Minnesota Invasive Terrestrial Plants & Pests Center New Species Evaluation

Total Page:16

File Type:pdf, Size:1020Kb

Minnesota Invasive Terrestrial Plants & Pests Center New Species Evaluation Minnesota Invasive Terrestrial Plants & Pests Center New Species Evaluation Ailanthus altissima (Miller) Swingle (Tree of heaven) Evaluated: A.C. Morey; Reviewed: R.C. Venette (12/11/19) OVERVIEW: Common names: Tree of heaven, stinking sumac, Chinese sumac, varnish tree, Stink tree, Ailanthus, copal tree, paradise tree Synonyms: Ailanthus glandulosa Desf. Ailanthus altissima is a deciduous tree of the mostly tropical Quassia family (Simaroubaceae). Both the common name (tree-of-heaven) and the scientific name (Ailanthus, sky-tree) refer to the species' rapid ability to attain height. Native to northern and central China, it has become invasive on all continents except Antarctica. It was brought to the United States in the late 1700s as an ornamental because of a recognized tolerance to stressful urban growing conditions. Its primary occurrence and distribution are in cities and other disturbed sites, such as agricultural fields and transportation corridors. However, in North America it has also moved into forested regions, indicating it is no longer confined to urban areas and roadsides. The species occurs in 41 of the contiguous United States, but appears to have not yet established/spread within Minnesota. ARRIVAL Proximity to Minnesota: VERY HIGH RANKING Very High Pest is known to occur in Minnesota Pest occurs in Wisconsin, Iowa, South Dakota, North Dakota, Manitoba or High Ontario Medium Pest occurs in North America Low Pest is not known to occur in North America 1 | A. altissima Ailanthus has been documented in two MN counties (twice in Ramsey and once in Houston Co.) (EDDMapS 2019). It was listed as a Restricted Noxious Weed in 2016 by the MN Dept. of Agriculture (MDA 2019a) which is for detrimental species distributed in the state and whose only feasible means of control is prohibition of their importation, sale, and transportation. It is considered an “early detection species” by the MN Dept. of Natural Resources, which is for species not present or with a limited distribution in the state (MN-DNR 2019b). In North America, it is distributed from British Columbia, southern Ontario and Quebec, and Maine south to Florida, Texas, southern California, and Mexico. It is frequently found in the upper Midwest. It is weakly invasive in the middle and southern Great Plains (Fryer 2010). Existence of Pathways: HIGH RANKING High Pathways for arrival of the pest in Minnesota are known to occur Pathways for the arrival of the pest in Minnesota are conceivable, but not Medium known to occur Low Pathways for arrival of the pest in Minnesota are difficult to conceive There have been three documented A. altissima occurrences in Minnesota since 2012, one along a roadside and two in private landscaping beds (EDDMapS 2019), confirming that pathways for arrival to Minnesota exist. As two documentations were in private landscape settings, it is likely that an arrival pathway was through intentional human planting. Though it is considered noxious and regulated in multiple states, A. altissima is still readily available as an ornamental plant, with seeds and plants sold through many online sources (e.g., etsy.com, amazon.com, sheffields.com, bonanza.com, ecrater.com, ebluejay.com). Innate Dispersal Capacity: LOW RANKING Maximum recorded dispersal >500 km per year (or moves in low level Very High jets/ upper atmosphere) High Maximum recorded dispersal 500-250 km per year Moderate Maximum recorded dispersal 100-250 km per year Maximum recorded dispersal 1-100 km per year (wind dispersal; flowing Moderately Low water) Maximum recorded dispersal <1 km per year (movement through soil; Low splash dispersal) 2 | A. altissima The primary method of dispersal for A. altissima seeds is by wind, and wind- dispersed seed can reportedly travel at least .2 km (Rebbeck et al. 