The Sunflower Family (Asteraceae) (Angiosperm Evolution/Molecular Systematics/Mutisieae/Barnadesiinae) ROBERT K

Total Page:16

File Type:pdf, Size:1020Kb

The Sunflower Family (Asteraceae) (Angiosperm Evolution/Molecular Systematics/Mutisieae/Barnadesiinae) ROBERT K Proc. NatI. Acad. Sci. USA Vol. 84, pp. 5818-5822, August 1987 Evolution A chloroplast DNA inversion marks an ancient evolutionary split in the sunflower family (Asteraceae) (angiosperm evolution/molecular systematics/Mutisieae/Barnadesiinae) ROBERT K. JANSEN*t AND JEFFREY D. PALMER Department of Biology, University of Michigan, Ann Arbor, MI 48109 Communicated by Peter H. Raven, May 7, 1987 (receivedfor review February 10, 1987) ABSTRACT We determined the distribution of a chloro- Cronquist's (1, 4, 7) subfamilial classification for the Aster- plast DNA inversion among 80 species representing 16 tribes of aceae have been proposed in the last 12 years (8-10). the Asteraceae and 10 putatively related families. Filter hy- We are investigating chloroplast DNA (cpDNA) variation bridizations using cloned chloroplast DNA restriction frag- in the Asteraceae to resolve phylogenetic relationships at ments oflettuce and petunia revealed that this 22-kilobase-pair higher taxonomic levels. Our previous study (11) showed that inversion is shared by 57 genera, representing all tribes of the the 151-kilobase (kb) cpDNAs of two species in the family Asteraceae, but is absent from the subtribe Barnadesiinae of (Lactuca sativa and Barnadesia caryophylla) are colinear the tribe Mutisieae, as well as from all families allied to the throughout the genome, with the exception of a single 22-kb Asteraceae. The inversion thus defmes an ancient evolutionary inversion. The conservative organization of the chloroplast split within the family and suggests that the Barnadesiinae genome among land plants (12, 13) makes such rearrange- represents the most primitive lineage in the Asteraceae. These ments potentially valuable characters for phylogenetic stud- results also indicate that the tribe Mutisieae is not mono- ies. Here we report on the evolutionary direction of the phyletic, since any common ancestor to its four subtribes is also inversion in the Asteraceae by comparing the chloroplast shared by other tribes in the family. This is the most extensive genomes of Lactuca and Barnadesia with that of an out- survey of the systematic distribution of an organelle DNA group, Petunia hybrida (Solanaceae). We also examine the rearrangement and demonstrates the potential of such muta- distribution and phylogenetic significance of this rearrange- tions for resolving phylogenetic relationships at higher taxo- ment. nomic levels. MATERIALS AND METHODS The Asteraceae is one of the largest and economically most important families of flowering plants and consists of 12-17 cpDNAs were isolated by the sucrose gradient technique tribes, approximately 1100 genera, and 20,000 species (1). A (14). Where tissue amounts were limited, total DNA was combination of several specialized morphological character- isolated (15) and further purified by centrifugation in CsCl/ istics (e.g., capitula, highly reduced and modified flowers, ethidium bromide gradients. Restriction endonuclease diges- inferior ovaries, syngenesious anthers) strongly supports the tions, electrophoresis, transfer of DNA fragments from naturalness of the family. Cronquist (1) emphasized the agarose gels to Zetabind filters (AMF Cuono), and hybrid- distinctness of the Asteraceae by placing it in a monotypic izations were performed as described (11, 14). Recombinant order at the most advanced position within the subclass plasmids containing cpDNA fragments from Lactuca and Asteridae. In addition to its large size, the family has a Petunia were described previously (11, 16). cosmopolitan distribution and is highly diversified in its habitat preferences and life forms. This diversity includes RESULTS aquatics, herbs and shrubby trees in temperate, tropical, and Filter hybridizations using cloned restriction fragments (16) arid