Quality of Service on the Internet

Total Page:16

File Type:pdf, Size:1020Kb

Quality of Service on the Internet Quality of Service on the Internet C. Pham DEA DISIC lecture These slides borrow material from various sources which are indicated below each slide when necessary Slides mostly taken from Shivkumar Kalyanaraman which are mostly based on slides of Ion Stoica, Jim Kurose, Srini Seshan, Srini Keshav Multimedia, real time on the Internet Arrival Offset Graph Sampled Audio Playout Playout Buffer must be Point small for interactive applications q Real-time applications q Interactive applications are sensitive to packet delays (telephone) q Non-interactive applications can adapt to a wider range of packet delays (audio, video broadcasts) q Guarantee of maximum delay is useful Time-constrained applications Document is only useful when it is completely received. This means average packet delay is important, not Document Document maximum packet delay. q Elastic applications q Interactive data transfer (e.g. HTTP, FTP) qSensitive to the average delay, not to the distribution tail q Bulk data transfer (e.g. mail and news delivery) qDelay insensitive q Best effort works well Discussion q What is the problem? q Different applications have different delay, bandwidth, and jitter needs q Some applications are very sensitive to changing network conditions: the packet arrival time distribution is important q Solutions q Make applications adaptive q Build more flexibility into network Why Better-than-Best-Effort (QoS)? q To support a wider range of applications q Real-time, Multimedia, etc q To develop sustainable economic models and new private networking services q Current flat priced models, and best-effort services do not cut it for businesses What do we have now? Multimedia applications: network audio and video Impairments: q excessive delay: gaps in rendered audio, video q excessive data loss Quality of Service: What is it? Multimedia applications: network audio and video QoS network provides application with level of performance needed for application to function. What is QoS? q “Better performance” as described by a set of parameters or measured by a set of metrics. q Generic parameters: q Bandwidth q Delay, Delay-jitter q Packet loss rate (or loss probability) q Transport/Application-specific parameters: q Timeouts q Percentage of “important” packets lost What is QoS (contd) ? q These parameters can be measured at several granularities: q “micro” flow, aggregate flow, population. q QoS considered “better” if q more parameters can be specified q QoS can be specified at a fine-granularity. q QoS spectrum: Best Effort Leased Line QoS: why don’t we have it? q QoS a concern since early 1980’s q Look at what’s happened since 1980:huge q Internet Thenow a Internetmillion times is larger! a q applications:transformative WWW, Napster, EBay, success Gopher ! q Why limited progress on QoS? q lots of smart people working on it! Why is the QoS problem so hard? Why was the WWW so “easy”? Implemented in hosts, servers at “network edge” WWW WWW q “on top of” existing network server brower q “complexity at network edge” q no changes to network core Why is QoS more difficult? q today’s Internet core provides “best effort” “The different timing service and reliability constraints q network congestion causes delays, loss of real-time communication change the q no timing guarantees requiretherefore new... protocols and q no loss guarantees architecturescore to be q multimedia requires loss, developed”architecture timing constraints met wet-behind-the-ears researcher, 1982. New architecture needed for network core! Improving QOS in IP Networks q IETF groups are working on proposals to provide better QOS control in IP networks, i.e., going beyond best effort to provide some assurance for QOS q Work in Progress includes RSVP, Differentiated Services, and Integrated Services q Simple model for sharing and congestion studies: Principles for QOS Guarantees q Consider a phone application at 1Mbps and an FTP application sharing a 1.5 Mbps link. q bursts of FTP can congest the router and cause audio packets to be dropped. q want to give priority to audio over FTP q PRINCIPLE 1: Marking of packets is needed for router to distinguish between different classes; and new router policy to treat packets accordingly Principles for QOS Guarantees (more) q Applications misbehave (audio sends packets at a rate higher than 1Mbps assumed above); q PRINCIPLE 