2017). Nearly double that distance has seen following strong storms (Kowarik and Säumel 2007). Ailanthus altissima can also quickly spread via clonal ramets, with reports of root sprouts appearing as far as .12 km from the parent tree (Kowarik and Säumel 2007). Water and machinery are also documented dispersal mechanisms for A. altissima seeds and vegetative fragments (Fryer 2010; Kowarik and Säumel 2008). ESTABLISHMENT AND PERSISTENCE Suitability of Minnesota Climate: HIGH RANKING High >40% of Minnesota is predicted to be suitable Medium >20 to 40% of Minnesota is predicted to be suitable Low >0 to 20% of Minnesota is predicted to be suitable Negligible No part of Minnesota is suitable Ailanthus altissima is stated to occur in USDA plant hardiness zones 4-8, purportedly tolerating temperatures of -38°F (-39°C) to 110°F (45°C) (Fryer 2010). As such, more than 50% of Minnesota is potentially suitable based on temperature (USDA-ARS 2012). However, a model based on temperature, precipitation, and topographic variables associated with the distribution of A. altissima in China and the US forecast all of Minnesota to be unsuitable (Albright et al. 2010). Further, the current established distribution in the United States (EDDMapS 2019) occurs in areas of Zone 5a or warmer. Presence of Hosts: HIGH RANKING High >10% of Minnesota with suitable hosts (or habitat for weeds) Medium >1 to 10% of Minnesota with suitable hosts (or habitat for weeds) Low >0 to 1% of Minnesota with suitable hosts (or habitat for weeds) Negligible 0% of Minnesota with suitable hosts (or habitat for weeds) Ailanthus altissima predominantly grows in disturbed areas, such as agricultural fields, urban environments, and forests and river banks (Fryer 2010; Sladonja, Sušek, and Guillermic 2015; Kowarik and Säumel 2007). In 2000, about 5% of Minnesota was estimated as urban or community land (Nowak and Green 2010) and in 2018, about 45% was in agricultural use (25,500,000 acres) (USDA-NASS 2019). 3 | A. altissima Hybridization/Host Shift: LOW RANKING High Species reported to hybridize or has undergone a documented host shift Medium Species in the same genus have been reported to hybridize/shift hosts Low Hybridization/Host shifts have not been reported for this genus or species No documentation of hybridization of this species of genus was found. SPREAD Existence of Pathways: MEDIUM RANKING High Pathways for arrival of the pest in Minnesota are known to occur Pathways for the arrival of the pest in Minnesota are conceivable, but not Medium known to occur Low Pathways for arrival of the pest in Minnesota are difficult to conceive Though the sale and propagation of A. altissima in Minnesota is now prohibited (MDA 2019b), pathways of spread within the state are still conceivable given the ease with which it has naturally spread into unmanaged areas in the other states of known occurrence (Fryer 2010). It has been found in two different MN counties in two different environments (roadside and private landscaping) (EDDMapS 2019) which may suggest movement within the state has occurred via escape from managed areas. Dispersal Capacity-Reproductive Potential: HIGH RANKING High Annual reproductive potential (r) of pest is >500 descendants per year Medium Annual reproductive potential (r) of pest is 100 to 500 descendants per year Low Annual reproductive potential (r) of pest is <100 descendants per year Large inter-annual variation and size-dependent effects on seed production of A. altissima have been reported, but a recent study showed that a single tree could produce >1 million seeds annually (Wickert et al. 2017). Seed viability across tree age (between 7-104 years old) was >65% (Wickert et al. 2017). The authors note that few other invasive perennial woody species in the United States have annual seed production that surpasses A. altissima. 