environments, and trees in tropical rain forests. Species from petunia (Petunia hybrida, Solanaceae) were performed ofAsteraceae are ofwide economic importance as vegetables to assess cpDNA genome arrangement in the Asteraceae. (lettuce, artichokes, endive), sources of oil (sunflower, saf- The petunia genome appears to have the ancestral cpDNA flower) and insecticides (pyrethrum), and garden ornamen- arrangement for angiosperms, since it is colinear with the tals (chrysanthemum, dahlia, marigold, and many others). genomes of a fern, a gymnosperm, and several diverse Although there is some controversy concerning its age (2, angiosperms (17-21). Barnadesia cpDNA is colinear with the 3), fossil evidence (4, 5) and biogeographical considerations petunia genome (Fig. 1) and therefore has the same gene (6) suggest that the Asteraceae originated in the middle to order as the ancestral angiosperm type. In contrast, lettuce upper Oligocene (30 million years ago) and subsequently (Lactuca sativa) cpDNA has a derived inversion in the large underwent rapid radiation. This rapid diversification has single copy region, as evidenced by the hybridization of posed special problems for understanding phylogenetic rela- nonadjacent petunia Pst I fragments of 9.0 and 15.3 kb to the tionships at higher taxonomic levels. Previous attempts (4, same two regions of the lettuce genome. For example, both 7-10) at constructing phylogenies have relied on comparative of these petunia probes hybridize to 7.5-kb Sac I-Sal I and anatomical, chromosomal, embryological, micromolecular, 6.7-kb Sac I lettuce restriction fragments (Fig. 1). Further- morphological, and palynological features. These studies more, the atpA through rpoB genes have an inverted order have been largely unsatisfactory because of the repeated and are transcribed in the opposite direction in lettuce parallel and convergent evolution of these characters. For relative to Barnadesia (Fig. 1; ref. 11). example, three major and highly divergent reformulations of Abbreviation: cpDNA, chloroplast DNA. The publication costs of this article were defrayed in part by page charge *Present address: Department of Ecology and Evolutionary Biology, payment. This article must therefore be hereby marked "advertisement" University of Connecticut, Storrs, CT 06268. in accordance with 18 U.S.C. §1734 solely to indicate this fact. tTo whom reprint requests should be addressed. 5818 Downloaded by guest on September 28, 2021 Evolution: Jansen and Palmer Proc. Nati. Acad. Sci. USA 84 (1987) 5819 E E Bg S E E t " r9 .G '4 'd' aSZ, CI IQ mm * rn~~~~~ ~~~~~~~~~~~m~m ~~~~u co ~~~~~~~~~~~~~~~~ M mu mmTT m t T1ttIf NwIf I Lettuce -Dt1 X--.-L, :+lk+ Petunia 7.6 '4.6 19 2 4. 7614 9. 9. 15.3 13.1 8.0 1411 8.9 11.4 .IAI'- Q00) IMc "p 4 rn1 m m '4IR -I IN a IN on ------ *9U~~~4*4-~ g- ZC U;vUe QUrn Q Barnadesia Petunia FIG. 1. Physical maps showing the arrangement of homologous sequences in the petunia and either lettuce or Barnadesia chloroplast genomes. Numbers indicate fragment sizes in kb. Each of 15 petunia fragments was hybridized to filter blots containing Nsi I and Sac I fragments of cpDNA from lettuce and Barnadesia. The lettuce or Barnadesia fragments to which the probes hybridize are indicated by lines leading from the petunia fragments to the lettuce or Barnadesia fragments. The heavy black lines on each map indicate the inverted repeat and the arrows at far right show the orientation (i.e., direction of transcription) of mapped genes. The enlargements of the 7.5-kb Sac I-Sal I and 6.7-kb Sac I restriction fragments show the four inversion endpoint fragments used as probes. Arrows pointing at the EcoRl sites indicate the approximate locations of the inversion endpoints. Lettuce and Barnadesia restriction site and gene mapping data are from ref. 11 and petunia data are from ref. 16. Restriction sites shown: m, Nsi I; A, Pst I; *, Sac I; *, Sal I; Bg, Bgl 1I; E, EcoRI; S, Sal 1. Many additional taxa were surveyed for the inversion by in those genomes that contain the lettuce inversion. This