2: provide protection (isolation) for one class from other classes q Require Policing Mechanisms to ensure sources adhere to bandwidth requirements; Marking and Policing need to be done at the edges: Principles for QOS Guarantees (more) q Alternative to Marking and Policing: allocate a set portion of bandwidth to each application flow; can lead to inefficient use of bandwidth if one of the flows does not use its allocation q PRINCIPLE 3: While providing isolation, it is desirable to use resources as efficiently as possible Principles for QOS Guarantees (more) q Cannot support traffic beyond link capacity q PRINCIPLE 4: Need a Call Admission Process; application flow declares its needs, network may block call if it cannot satisfy the needs Summary How to upgrade the Internet for QoS? q Approach: de-couple end-system evolution from network evolution q End-to-end protocols: RTP, H.323, etc to spur the growth of adaptive multimedia applications q Assume best-effort or better-than-best-effort clouds q Network protocols: IntServ, DiffServ, RSVP, MPLS, COPS … q To support better-than-best-effort capabilities at the network (IP) level CONGESTION CONTROL La congestion de plus près 10 Mbps 1.5 Mbps 100 Mbps q Une congestion peut survenir lorsque trop de paquets sont injectés dans le réseau et prennent des routes similaires. Il y a alors augmentation du temps d'attente et risque perdre des paquets. q Une congestion peut aussi survenir du fait de la différence de puissance de traitement d'un routeur à l'autre. L'agrégation du trafic est une source de congestion importante et difficile à maîtriser dans les réseaux. Congestion: A Close-up View q knee – point after packet knee cliff which loss q throughput increases very slowly q delay increases fast congestion collapse q cliff – point after Throughput which q throughput starts to decrease very fast to Load zero (congestion y la collapse) De q delay approaches infinity q Note (in an M/M/1 queue) q delay = 1/(1 – utilization) Load Congestion Control vs. Congestion Avoidance q Congestion control goal q stay left of cliff q Congestion avoidance goal q stay left of knee q Right of cliff: knee cliff q Congestion collapse congestion collapse Throughput Load Le contrôle de congestion: principes q Réactif q lorsque la congestion est détectée, informer les noeuds en amont et en aval, q puis, marquer des paquets, rejeter des paquets, traiter les paquets prioritaires. q Préventif q diffusion périodique d'informations d'états (taille des buffers) q contrôle continue de la source (Leacky Bucket, Token Bucket...), q contrôle de flux, contrôle d'admission. q De bout en bout q pas de retour du réseau q la congestion est estimée grâce à l'observation des pertes et des délais de bout-en-bout q Assisté par le réseau q bit d'annonce de congestion (SNA, DECbit, TCP/ECN, FR, ATM) Le contrôle de flux, pour le récepteur q Fenêtrage q l'émetteur utilise une fenêtre d'anticipation dans laquelle il va pouvoir envoyer une certaine quantité de données sans acquittements q la taille de cette fenêtre peut être choisie par le récepteur à la phase de connexion q si l'émetteur respecte les règles, le récepteur ne sera pas surchargé. Cela ne garantit pas que le contrôle de flux sera efficace pour le réseau (voir figure suivante). Problème d’un réseau trop faible Le contrôle de flux pour le réseau q Ex: principe du contrôle de congestion dans TCP q chaque émetteur maintient une deuxième fenêtre de congestion pour le réseau, q la quantité d'information qu'il est autorisé à transmettre par anticipation est le minimum des 2 fenêtres q initialement, la fenêtre de congestion est mise à K octets, l'émetteur envoie les données et arme un temporisateur, q si les données sont acquittées avant l'expiration du temporisateur, on augmente K, et ainsi de suite jusqu'à (i) l'expiration d'un temporisateur ou, (ii) la taille de la fenêtre du récepteur a été atteinte. q C'est le principe du "slow start" Slow Start q La fenêtre de cwnd = 1 segment 1 congestion ACK for segment 1 augmente en fait cwnd = 2 segment 2 segment 3 très rapidement! ACK for segments 2 + 3 cwnd = 4 segment 4 segment 5 segment 6 segment 7 ACK for segments 4+5+6+7 cwnd = 8 Le contrôle de congestion dans TCP q seuil initial a 64K, on augmente K exponentiellement avant et linéairement après (congestion avoidance), q si perte, divise le seuil par 2, et on recommence avec K=1 Utilisation du Round Trip Time One RTT 0R 1 One pkt time 1R 1 2 3 2R 2 3 4 6 5 7 4 5 6 7 3R 8 