4 | A. altissima Extent of Invasion: LOW RANKING Very High >60 countries likely to have established populations of the pest High 30-60 countries likely to have established populations of the pest Moderate 15-29 countries likely to have established populations of the pest Moderately Low 7-14 countries likely to have established populations of the pest Low 1-7 countries likely to have established populations of the pest Ailanthus altissima has been documented in two Minnesota counties since 2012 (EDDMapS 2019). It is considered to be a USDA Zone 4-8 species (Fryer 2010), which cover all or parts of 79 counties (USDA-ARS 2012). It predominantly grows in disturbed areas, such as agricultural fields and urban environments, which combine, make up about 50% of Minnesota land (see Presence of Hosts). Therefore, the potential extend of A. altissima invasion is unlikely to be limited by suitable climate or landscape. Based on its current rate of occurrence in the state, -- two counties over the last seven years – in the next 10 years, ~3 additional counties would be likely to have established populations. Similarly, A. altissima has been record in Michigan since 1892 (Reznicek, Voss, and Walters 2011) and is currently recorded in at least 37 (EDDMapS 2019). This is also ~3 new counties every 10 years. Existence of Vectors: LOW RANKING High Vectored by birds or long distance insect migrants Medium Vectored by insects or bats Low Vectored by other mammals Negligible No evidence of any vectors Rodents and birds (e.g., pine grosbeak and crossbills) have been documented collecting and eating seeds of A. altissima, respectively (Fryer 2010; Kowarik and Säumel 2007). Whether or not this results in viable seed dispersal, however, is unclear. 5 | A. altissima IMPACT Problem Elsewhere: MEDIUM RANKING High Noted as a problem within its native range and areas where it has invaded Medium Noted as a problem only in areas where it has invaded Low Not reported as a problem elsewhere Ailanthus altissima has been rated a threat or potential threat in many states and ecological regions in the United States (Fryer 2010; USDA-NRCS 2019). In cities, it can cause problems by damaging the infrastructure and archeological remains with its roots, and can cause allergic reactions, respiratory problems, and skin rashes in humans.
Recommended publications
  • Interaction Between Ailanthus Altissima and Native Robinia Pseudoacacia in Early Succession: Implications for Forest Management
    Article Interaction between Ailanthus altissima and Native Robinia pseudoacacia in Early Succession: Implications for Forest Management Erik T. Nilsen 1,* ID , Cynthia D. Huebner 2, David E. Carr 3 and Zhe Bao 1 1 Department of Biological Sciences, 3002 Derring Hall, 1405 Perry Street, Virginia Tech, Blacksburg, VA 24061, USA; [email protected] 2 US Department of Agriculture Forest Service, Northern Research Station, Morgantown, WV 26505, USA; [email protected] 3 Department of Environmental Sciences, University of Virginia, Blandy Experimental Farm, 400 Blandy Farm Lane, Boyce, VA 22620, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-540-231-5674; Fax: +1-540-231-9307 Received: 12 March 2018; Accepted: 17 April 2018; Published: 20 April 2018 Abstract: The goal of this study was to discover the nature and intensity of the interaction between an exotic invader Ailanthus altissima (Mill.) Swingle and its coexisting native Robinia pseudoacacia L. and consider management implications. The study occurred in the Mid-Appalachian region of the eastern United States. Ailanthus altissima can have a strong negative influence on community diversity and succession due to its allelopathic nature while R. pseudoacacia can have a positive effect on community diversity and succession because of its ability to fix nitrogen. How these trees interact and the influence of the interaction on succession will have important implications for forests in many regions of the world. An additive-replacement series common garden experiment was established to identify the type and extent of interactions between these trees over a three-year period. Both A. altissima and R.