performing filter hybridizations using cloned lettuce cpDNA situation is illustrated in Figs. 2 and 3, in which the two fragments that contain the inversion endpoints. The 7.5-kb inversion endpoint fragments from lettuce are hybridizing to Sac I-Sal I and 6.7-kb Sac I lettuce fragments were used as Sac I fragments of 14.7 and 17.0 kb in Vernonia. Similar hybridization probes against filter blots containing 12 restric- hybridization results are evident for Helianthus and Trixis tion enzyme digests of DNA from one species of each of 80 (Fig. 3), which are both members of the Asteraceae. In two genera representing 10 putatively allied families and 16 tribes contrast, in those genomes that are not rearranged, the Asteraceae 1). The 7.5-kb Sac I-Sal I and 6.7-kb lettuce probes will hybridize to two of the same restriction of (Table 6.7-kb Sac I probes will hybridize to different restriction fragments fragments. For example, the 7.5-kb Sac I-Sal I and Sac I lettuce probes both hybridize to Sac I fragments of 5.8 and 14.9 kb in Barnadesia (Figs. 2 and 3). The autoradi- ograms that of three related 5.8 _ t 14.9 (Fig. 3) reveal representatives tBarnadesia families, Cephalaria (Dipsacaceae), Pentas (Rubiaceae), and Scaevola (Goodeniaceae), also lack the 22-kb inversion. The results of the inversion survey for all 80 examined taxa are summarized in Table 1. The genome arrangements for 69 9Lettuce of these taxa have been confirmed by constructing complete restriction maps (R.K.J., H. Michaels, and J.D.P., unpub- lished data). The inversion is absent from all putatively allied 14.7 Vernonia families and, within the Asteraceae, from the subtribe Barnadesiinae of the tribe Mutisieae. All other examined members of the Asteraceae, including the three other sub- tribes in the Mutisieae, were found to have the inversion. The 80 genera surveyed represent the major evolutionary lineages within the 16 tribes of Asteraceae and 10 related families. We 7.5 6.7 JLettuce are confident that the selection of only one species from each genus is an adequate sampling because more extensive FIG. 2. Physical maps showing the arrangement of homologous studies of 60 species in Carthamus (R.
Recommended publications
  • Vascular Flora of the Possum Walk Trail at the Infinity Science Center, Hancock County, Mississippi
    The University of Southern Mississippi The Aquila Digital Community Honors Theses Honors College Spring 5-2016 Vascular Flora of the Possum Walk Trail at the Infinity Science Center, Hancock County, Mississippi Hanna M. Miller University of Southern Mississippi Follow this and additional works at: https://aquila.usm.edu/honors_theses Part of the Biodiversity Commons, and the Botany Commons Recommended Citation Miller, Hanna M., "Vascular Flora of the Possum Walk Trail at the Infinity Science Center, Hancock County, Mississippi" (2016). Honors Theses. 389. https://aquila.usm.edu/honors_theses/389 This Honors College Thesis is brought to you for free and open access by the Honors College at The Aquila Digital Community. It has been accepted for inclusion in Honors Theses by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. The University of Southern Mississippi Vascular Flora of the Possum Walk Trail at the Infinity Science Center, Hancock County, Mississippi by Hanna Miller A Thesis Submitted to the Honors College of The University of Southern Mississippi in Partial Fulfillment of the Requirement for the Degree of Bachelor of Science in the Department of Biological Sciences May 2016 ii Approved by _________________________________ Mac H. Alford, Ph.D., Thesis Adviser Professor of Biological Sciences _________________________________ Shiao Y. Wang, Ph.D., Chair Department of Biological Sciences _________________________________ Ellen Weinauer, Ph.D., Dean Honors College iii Abstract The North American Coastal Plain contains some of the highest plant diversity in the temperate world. However, most of the region has remained unstudied, resulting in a lack of knowledge about the unique plant communities present there.
