [Show full text]
  • Adding to the Family of Copper Complexes Featuring Borohydride Ligands Based on 2-Mercaptopyridyl Units
    inorganics Article Adding to the Family of Copper Complexes Featuring Borohydride Ligands Based on 2-Mercaptopyridyl Units Joseph Goldsworthy 1, Simon D. Thomas 1 , Graham J. Tizzard 2 , Simon J. Coles 2 and Gareth R. Owen 1,* 1 School of Applied Sciences, University of South Wales, Pontypridd CF37 4AT, UK 2 UK National Crystallography Service, University of Southampton, Highfield, Southampton SO17 1BJ, UK * Correspondence: [email protected]; Tel.: +44-1443-65-4527 Received: 13 June 2019; Accepted: 19 July 2019; Published: 24 July 2019 Abstract: Borohydride ligands featuring multiple pendant donor functionalities have been prevalent in the chemical literature for many decades now. More recent times has seen their development into new families of so-called soft scorpionates, for example, those featuring sulfur based donors. Despite all of these developments, those ligands containing just one pendant group are rare. This article explores one ligand family based on the 2-mercaptopyridine heterocycle. The coordination chemistry of the monosubstituted ligand, [H3B(mp)]− (mp = 2-mercaptopyridyl), has been explored. (I) Reaction of Na[BH3(mp)] with one equivalent of Cu Cl in the presence of either triphenylphosphine or tricyclohexylphosphine co-ligands leads to the formation of [Cu{H3B(mp)}(PR3)] (R = Ph, 1; Cy, 2), respectively. Structural characterization confirms a κ3-S,H,H coordination mode for the borohydride-based ligand within 1 and 2, involving a dihydroborate bridging interaction (BH2Cu) with the copper centers. Keywords: scorpionate; copper; borohydride; ligand; sulfur 1. Introduction The coordination chemistry of borohydride and substituted borohydride units with transition metals has been a major focus of research over many decades now [1–9].
    [Show full text]
  • Investigations Into Dianionic Scopionate Ligands and Their Metal Complexes
    Investigations into dianionic scopionate ligands and their metal complexes by Elizabeth Nicole Cooper B.S., Fort Hays State University, 2017 A THESIS submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Chemistry College of Arts and Sciences KANSAS STATE UNIVERSITY Manhattan, Kansas 2021 Approved by: Major Professor Peter E. Sues Copyright © Elizabeth Cooper 2021. Abstract Ligand design helps to define reactivity in coordination complexes and organometallic chemistry. Ligand characteristics greatly influence the reactivity of transition metal complexes and simple changes in the steric or electronic properties of a ligand can drastically affect the activity and selectivity of a catalyst. Scorpionate ligands are an easily tunable and display flexible binding modes in that they can act as bidentate or tridentate donors. In literature scorpionate ligands with charged donors are underrepresented and this is an area with great potential to explore and discover new organometallic complexes with novel reactivity. Inspired by scorpionate ligands and phenolate ligands throughout the literature, a set of eight neutral ligands were synthesized and utilized in the generation of metal complexes. These novel ligands were diphenolate ligands with a nitrogen or oxygen containing tail. The steric hinderance of these structures was varied using the ortho substituents on the phenol groups. The various tails also allowed the binding strength of the ligands to be varied. Studies on the activity of the complexes bearing these scorpionate ligands were performed. The effect of the steric size of the ligands as well as binding strength of the tail were investigated. Table of Contents List of Figures ...............................................................................................................................
    [Show full text]
  • Rhodium and Iridium Complexes with a New Scorpionate Phosphane
    Rhodium and Iridium Complexes with a New Scorpionate Phosphane Ligand Angel L. Serrano, Miguel A. Casado,* José A. López, and Cristina Tejel* Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC – Universidad de Zaragoza, Departamento de Química Inorgánica, Pedro Cerbuna 12, 50009-Zaragoza (Spain) Dedicated to Prof. Dr. Antonio Laguna on the occasion of his 65th birthday 1 Abstract. A straightforward synthesis of a new hybrid scorpionate ligand [(allyl)2B(CH2PPh2)(Pz)] ([A2BPN] ) is reported. Coordination to rhodium resulted in square- 2 t planar complexes [Rh( -A2BPN)(L)(L’)] (L = L’= ½ cod (1,5-cyclooctadiene), CN Bu, CO (6); L = CO, L’ = NH3, pyridine, PPh3, PMe3) for which spectroscopic data and the molecular 2 structure of [Rh( -A2BPN)(CO)PPh3] (11) indicate the ligand to be κN,κP-bound to rhodium with two dangling free allyl groups. Studies in solution point out that the six-membered metallacycle undergoes a fast inversion in all of them. The bis(carbonyl) complex 6 easily loses a CO group to give [{Rh(A2BPN)(CO)}2], a dinuclear compound in which two mononuclear subunits are brought together by two bridging allyl groups. Coordination to iridium is dominated by a tripodal κN,κP, 2-C=C binding mode in the TBPY-5 3 t complexes [Ir( -A2BPN)(L)(L’)] (L = L’ = ½ cod (3), CN Bu (5), CO (7); L = CO, L’ = PPh3 (13), PMe3 (14), H2C=CH2, (17), MeO2CC≡CCO2Me (dmad, 18)), as confirmed by the single- crystal structure determination of complexes 3 and 18. A fast exchange between the two allyl arms is observed for complexes having L = L’ (3, 5, and 7), while those having CO and L ligands (14, 17 and 18) were found to be non-fluxional species.