    [Show full text]
  • Effects of Ailanthus Altissima Soil Leachates on Nodulation and Expression of Two Genes That Regulate Nodulation of Trifolium Pr
    Grand Valley State University ScholarWorks@GVSU Masters Theses Graduate Research and Creative Practice 4-2012 Effects of Ailanthus altissima Soil Leachates on Nodulation and Expression of Two Genes that Regulate Nodulation of Trifolium pratense Jesse Michael Lincoln Grand Valley State University Follow this and additional works at: http://scholarworks.gvsu.edu/theses Part of the Biology Commons Recommended Citation Lincoln, Jesse Michael, "Effects of Ailanthus altissima Soil Leachates on Nodulation and Expression of Two Genes that Regulate Nodulation of Trifolium pratense" (2012). Masters Theses. 13. http://scholarworks.gvsu.edu/theses/13 This Thesis is brought to you for free and open access by the Graduate Research and Creative Practice at ScholarWorks@GVSU. It has been accepted for inclusion in Masters Theses by an authorized administrator of ScholarWorks@GVSU. For more information, please contact [email protected]. Effects of Ailanthus altissima soil leachates on nodulation and expression of two genes that regulate nodulation of Trifolium pratense Jesse Michael Lincoln A Thesis Submitted to the Graduate Faculty of GRAND VALLEY STATE UNIVERSITY In Partial Fulfillment of the Requirements For the Degree of Masters of Science Department of Biology April 2012 Acknowledgements I would like to thank my advisors Gary Greer, Ph.D. and Margaret Dietrich, Ph.D. for their guidance and assistance throughout my graduate experience. My third committee member, Ryan Thum, Ph.D., also provided valuable guidance in shaping this project. I received
    [Show full text]
  • Outbreak of an Exotic Flatid, Metcalfa Pruinosa (Say) (Hemiptera
    Journal of Asia-Pacific Entomology 14 (2011) 473–478 Contents lists available at ScienceDirect Journal of Asia-Pacific Entomology journal homepage: www.elsevier.com/locate/jape Short Communication Outbreak of an exotic flatid, Metcalfa pruinosa (Say) (Hemiptera: Flatidae), in the capital region of Korea Yeyeun Kim a, Minyoung Kim a, Ki-Jeong Hong b, Seunghwan Lee a,⁎ a Entomology Program, Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Science, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 151-921, Republic of Korea b Pest Risk Assessment Division, National Plant Quarantine Service, 178 Anyang-ro, Manan-gu, Anyang-si, Gyeonggi-do, 430-015, Republic of Korea article info abstract Article history: The citrus flatid planthopper, Metcalfa pruinosa (Say, 1830) (Hemiptera: Flatidae), has a native distribution in Received 2 December 2010 eastern North America, It has recently invaded Italy in 1979 and has since spread to other European countries. Revised 1 June 2011 In 2009, Metcalfa pruinosa was discovered in Seoul and the Gyeonggi Province, Republic of Korea. This is the Accepted 4 June 2011 first record in the eastern part of Palaearctic. One year after its discovery, in July 2010, we found significant Available online 29 June 2011 populations and serious damage on many deciduous forest trees, ornamental trees, and agricultural crops in central regions of the Korean Peninsula. In this paper, we report the status of the outbreak and discuss the Keywords: Hemiptera biology, morphological characters, distribution, host plants, and the importance of M. pruinosa as a potential Flatidae insect pest in the Korean Peninsula. Metcalfa pruinosa © Korean Society of Applied Entomology, Taiwan Entomological Society and Malaysian Plant Protection Invasion Society, 2011.
    [Show full text]
  • The Effect of Invasive Earthworm Lumbricus Terrestris on The
    The Effect of Invasive Earthworm Lumbricus terrestris on the Distribution of Nitrogen in Soil Profile Sarah Adelson, Christine Doman, Gillian Golembiewski, Luke Middleton University of Michigan Biological Station, Spring 2009 Abstract The purpose of this study was to determine if Lumbricus terrestris, an invasive earthworm in Northern Michigan, is redistributing nitrogen from the organic soil layer to the deeper, mineral soil layer. L. terrestris burrow 2 meters vertically into the ground and emerge to feed on freshly fallen leaf litter. The study included collecting of L. terrestris in 16 0.5 m square plots by method of electro-shock. Soil cores from a depth of 0-5 and 30-40 cm as well as leaf litter were taken from each plot to determine nitrogen content and nitrogen isotope ratios. Data analysis resulted in no significance between plots with earthworms and without earthworms in both nitrogen, N, isotope ratios and N content. Plots with L. terrestris showed no difference between the organic and mineral soil layer. This result suggests that L. terrestris are homogenizing soil layers. However, smaller than ideal sample sizes limit interpretive capacity of the results. Further research needs to be completed to confirm these perceived trends. The analysis of nitrogen isotope ratios suggest that there is another source of 15N other than leaf litter and L. terrestris that is contributing to soil composition and therefore the contribution of each was not conclusively determined. Introduction Invasion of an exotic species into an ecosystem is one of the leading threats to biologically diverse ecosystems throughout the world. Exotic species are initially introduced as a solution for food, farming, aesthetic purposes, or even accidentally.