    [Show full text]
  • The Natural Communities of South Carolina
    THE NATURAL COMMUNITIES OF SOUTH CAROLINA BY JOHN B. NELSON SOUTH CAROLINA WILDLIFE & MARINE RESOURCES DEPARTMENT FEBRUARY 1986 INTRODUCTION The maintenance of an accurate inventory of a region's natural resources must involve a system for classifying its natural communities. These communities themselves represent identifiable units which, like individual plant and animal species of concern, contribute to the overall natural diversity characterizing a given region. This classification has developed from a need to define more accurately the range of natural habitats within South Carolina. From the standpoint of the South Carolina Nongame and Heritage Trust Program, the conceptual range of natural diversity in the state does indeed depend on knowledge of individual community types. Additionally, it is recognized that the various plant and animal species of concern (which make up a significant remainder of our state's natural diversity) are often restricted to single natural communities or to a number of separate, related ones. In some cases, the occurrence of a given natural community allows us to predict, with some confidence, the presence of specialized or endemic resident species. It follows that a reasonable and convenient method of handling the diversity of species within South Carolina is through the concept of these species as residents of a range of natural communities. Ideally, a nationwide classification system could be developed and then used by all the states. Since adjacent states usually share a number of community types, and yet may each harbor some that are unique, any classification scheme on a national scale would be forced to recognize the variation in a given community from state to state (or region to region) and at the same time to maintain unique communities as distinctive.
    [Show full text]
  • ISB: Atlas of Florida Vascular Plants
    Longleaf Pine Preserve Plant List Acanthaceae Asteraceae Wild Petunia Ruellia caroliniensis White Aster Aster sp. Saltbush Baccharis halimifolia Adoxaceae Begger-ticks Bidens mitis Walter's Viburnum Viburnum obovatum Deer Tongue Carphephorus paniculatus Pineland Daisy Chaptalia tomentosa Alismataceae Goldenaster Chrysopsis gossypina Duck Potato Sagittaria latifolia Cow Thistle Cirsium horridulum Tickseed Coreopsis leavenworthii Altingiaceae Elephant's foot Elephantopus elatus Sweetgum Liquidambar styraciflua Oakleaf Fleabane Erigeron foliosus var. foliosus Fleabane Erigeron sp. Amaryllidaceae Prairie Fleabane Erigeron strigosus Simpson's rain lily Zephyranthes simpsonii Fleabane Erigeron vernus Dog Fennel Eupatorium capillifolium Anacardiaceae Dog Fennel Eupatorium compositifolium Winged Sumac Rhus copallinum Dog Fennel Eupatorium spp. Poison Ivy Toxicodendron radicans Slender Flattop Goldenrod Euthamia caroliniana Flat-topped goldenrod Euthamia minor Annonaceae Cudweed Gamochaeta antillana Flag Pawpaw Asimina obovata Sneezeweed Helenium pinnatifidum Dwarf Pawpaw Asimina pygmea Blazing Star Liatris sp. Pawpaw Asimina reticulata Roserush Lygodesmia aphylla Rugel's pawpaw Deeringothamnus rugelii Hempweed Mikania cordifolia White Topped Aster Oclemena reticulata Apiaceae Goldenaster Pityopsis graminifolia Button Rattlesnake Master Eryngium yuccifolium Rosy Camphorweed Pluchea rosea Dollarweed Hydrocotyle sp. Pluchea Pluchea spp. Mock Bishopweed Ptilimnium capillaceum Rabbit Tobacco Pseudognaphalium obtusifolium Blackroot Pterocaulon virgatum
    [Show full text]
  • Crop Reports
    CROP REPORTS Classification, origin, and environmental requirements Stokes aster initially was described and classified as Carthamus laevis by J. Hill in 1769. The genus Stokesia was Crop described by L’Héritier de Brutelle (1788), who proposed that the type specimen used by J. Hill to describe C. laevis should be selected as the type Reports specimen for the new genus Stokesia. L’Héritier de Brutelle (1788) also re- ferred to S. cyanea but failed to describe the species; therefore, the name S. cyanea is illegitimate. The final authority re- Stokes Aster (12,13-epoxy-cis-9-octadecenoic) garding the nomenclature of stokes as- acid, a fatty acid that is converted to ter is Greene (1893), who stated that epoxy oil products for use in the manu- the proper binomial for the specimen 1 facture of plastics and adhesives called C. laevis by J. Hill and S. cyanea by Lyn A. Gettys and (Campbell, 1981; Kleiman, 1990). Oil L’Héritier de Brutelle should be Stokesia Dennis J. Werner2 content in seeds can be as high as 40%, laevis. The genus is named for the En- with about 70% of this oil being vernolic glish botanist Jonathan Stokes (1755- acid (Gunn and White, 1974). In the 1831). 1980s, the annual global market for Stokesia is one of about 950 genera ADDITIONAL INDEX WORDS. Stokesia seed-derived epoxy oils was between laevis, Asteraceae, Vernonieae, oilseed in the aster family (Asteraceae Dumont) crop, native plant, propagation 45 and 90 billion tons (40.8 and 81.6 and is monotypic, with S. laevis the only × 109 t) per year (Campbell, 1981; species (Bailey, 1949; Els, 1994; Greene, Princen, 1983).