10 12 14 9 11 13 15 Slow Start Sequence Plot . Sequence No La fenêtre de congestion double à chaque aller/retour Time TCP Reno (Jacobson 1990) window time SS CA SS: Slow Start CA: Congestion Avoidance Fast retransmission/fast recovery TCP Vegas (Brakmo & Peterson 1994) window time SS CA q Converges, no retransmission q … provided buffer is large enough Queuing Disciplines q Each router must implement some queuing discipline q Queuing allocates bandwidth and buffer space: q Bandwidth: which packet to serve next (scheduling) q Buffer space: which packet to drop next (buff mgmt) q Queuing also affects latency Traffic Traffic Sources Classes Class A Class B Class C Drop Scheduling Buffer Management Typical Internet
Recommended publications
  • D4.2 – Report on Technical and Quality of Service Viability
    Ref. Ares(2019)1779406 - 18/03/2019 (H2020 730840) D4.2 – Report on Technical and Quality of Service Viability Version 1.2 Published by the MISTRAL Consortium Dissemination Level: Public This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730840 H2020-S2RJU-2015-01/H2020-S2RJU-OC-2015-01-2 Topic S2R-OC-IP2-03-2015: Technical specifications for a new Adaptable Communication system for all Railways Final Version Document version: 1.2 Submission date: 2019-03-12 MISTRAL D4.2 – Report on Technical and Quality of Service Viability Document control page Document file: D4.2 Report on Technical and Quality of Service Viability Document version: 1.2 Document owner: Alexander Wolf (TUD) Work package: WP4 – Technical Viability Analysis Task: T4.3, T4.4 Deliverable type: R Document status: approved by the document owner for internal review approved for submission to the EC Document history: Version Author(s) Date Summary of changes made 0.1 Alexander Wolf (TUD) 2017-12-27 TOCs and content description 0.4 Alexander Wolf (TUD) 2018-01-31 First draft version 0.5 Carles Artigas (ARD) 2018-02-02 Contribution on LTE Security, Chapter 5 0.8 Alexander Wolf (TUD) 2018-03-31 Second draft version 0.9 Alexander Wolf (TUD) 2018-04-27 Release candidate 1.0 Alexander Wolf (TUD) 2018-04-30 Final version 1.0.1 Alexander Wolf (TUD) 2018-05-02 Formatting corrections 1.0.2 Alexander Wolf (TUD) 2018-05-08 Minor additions on chapter 6 1.1 Alexander Wolf (TUD) 2018-10-29 Minor additions after 3GPP comments 1.2 Alexander Wolf (TUD) 2019-03-12 Revision after Shift2Rail JU comments Internal review history: Reviewed by Date Summary of comments Edoardo Bonetto (ISMB) 2018-04-19 Review, comments and remarks Laura Masullo (SIRTI) 2018-04-19 Review, comments and remarks Laura Masullo (SIRTI) 2018-04-29 Review Document version : 1.2 Page 2 of 88 Submission date: 2019-03-12 MISTRAL D4.2 – Report on Technical and Quality of Service Viability Legal Notice The information in this document is subject to change without notice.
    [Show full text]
  • (Qos) and Quality of Experience (Qoe) Issues in Video Service Provider Networks ––
    Troubleshooting Quality of Service (QoS) and Quality of Experience (QoE) issues in Video Service Provider Networks –– APPLICATION NOTE Application Note 2 www.tek.com/mpeg-video-test-solution-series/mpeg-analyzer Troubleshooting Quality of Service (QoS) and Quality of Experience (QoE) issues in Broadcast and Cable Networks Video Service Providers deliver TV programs using a variety is critical to have access or test points throughout the facility. of different network architectures. Most of these networks The minimum set of test points in any network should be at include satellite for distribution (ingest), ASI or IP throughout the point of ingest where the signal comes into the facility, the the facility, and often RF to the home or customer premise ASI or IP switch, and finally egress where the signal leaves as (egress). The quality of today’s digital video and audio is IP or RF. With a minimum of these three access points, it is usually quite good, but when audio or video issues appear at now possible to isolate the issue to have originated at either: random, it is usually quite difficult to pinpoint the root cause ingest, facility, or egress. of the problem. The issue might be as simple as an encoder To begin testing a signal that may contain the suspected over-compressing a few pictures during a scene with high issue, two related methods are often used, Quality of Service motion. Or, the problem might be from a random weather (QoS), and Quality of Experience (QoE). Both methods are event (e.g., heavy wind, rain, snow, etc.).