    [Show full text]
  • Plant Conservation Alliance®S Alien Plant Working Group Tree of Heaven Ailanthus Altissima (Mill.) Swingle Quassia Family (Sima
    FACT SHEET: TREE OF HEAVEN Tree of Heaven Ailanthus altissima (Mill.) Swingle Quassia family (Simaroubaceae) NATIVE RANGE Central China DESCRIPTION Tree-of-heaven, also known as ailanthus, Chinese sumac, and stinking shumac, is a rapidly growing, deciduous tree in the mostly tropical quassia family (Simaroubaceae). Mature trees can reach 80 feet or more in height. Ailanthus has smooth stems with pale gray bark, and twigs which are light chestnut brown, especially in the dormant season. Its large compound leaves, 1-4 feet in length, are composed of 11-25 smaller leaflets and alternate along the stems. Each leaflet has one to several glandular teeth near the base. In late spring, clusters of small, yellow-green flowers appear near the tips of branches. Seeds are produced on female trees in late summer to early fall, in flat, twisted, papery structures called samaras, which may remain on the trees for long periods of time. The wood of ailanthus is soft, weak, coarse-grained, and creamy white to light brown in color. All parts of the tree, especially the flowers, have a strong, offensive odor, which some have likened to peanuts or cashews. NOTE: Correct identification of ailanthus is essential. Several native shrubs, like sumacs, and trees, like ash, black walnut and pecan, can be confused with ailanthus. Staghorn sumac (Rhus typhina), native to the eastern U.S., is distinguished from ailanthus by its fuzzy, reddish-brown branches and leaf stems, erect, red, fuzzy fruits, and leaflets with toothed margins. ECOLOGICAL THREAT Tree-of-heaven is a prolific seed producer, grows rapidly, and can overrun native vegetation.
    [Show full text]
  • 12 Different Types of Pollination Agents And
    Advances in Biology & Earth Sciences Vol.4, No.1, 2019, pp.12-25 DIFFERENT TYPES OF POLLINATION AGENTS AND INVASIVE PLANTS PHENOLOGY AS A VECTOR OF INVASIVENESS Senka Barudanović1,2, Emina Zečić1,2*, Mašić Ermin1,2 1University of Sarajevo, Faculty of Science, Department of Biology, Sarajevo, Bosnia and Herzegovina 2Centre for Ecology and Natural Resources - Academician Sulejman Redžić, Sarajevo, Bosnia and Herzegovina Abstract. The phenology patterns of invasive plants and other plants in weed communities were studied in the central part of Bosnia and Herzegovina, in the area of Zenica town which has been under the strong anthropogenic influence for decades. The phenology of invasive plant species was analyzed and compared with the phenology of other, non-invasive plants within the examined weed communities. The phytocoenological research was conducted on selected control points by means of standard Zurich- Montpellier school (Braun-Blanquet method, 1964). Biological attributes (Landolt et al., 2010) are assigned to phytocoenological relevé in which the processes of four types of biological behavior were analyzed: dispersal of diaspores (DA), vegetative dispersal (VA), flowering period (BZ) and pollination agents (BS). The phenology of invasive plant species was analyzed and compared with the phenology of other plants within the examined weed communities. The main aim of this research is to determine the basic differences between the phenology of invasive alien plants and weed species in the studied area. The results indicate that, when compared with other species of studied plant communities, the advantages of invasive plants are the following: dispersal by air currents over long distances, various ways of reproduction and higher intensity of flowering by the end of vegetation season.