    [Show full text]
  • Genetic Diversity and Evolution in Lactuca L. (Asteraceae)
    Genetic diversity and evolution in Lactuca L. (Asteraceae) from phylogeny to molecular breeding Zhen Wei Thesis committee Promotor Prof. Dr M.E. Schranz Professor of Biosystematics Wageningen University Other members Prof. Dr P.C. Struik, Wageningen University Dr N. Kilian, Free University of Berlin, Germany Dr R. van Treuren, Wageningen University Dr M.J.W. Jeuken, Wageningen University This research was conducted under the auspices of the Graduate School of Experimental Plant Sciences. Genetic diversity and evolution in Lactuca L. (Asteraceae) from phylogeny to molecular breeding Zhen Wei Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr A.P.J. Mol, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Monday 25 January 2016 at 1.30 p.m. in the Aula. Zhen Wei Genetic diversity and evolution in Lactuca L. (Asteraceae) - from phylogeny to molecular breeding, 210 pages. PhD thesis, Wageningen University, Wageningen, NL (2016) With references, with summary in Dutch and English ISBN 978-94-6257-614-8 Contents Chapter 1 General introduction 7 Chapter 2 Phylogenetic relationships within Lactuca L. (Asteraceae), including African species, based on chloroplast DNA sequence comparisons* 31 Chapter 3 Phylogenetic analysis of Lactuca L. and closely related genera (Asteraceae), using complete chloroplast genomes and nuclear rDNA sequences 99 Chapter 4 A mixed model QTL analysis for salt tolerance in
    [Show full text]
  • Stokesia Laevis (J. Hill) Greene]
    Literature Cited Pattison, R. R., G. Goldstein, and A. Ares. 1998. Growth, biomass allocation and photosynthesis of invasive and native Hawaiian rainforest species. Oecologia 117:449-459. Baruch, Z. and G. Goldstein. 1999. Leaf construction cost, nutrient concen Peters, R. L. and R. F. Noss. 1995. America's endangered ecosystems. Defend tration, and net CO2 assimilation of native and invasive species in Hawaii. ers Magazine 70 (4): 16. Oecologia 121:183-192. Randall, J. M. and J. Marinelli (Eds.). 1996. Invasive Plants, Weeds of the Glo FLEPPC. 2001. List of Florida's Most Invasive Species. Florida Exotic Pest bal Garden. Brooklyn Botanic Garden, Inc., Brooklyn, N.Y. Plant Council, http://www.fleppc.org. Simberloff, D. 1994. Why is Florida being invaded? In: D. C. Schmitz and Florida First. Focusing IFAS resources on solutions for tomorrow. 1999. Uni T. C. Brown (Eds.). An Assessment of Invasive Non-indigenous Species in versity of Florida. Website: http://floridafirst.ufl.edu. Florida's Public Lands. Tech. Rept. No. TSS-94-100. Fla. Dept. Environ. Langeland, K. A. and K. C. Burks (Eds.). 1998. Identification and Biology of Prot., Tallahassee. Non-Native Plants in Florida's Natural Areas. University of Florida, Wunderlin, R. P. 1998. Guide to the Vascular Plants of Florida. University Gainesville. Press of Florida, Gainesville. Proc. Fla. State HorL Soc. 114:250-251. 2001. STRATIFICATION UNNECESSARY FOR GERMINATION OF SEEDS OF STOKES ASTER [STOKESIA LAEVIS (J. HILL) GREENE] Lyn A. Gettys and Dennis J. Werner converted to epoxy oil products, which can be used in the North Carolina State University manufacture of plastics and adhesives (Campbell, 1981; Klei- Department of Horticultural Science man, 1990).