    [Show full text]
  • Diffserv -- the Scalable End-To-End Qos Model
    WHITE PAPER DIFFSERV—THE SCALABLE END-TO-END QUALITY OF SERVICE MODEL Last Updated: August 2005 The Internet is changing every aspect of our lives—business, entertainment, education, and more. Businesses use the Internet and Web-related technologies to establish Intranets and Extranets that help streamline business processes and develop new business models. Behind all this success is the underlying fabric of the Internet: the Internet Protocol (IP). IP was designed to provide best-effort service for delivery of data packets and to run across virtually any network transmission media and system platform. The increasing popularity of IP has shifted the paradigm from “IP over everything,” to “everything over IP.” In order to manage the multitude of applications such as streaming video, Voice over IP (VoIP), e-commerce, Enterprise Resource Planning (ERP), and others, a network requires Quality of Service (QoS) in addition to best-effort service. Different applications have varying needs for delay, delay variation (jitter), bandwidth, packet loss, and availability. These parameters form the basis of QoS. The IP network should be designed to provide the requisite QoS to applications. For example, VoIP requires very low jitter, a one-way delay in the order of 150 milliseconds and guaranteed bandwidth in the range of 8Kbps -> 64Kbps, dependent on the codec used. In another example, a file transfer application, based on ftp, does not suffer from jitter, while packet loss will be highly detrimental to the throughput. To facilitate true end-to-end QoS on an IP-network, the Internet Engineering Task Force (IETF) has defined two models: Integrated Services (IntServ) and Differentiated Services (DiffServ).
    [Show full text]
  • Autoqos for Voice Over IP (Voip)
    WHITE PAPER AUTOQoS FOR VOICE OVER IP Last Updated: September 2008 Customer networks exist to service application requirements and end users efficiently. The tremendous growth of the Internet and corporate intranets, the wide variety of new bandwidth-hungry applications, and convergence of data, voice, and video traffic over consolidated IP infrastructures has had a major impact on the ability of networks to provide predictable, measurable, and guaranteed services to these applications. Achieving the required Quality of Service (QoS) through the proper management of network delays, bandwidth requirements, and packet loss parameters, while maintaining simplicity, scalability, and manageability of the network is the fundamental solution to running an infrastructure that serves business applications end-to-end. Cisco IOS ® Software offers a portfolio of QoS features that enable customer networks to address voice, video, and data application requirements, and are extensively deployed by numerous Enterprises and Service Provider networks today. Cisco AutoQoS dramatically simplifies QoS deployment by automating Cisco IOS QoS features for voice traffic in a consistent manner and leveraging the advanced functionality and intelligence of Cisco IOS Software. Figure 1 illustrates how Cisco AutoQoS provides the user a simple, intelligent Command Line Interface (CLI) for enabling campus LAN and WAN QoS for Voice over IP (VoIP) on Cisco switches and routers. The network administrator does not need to possess extensive knowledge of the underlying network
    [Show full text]
  • Quality of Service Regulation Manual Quality of Service Regulation
    REGULATORY & MARKET ENVIRONMENT International Telecommunication Union Telecommunication Development Bureau Place des Nations CH-1211 Geneva 20 Quality of Service Switzerland REGULATION MANUAL www.itu.int Manual ISBN 978-92-61-25781-1 9 789261 257811 Printed in Switzerland Geneva, 2017 Telecommunication Development Sector QUALITY OF SERVICE REGULATION MANUAL QUALITY OF SERVICE REGULATION Quality of service regulation manual 2017 Acknowledgements The International Telecommunication Union (ITU) manual on quality of service regulation was prepared by ITU expert Dr Toni Janevski and supported by work carried out by Dr Milan Jankovic, building on ef- forts undertaken by them and Mr Scott Markus when developing the ITU Academy Regulatory Module for the Quality of Service Training Programme (QoSTP), as well as the work of ITU-T Study Group 12 on performance QoS and QoE. ITU would also like to thank the Chairman of ITU-T Study Group 12, Mr Kwame Baah-Acheamfour, Mr Joachim Pomy, SG12 Rapporteur, Mr Al Morton, SG12 Vice-Chairman, and Mr Martin Adolph, ITU-T SG12 Advisor. This work was carried out under the direction of the Telecommunication Development Bureau (BDT) Regulatory and Market Environment Division. ISBN 978-92-61-25781-1 (paper version) 978-92-61-25791-0 (electronic version) 978-92-61-25801-6 (EPUB version) 978-92-61-25811-5 (Mobi version) Please consider the environment before printing this report. © ITU 2017 All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU. Foreword I am pleased to present the Manual on Quality of Service (QoS) Regulation pub- lished to serve as a reference and guiding tool for regulators and policy makers in dealing with QoS and Quality of Experience (QoE) matters in the ICT sector.