    [Show full text]
  • Scaling of the Hydrostatic Skeleton in the Earthworm Lumbricus Terrestris
    © 2014. Published by The Company of Biologists Ltd | The Journal of Experimental Biology (2014) 217, 1860-1867 doi:10.1242/jeb.098137 RESEARCH ARTICLE Scaling of the hydrostatic skeleton in the earthworm Lumbricus terrestris Jessica A. Kurth* and William M. Kier ABSTRACT Many soft-bodied organisms or parts of organisms (e.g. terrestrial The structural and functional consequences of changes in size or and marine worms, cnidarians, echinoderms, bivalves, gastropods scale have been well studied in animals with rigid skeletons, but and nematodes) possess a hydrostatic skeleton. Hydrostatic relatively little is known about scale effects in animals with hydrostatic skeletons are characterized by a liquid-filled internal cavity skeletons. We used glycol methacrylate histology and microscopy to surrounded by a muscular body wall (Kier, 2012). Because liquids examine the scaling of mechanically important morphological features resist changes in volume, muscular contraction does not of the earthworm Lumbricus terrestris over an ontogenetic size range significantly compress the fluid, and the resulting increase in internal from 0.03 to 12.89 g. We found that L. terrestris becomes pressure allows for support, muscular antagonism, mechanical disproportionately longer and thinner as it grows. This increase in the amplification and force transmission (Chapman, 1950; Chapman, length to diameter ratio with size means that, when normalized for 1958; Alexander, 1995; Kier, 2012). mass, adult worms gain ~117% mechanical advantage during radial Animals supported by hydrostatic skeletons range in size from a expansion, compared with hatchling worms. We also found that the few millimeters (e.g. nematodes) to several meters in length (e.g. cross-sectional area of the longitudinal musculature scales as body earthworms), yet little is known about scale effects on their form and mass to the ~0.6 power across segments, which is significantly lower function.
    [Show full text]
  • Arthropods of Elm Fork Preserve
    Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux.
    [Show full text]
  • Ailanthus Altissima
    Bulletin OEPP/EPPO Bulletin (2020) 50 (1), 148–155 ISSN 0250-8052. DOI: 10.1111/epp.12621 European and Mediterranean Plant Protection Organization Organisation Europe´enne et Me´diterrane´enne pour la Protection des Plantes PM 9/29 (1) National Regulatory Control Systems PM 9/29 (1) Ailanthus altissima Specific scope Specific approval and amendment This Standard describes the control procedures aiming to First approved in 2019–09. monitor, contain and eradicate Ailanthus altissima. species has been widely planted for ornamental and many 1. Introduction other uses (e.g. forestry and erosion control; Kowarik & Further information on the biology, distribution and eco- S€aumel, 2007) throughout the region and has become inva- nomic importance of Ailanthus altissima can be found in sive in many countries with the exception of the Nordic EPPO (2018) and CABI (2018). countries and Russia (EPPO, 2018). Ailanthus altissima can Ailanthus altissima (Mill.) Swingle (Simaroubaceae) is a have negative impacts on native biodiversity through direct broadleaved perennial early successional tree that is native competition and through allelopathic effects (Kowarik & to Asia (China and Vietnam). The species can grow up to S€aumel, 2007). The species can have negative impacts on 30 m in height and has alternately arranged compound ecosystem services as well as negative economic impacts leaves (Kowarik & S€aumel, 2007). The species is mainly by affecting infrastructure (Kowarik & S€aumel, 2007; Con- dioecious (male and female flowers occurring on different stan-Nava et al., 2014). The species can have human health trees). In the EPPO region flowering generally occurs dur- implications as contact with the leaves can cause severe ing July and August (Holec et al., 2014).
    [Show full text]
  • (Title of the Thesis)*
    Rethinking restoration ecology of tallgrass prairie: considering belowground components of tallgrass restoration in southern Ontario by Heather Anne Cray A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Social and Ecological Sustainability Waterloo, Ontario, Canada, 2019 ©Heather Anne Cray 2019 Examining Committee Membership The following served on the Examining Committee for this thesis. The decision of the Examining Committee is by majority vote. External Examiner Dr. Andrew MacDougall Associate Professor, Guelph University Supervisor(s) Dr. Stephen Murphy Professor & Director, University of Waterloo Internal Member Dr. Andrew Trant Assistant Professor, University of Waterloo Internal-external Member Dr. Rebecca Rooney Assistant Professor, University of Waterloo Other Member(s) Dr. Greg Thorn Associate Professor, Western University ii Author's Declaration This thesis consists of material all of which I authored or co-authored: see Statement of Contributions included in the thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. iii Statement of Contributions This thesis contains five chapters that are collaborative efforts of multiple researchers that will be submitted into peer-reviewed journals. Heather Cray is first author on all contributing papers and therefore was responsible for the development, data collection, data analysis and preparation of each of the manuscripts found in this dissertation. The written portions of all manuscripts, including figures and tables, were completed in their entirety by Heather Cray and edited for content and composition by thesis supervisor Dr.