    [Show full text]
  • Endemism and Taxonomy of Chaptalia (Asteraceae) in the Caribbean. II
    Ann. Bot. Fennici 51: 253–266 ISSN 0003-3847 (print) ISSN 1797-2442 (online) Helsinki 23 June 2014 © Finnish Zoological and Botanical Publishing Board 2014 Endemism and taxonomy of Chaptalia (Asteraceae) in the Caribbean. II. Taxonomic treatment Liliana Katinas* & Carlos Zavaro División Plantas Vasculares, Museo de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina (*corresponding author’s e-mail: [email protected]) Received 14 Oct. 2013 , final version received 9 June 2014, accepted 21 Feb. 2014 Katinas, L. & Zavaro, C. 2014: Endemism and taxonomic complexity of the genus Chaptalia (Asteraceae) in the Caribbean. II. Taxonomic treatment. — Ann. Bot. Fennici 51: 253–266. This is the second part of a revision of the genus Chaptalia (Asteraceae) in the Caribbean Islands, containing a taxonomic treatment. The number of recognized species in the genus is reduced from 31 to two endemics, C. angustata and C. dentata, and two non-en- demics, C. albicans and C. nutans. A morphological analysis led to synonymization of numerous names under C. dentata. A key to the species of Chaptalia in the Caribbean is provided together with species descriptions, illustrations, and distribution maps. The first part of this Chaptalia revision (Katinas and the Appendix therein). Other characters, & Zavaro 2014) contained the general back- such as fruit pubescence, are more conservative ground as well as the material and methods and and allow recognition of taxa. These characters discussed the morphological characters of the are summarized in the following key to the various species and the endemism in the Carib- Caribbean species of Chaptalia. bean Islands.
    [Show full text]
  • To Which Genus of Asteraceaedoes
    Botanical Journal of the Linnean Society, 2006, 150, 479–486. With 3 figures To which genus of Asteraceae does Liabum oblanceolatum belong? Vegetative characters have the answer DIEGO G. GUTIÉRREZ* and LILIANA KATINAS División Plantas Vasculares, Museo de La Plata, Paseo del Bosque s.n., B1900FWA La Plata, Argentina Received May 2005; accepted for publication August 2005 The West Indian species Liabum oblanceolatum Urb. & Ekman was established on the basis of sterile young spec­ imens represented by acaulescent herbs with rosulate leaves. However, these specimens have important traits that do not correspond to Liabum Adans. More than 90 genera of Asteraceae occur in Hispaniola (= Santo Domingo), but only 14 of them include species represented by acaulescent herbs with rosulate or grouped leaves at the base of the stem. From these genera, Chaptalia Vent. and Liabum are the most similar to the types of L. oblanceolatum. Habit, leaf arrangement, lamina shape, leaf margin, leaf surface, leaf margin intrasection, leaf venation, leaf pubescence, leaf trichomes, stomata and upper surface leaf cuticle were analysed in the type specimens of L. oblanceolatum and in species of Chaptalia and Liabum of Hispaniola. The vegetative trichomes are described in detail. The analysis reveals that the type specimens of L. oblanceolatum fit with all the vegetative traits of Chaptalia angustata Urb. © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society, 2006, 150, 479–486. ADDITIONAL KEYWORDS: Chaptalia – C. angustata – Hispaniola – Liabeae – microcharacters – Mutisieae. INTRODUCTION capitula (Fig. 1). Some traits that are not common in Liabum were described in the protologue of the new During the preparation of a revision of the genus species (e.g.