    [Show full text]
  • Quality of Services for ISP Networks
    Quality of Services for ISP Networks Qi Guan SIEMENSAG Austria Siemensstrasse 88-92 A-1210, Vienna, Austria Key words: Quality of Service, QoS, ISP Internet, Backbone, VoiP Abstract: Quality of Service (QoS) is a basic functionality that the Internet needs to be able to cope with when the applications increased in number and varied in use. Internet QoS issues concerning the Internet involves many different areas: end user QoS, ISP network QoS, backbone QoS. Backbone QoS is the problem concerning traffic engineering and bandwidth. ISP network QoS is one of the major problems in the Internet, In this paper, we would like to present an architecture model for QoS enabled ISP networks. This model is based on differentiated services and is connected to QoS or non-QoS enabled backbones for IP upstream and downstream QoS traffic. At the end of paper, an example of VoiP application is introduced. 1. INTRODUCTION Until now, two separate worlds have existed for telecommunication services and networks - one for voice and one for data. The voice world is that of switched PSTN I ISDN networks, which generally provide real-time services and features such as call diversions, conference and display services. Switched PSTN I ISDN networks guarantee quality and reliability in the form of constant availability of voice services for their customers. As a result thereof, this quality of service has made voice networks extremely profitable. The original version of this chapter was revised: The copyright line was incorrect. This has been corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35522-1_37 H.
    [Show full text]
  • SD-WAN QUALITY of SERVICE Supplemental Guide
    SD-WAN QUALITY OF SERVICE Supplemental Guide June 2019 Table of Contents Quality of Service ............................................................................................................................................................................... 1 Classification and Marking...............................................................................................................................................................................2 QoS for Aruba Gateways..................................................................................................................................................................................3 Deploying SD-WAN QoS .................................................................................................................................................................... 4 Appendix A: QoS Design ................................................................................................................................................................. 12 Comprehensive QoS Policy........................................................................................................................................................................... 12 Appendix B: QoS Deployment ........................................................................................................................................................ 17 Application Category Mapping ....................................................................................................................................................................
    [Show full text]
  • Qos Performance Study of Real-Time Transport Protocol Over Voip
    VOL. 11, NO. 9, MAY 2016 ISSN 1819-6608 ARPN Journal of Engineering and Applied Sciences ©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved. www.arpnjournals.com QOS PERFORMANCE STUDY OF REAL-TIME TRANSPORT PROTOCOL OVER VOIP Abdallah S. Abdelrahman1, Rashid A. Saeed1 and Raed A. Alsaqour2 1College of Engineering, Sudan University of Science and Technology (SUST), Khartoum, Sudan 2School of Computer Science, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia E-Mail: [email protected] ABSTRACT In recent years, Voice over IP (VoIP) has gained a lot of popularity and become an industry favorite over Public Switching Telephone Networks (PSTN) with regards to voice communication. This paper work consists of creating a VoIP network and testing for its known faults. Through this paper, we get a better understanding of the underlying layers of the network and see if and where improvements can be made. In implementation stage the Real-time Transport Protocol (RTP) packets for VoIP applications had been sent and compared with TCP/UDP packets to obtain results which are mainly related to Quality of Service (QoS) factors. The attained result approved that RTP consider to be better to reduce a packet loss than UDP and also approved that UDP/RTP are most reliable because they had a very small delay and jitter in contrast with TCP. Hence, we find that, UDP/RTP are more balance and prefer than TCP in real-time applications such as VoIP. Keywords: Transport Control Protocol (TCP), UDP, RTP, VoIP. INTRODUCTION RTP network with TCP and UDP.