    [Show full text]
  • New Zealand Flatworm
    www.nonnativespecies.org Produced by Max Wade, Vicky Ames and Kelly McKee of RPS New Zealand Flatworm Species Description Scientific name: Arthurdendyus triangulatus AKA: Artioposthia triangulata Native to: New Zealand Habitat: Gardens, nurseries, garden centres, parks, pasture and on wasteland This flatworm is very distinctive with a dark, purplish-brown upper surface with a narrow, pale buff spotted edge and pale buff underside. Many tiny eyes. Pointed at both ends, and ribbon-flat. A mature flatworm at rest is about 1 cm wide and 6 cm long but when extended can be 20 cm long and proportionally narrower. When resting, it is coiled and covered in mucus. It probably arrived in the UK during the 1960s, with specimen plants sent from New Zealand to a botanic garden. It was only found occasionally for many years, but by the early 1990s there were repeated findings in Scotland, Northern Ireland and northern England. Native to New Zealand, the flatworm is found in shady, wooded areas. Open, sunny pasture land is too hot and dry with temperatures over 20°C quickly lethal to it. New Zealand flatworms prey on earthworms, posing a potential threat to native earthworm populations. Further spread could have an impact on wild- life species dependent on earthworms (e.g. Badgers, Moles) and could have a localised deleterious effect on soil structure. For details of legislation go to www.nonnativespecies.org/legislation. Key ID Features Underside pale buff Ribbon flat Leaves a slime trail Pointed at Numerous both ends tiny eyes 60 - 200 mm long; 10 mm wide Upper surface dark, purplish-brown with a narrow, pale buff edge Completely smooth body surface Forms coils when at rest Identification throughout the year Distribution Egg capsules are laid mainly in spring but can be found all year round.
    [Show full text]
  • Metcalfa Pruinosa (Metcalfa)
    High Priority Organism: Metcalfa pruinosa (Metcalfa) This highly polyphagous insect feeds on a wide variety of woody and herbaceous plants. Mainly found in North America and Europe it has dispersed easily and establishes readily in new habitats. Assessment of risk Establishment in NZ Economic impact Market Access Entry pathway Host range (incl. kiwifruit) Treatment required Ease of establishment Plant health Area freedom required Ease of detection Crop productivity Movement control Ease of eradication Crop protection Quarantine requirements Key: High risk Moderate/unknown risk (?) Low risk Description & Life cycle Distribution The preferred common name for This North American species was accidentally introduced into Italy Melcalfa pruinosa is planthopper or in 1979 and rapidly spread throughout the country. It has frosted moth-bug. It is also known subsequently caused economic damage to orchards and vineyards as citrus flatid plant hopper, Citrus in some South-European countries. In 2003, a mass occurrence of planthopper, frosted lightening Metcalfa was discovered in Vienna, followed by new infestations hopper (USA), mealy lantern fly of several sites. (USA) and moth bug. Adults of Metcalfa are rather robust with large Possibly its presence in the southwestern USA is a result of human moth-like wings sometimes described as leaflike. Adult planthopper activities. It is apparently not very common in the northeast of the U.S. and has not been recorded from the Pacific Northwest or They are 5.5 to 8mm in length and 2 to 3 mm in width at the the northern prairies. It has been reported as widely distributed widest point. This species, along with certain other flatids, might be mistaken for a moth at first glance.
    [Show full text]