    [Show full text]
  • The Vascular Flora of Sandy Run Savannas State Natural Area, Onslow and Pender Counties, North Carolina --In Press-- John B
    The Vascular Flora of Sandy Run Savannas State Natural Area, Onslow and Pender Counties, North Carolina --In Press-- John B. Taggart Department of Environmental Studies, University of North Carolina at Wilmington, 601 South College Road, Wilmington, North Carolina 28403 ______________________________________________________________________________ ABSTRACT The vascular plants of Sandy Run Savannas State Natural Area, located in portions of Onslow and Pender counties, North Carolina, are presented as an annotated species list. A total of 590 taxa in 315 genera and 119 families were collected from eight plant communities. Families with the highest numbers of species were the Asteraceae (80), Poaceae (66), and Cyperaceae (65). Two species, Carex lutea (golden sedge) and Thalictrum cooleyi (Cooley’s meadowrue), have federal endangered status. A total of 23 taxa are tracked by the North Carolina Natural Heritage Program, while 29 others are considered rare, but not included on the priority list. Of 44 species considered strict endemic or near-endemic taxa to the North and South Carolina Coastal Plain, 18 (41%) were collected in this study. Selected pine savannas within the site were rated as nationally significant by the North Carolina Natural Heritage Program. Fifty-one (51) non-native species were present and represented 8.7 % of the flora. _________________________________________________________________________ INTRODUCTION Sandy Run Savannas State Natural Area encompasses portions of western Onslow and northeastern Pender counties in North Carolina. State acquisition of this coastal plain site began in 2007 as a cooperative effort between The Nature Conservancy in North Carolina and the North Carolina Division of Parks and Recreation to protect approximately 1,214 ha comprised of seven tracts (Figure 1).
    [Show full text]
  • Floristic Composition of the South-Central Florida Dry Prairie Landscape Steve L
    Floristic Composition of the South-Central Florida Dry Prairie Landscape Steve L. Orzell Avon Park Air Force Range, 29 South Blvd., Avon Park Air Force Range, FL 33825-5700 [email protected] Edwin L. Bridges Botanical and Ecological Consultant, 7752 Holly Tree Place NW, Bremerton, WA 98312-1063 [email protected] ABSTRACT Floristic composition of the Florida dry prairie landscape was compiled from 291 sites in nine south-central peninsular counties. Floristic lists were based upon field inventory and compilation from reliable sources to- taling 11,250 site and community type-specific observations and were analyzed by region (Kissimmee River, Desoto/Glades “Big Prairie,” and Myakka). The known vascular flora consists of 658 vascular plant taxa, rep- resenting 317 genera and 115 families. Families with the highest number of species are Poaceae (103), Asteraceae (78), Cyperaceae (76), Fabaceae (23), Scrophulariaceae (20), and Orchidaceae (18). The most diverse genera are Rhynchospora (29), Dichanthelium (17), Ludwigia (13), Xyris (12), and Andropogon (11). Of this flora 24 taxa are endemic to central or southern peninsular Florida, primarily within the pine savanna- flatwood/dry prairie landscape, and 41 taxa are of Floridian biotic affinity. Although most species are not re- gionally specific, a few (Carphephorus carnosus, Ctenium aromaticum, and Liatris spicata) appear to be ab- sent from the Myakka prairie region, while Marshallia tenuifolia appears to be absent from both the Desoto/ Glades and Myakka prairie regions. Within the dry prairie landscape Hypericum edisonianum is restricted to the Desoto/Glades region. A few other species somewhat differentiate between prairie regions; however, most occur in other habitats in the counties where they are absent or nearly absent from dry prairie.