    [Show full text]
  • Syntheses and Characterization of a New Cyano-Substituted Bis(Pyrazolyl)Borate and Its Thallium (I) Complex" (2016)
    East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 12-2016 Syntheses and Characterization of a New Cyano- Substituted Bis(pyrazolyl)borate and its Thallium (I) Complex Chris Acquah East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Recommended Citation Acquah, Chris, "Syntheses and Characterization of a New Cyano-Substituted Bis(pyrazolyl)borate and its Thallium (I) Complex" (2016). Electronic Theses and Dissertations. Paper 3141. https://dc.etsu.edu/etd/3141 This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Syntheses and Characterization of a New Cyano-Substituted Bis(pyrazolyl)borate and its Thallium (I) Complex ________________________ A thesis presented to the faculty of the Department of Chemistry East Tennessee State University In partial fulfilment of the requirements for the degree Master of Science in Chemistry ________________________ by Chris Acquah December 2016 ________________________ Dr. Ismail O. Kady, Chair Dr. Cassandra Eagle Dr. Abbas G. Shilabin Keywords: Cyanoscorpionates, Bis pyrazole, Poly(pyrazolyl)borate ABSTRACT Syntheses and Characterization of a New Cyano-Substituted Bis(pyrazolyl)borate and its Thallium (I) Complex by Chris Acquah Scorpionates are versatile and flexible ligands with a wide range of applications including catalysis, C-H bond activation, formation of new class of materials, and mimicking enzymatic reactions. This is as a result of its steric and electronic properties, and due to the relative ease with which the 3, and 5-positions of the pyrazole ring can be functionalized.
    [Show full text]
  • Open-Shell Coordination Compounds Based on Cyanide and Scorpionate Ligands Delphine Garnier
    Open-shell Coordination Compounds based on Cyanide and Scorpionate Ligands Delphine Garnier To cite this version: Delphine Garnier. Open-shell Coordination Compounds based on Cyanide and Scorpionate Ligands. Material chemistry. Université Pierre et Marie Curie - Paris VI; Karlsruher Institut für Technologie, 2015. English. NNT : 2015PA066296. tel-01560790 HAL Id: tel-01560790 https://tel.archives-ouvertes.fr/tel-01560790 Submitted on 12 Jul 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université Pierre et Marie Curie Karlsruhe Institute of Technology ED 406 Institut Parisien de Chimie Moleculaire (IPCM) – UMR 8232 Equipe ERMMES Open-shell Coordination Compounds based on Cyanide and Scorpionate Ligands Par Delphine Garnier Thèse de doctorat de Chimie Moléculaire Dirigée par Prof. Dr. Frank Breher et Prof. Dr. Rodrigue Lescouëzec Présentée et soutenue publiquement le 10/07/15 Devant un jury composé de : Prof. Dr. Frank Breher Prof. Dr. Rodrigue Lescouëzec Dr. Cyril Ollivier Prof. Dr. Rolf Schuster Prof. Dr. Jan Paradies This work was produced between October 2011 and June 2015 at the Institute of Inorganic Chemistry of Karlsruhe Institute of Technology (KIT, Karlsruhe, Germany) under the supervision of Prof. Dr. Frank Breher and at the Institut Parisien de Chimie Moléculaire (IPCM) – UMR 8232 – ERMMES work group (University Pierre and Marie Curie, Paris, France) under the supervision of Prof.
    [Show full text]
  • Research 1..7
    Article pubs.acs.org/IC Synthesis and Characterization of Ferrocene-Chelating Heteroscorpionate Complexes of Nickel(II) and Zinc(II) Mark Abubekerov and Paula L. Diaconescu* Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States *S Supporting Information ABSTRACT: The first example of a ferrocene-chelating heteroscorpionate, [Li(THF)2][fc(PPh2)(BH[(3,5- P,B ′ Me)2pz]2)] ((fc )Li(THF)2,fc=1,1-ferrocenediyl) is described. Starting from a previously reported compound, fcBr(PPh2), a series of ferrocene derivatives, fc(PPh2)(B- [OMe]2), [Li(OEt2)][fc(PPh2)(BH3)], [Li(THF)2][fc(PPh2)- (BH[(3,5-Me)2pz]2)] (pz = pyrazole), was isolated and P,B P,B characterized. Compound (fc )Li(THF)2 allowed the synthesis of the corresponding nickel and zinc complexes, (fc )NiCl, (fcP,B)NiMe, (fcP,B)ZnCl, and (fcP,B)ZnMe. All compounds were characterized by NMR spectroscopy, while the zinc and nickel complexes were also characterized by X-ray crystallography. The redox behavior of (fcP,B)NiCl, (fcP,B)NiMe, (fcP,B)ZnCl, and (fcP,B)ZnMe was studied by cyclic voltammetry and supported by density functional theory calculations. ■ INTRODUCTION without exposure to air. NMR solvents were obtained from Cambridge − Isotope Laboratories, degassed, and stored over activated molecular Poly(pyrazolyl)borates, also known as “scorpionates”,1 3 have 4−6 sieves prior to use. NMR spectra were recorded at ambient versatile electronic and steric properties. Due to the ease of temperature on Bruker AV-300, AV-400, AV-500, and DRX-500 introducing new substituents on the three carbon atoms of the spectrometers unless otherwise noted.
    [Show full text]