    [Show full text]
  • Cytogenetic Characterization and Nuclear DNA Content of Diploid and Tetraploid Forms of Stokes Aster
    JOBNAME: horts 43#7 2008 PAGE: 1 OUTPUT: October 22 12:41:21 2008 tsp/horts/175583/03037 HORTSCIENCE 43(7):2005–2012. 2008. ogy, indicating that this tribe has evolved and radiated over time. Examples of this diversity include the woody tree, Vernonia arborea Cytogenetic Characterization and Ham., which is the tallest species (greater than 30 m) in the Asteraceae family and the Nuclear DNA Content of Diploid and small aquatic plant, Pacourina edulis Aubl., which has edible leaves. Additionally, there Tetraploid Forms of Stokes Aster are a number of small acaulescent perennial taxa (e.g., Vernonia guineensis Benth., V. Jessica Gaus Barb1,4 acrocephala Klatt, V. chthonocephala O. Department of Horticultural Science, North Carolina State University, Hoffm.) that thrive in fire-maintained savan- Campus Box 7609, Raleigh, NC 27695-7609 nahs in Africa (Jones, 1977, 1982). In gen- eral, members of the Vernonieae tribe are Dennis J. Werner2 perennial, herbaceous plants, shrubs, small Department of Horticultural Science, North Carolina State University, trees, or vines with alternate leaves showing pinnate venation. Flowers characteristically Campus Box 7522, Raleigh, NC 27695-7522 form large homogamous discoid heads with Shyamalrau P. Tallury3 one to many perfect flowers that are deep purplish red to blue or sometimes white Crop Science Department, North Carolina State University, Greenhouse (Jones, 1982). Base chromosome number Unit 3, Campus Box 7629, Raleigh, NC 27695-7629 (x) is highly variable in the Vernonieae tribe. Additional index words. genomic downsizing, meiotic pairing, quadrivalents, bivalents, New World taxa have a basic chromosome number of x = 8, 10–19 and often include trivalents, disjunction, autotetraploid, karyotype, Stokesia laevis many polyploid forms (e.g., n = 20, 26–30, Abstract.
    [Show full text]
  • Collectiebeheer Voor Botanische Tuinen, Theorie En Praktijk
    Collectiebeheer voor botanische tuinen, theorie en praktijk Een handboek voor collectiebeheer van basaal tot wetenschappelijk niveau Bert van den Wollenberg - TUD Hans Persoon - UU Nederlandse Vereniging van Botanische Tuinen (NVBT) © 2017 1 © 2017 Bert van den Wollenberg & Hans Persoon Uitgave van de Nederlandse Vereniging van Botanische Tuinen. Dit handbook is kostenloos beschikbaar voor download vanaf de NVBT-website www.botanischetuinen.nl of via de contact-auteur. Zij die het bestand downloaden mogen dit ook afdrukken voor intern gebruik maar niet verder verspreiden. Voor alle overige gebruik is toestemming van de auteurs vereist. ISBN: 978-90-9030219-5 NUR: 600 Collectiebeheer voor botanische tuinen, theorie en praktijk Een handboek voor collectiebeheer van basaal tot wetenschappelijk niveau Over de auteurs Bert van den Wollenberg is botanicus en als wetenschappelijk collectiebeheerder werkzaam in de Botanische Tuin, afdeling Biotechnologie van de faculteit Technische Natuurwetenschappen, TU Delft, en daarvoor bij de Botanische Tuinen van de Universiteit Utrecht. Door zijn vertegenwoordigende rol in (inter)nationale circuits heeft hij frequent contact met collectiebeheer- specialisten in het buitenland. Hij is tevens medeoprichter van IPEN en ‘founding member’ van het Europees Consortium van Botanische Tuinen. Tevens contact-auteur ([email protected]). Hans Persoon is botanicus en werkzaam als wetenschappelijk collectiebeheerder en adjunct- directeur in de Botanische Tuinen van de Universiteit van Utrecht. Vanuit zijn automatiseringsverleden is hij goed op de hoogte van de functionele en technische aspecten van databases en de informatiestromen die daarbij horen. Hij is lid van de Collectiecommissie van de Nationale Plantencollectie en kent de meeste Nederlandse botanische tuinen goed. Als auteur van een monografie is hij goed op de hoogte van taxonomie en nomenclatuur.
    [Show full text]