    [Show full text]
  • Quality Parameters and Standards for Telecommunications and Broadcasting Networks (Study of Specifications and Recommendations)
    Quality parameters and standards for Telecommunications and Broadcasting networks (Study of Specifications and Recommendations) Executive summary This document is the study report for the ‘Quality parameters and standards for Telecommunication networks’ for the Bureau Telecommunications and Post St. Maarten. This study is to analyze and describe Quality of Service (QoS) and Quality of Experience (QoE) parameters that are relevant for the St. Maarten Telecommunication Industry. As part of the study existing standards and recommendation (such as ITU, GSMA etc.) have been inventoried. The parameters and standards will be consistent with International recommendations and specifications from institutions such as ITU, GSMA, 3GPP, ETSI, and also will be in line with international best practice of how to define such quality parameters. The set of parameters for inspection purposes have been described in a separate document (‘Inspection Guide’). Page 2 Cannegieter Street 15 – Unit 5.1 I Philipsburg I St. Maarten I Dutch Caribbean I +1(721) 542.4699 [email protected] I www.sxmregulator.sx Table of Contents 1 Introduction ................................................................................................................................................ 4 1.1 Background and current situation ....................................................................................................... 4 1.2 Purpose of the project ........................................................................................................................
    [Show full text]
  • How to Configure Qos to Conform to Standard Marking Schemes
    AlliedWare PlusTM OS How To | Configure QoS to Conform to Standard Marking Schemes Introduction This How To Note describes how to deploy a QoS solution across an entire network. It explains how to define per-hop behaviours (PHBs) that each switch in the network should perform, and how to ensure that the switches uniformly interpret the QoS information carried in packets. This means you can achieve a predictable performance for different traffic types across the whole network. Packets that enter the network’s edge may carry no QoS information. If so, the edge switch places such information into the packets before transmitting them to the next node. Thus, QoS information is preserved between nodes within the network and the nodes know what treatment to give each packet. Contents Introduction .............................................................................................................................................. 1 Contents ............................................................................................................................................ 1 Which products and software versions does this How To Note apply to? ....................... 2 Related How To Notes ................................................................................................................... 3 Marking QoS information into packets .............................................................................................. 4 Layer 2 CoS/802.1p ........................................................................................................................
    [Show full text]
  • Performance Measurement Methodologies and Quality of Service Evaluation in Voip and Desktop Videoconferencing Networks
    Performance Measurement Methodologies and Quality of Service Evaluation in VoIP and Desktop Videoconferencing Networks Henri TOBIET1 and Pascal LORENZ2 1 NMG TELECOMS – Network Management Group – Telecoms Solutions 20e, rue Salomon Grumbach, BP 2087, 68059 Mulhouse Cedex, France [email protected] 2 University of Colmar - IUT / GTR 34 rue du Grillenbreit - 68008 Colmar, France [email protected] Abstract. The present paper relates to performance and quality of service evaluation for VoIP (Voice over IP) and desktop videoconferencing services in IP networks. Simulation-based performance measurements consist in the generation of performance statistics obtained by measurements realized by simulation on the subscriber interface. They include detailed measurement of call quality, call set-up quality and availability. The tests are accomplished by emission of non-disturbing additional test traffic. The real-time QoS monitoring is based on non-intrusive analysis of real call parameters. The advantage of this method is the exhaustiveness of the analyzed call. The QoS measurements are mainly service availability and call set-up quality. 1 Introduction QoS defined in CCITT Recommendation E.800 may be considered as the generic definition reproduced below: "The collective effect of service performance which determine the degree of satisfaction of a user of the service". Quality of Service on the LAN represents a major challenge, not so much during the predictable processes of compressing the voice streams and splitting them into packets which are mathematically predictable, the real challenge is of sharing the connectionless transmission media with other users in a predictable and quantifiable way. As soon as voice/video traffic reaches the IP network, it must compete with electronic mail traffic, database applications and file transfers [13], [17], [18].
    [Show full text]
  • The Role of Telecommunications Service Quality in the Digital Economy
    The role of telecommunications service quality in the Digital Economy ITU-IMDA Workshop – Singapore, 19 August 2019 Elena Scaramuzzi, Cullen International Regulatory approaches QoS: Command and control • Parameters and measurements criteria • Targets set • Data collection, validation, reporting • Compliance control, enforcement and sanctioning QoE: Consumers empowerment • Tools to compare offers • Speed testing tools • Coverage maps • Other apps • Feedback from users Encouragement and transparency • Operators set own targets • Publicise results • Industry codes of conduct Evolution from telephony to the digital economy Regulators “Service quality” Providers Users Europe Evolution of EU Framework (relevant for QoS/QoE) EECC transposition by EECC 2018 20/12/20 TSM 2015 2009 Review 2002 Framework Amendments to Universal Service and e-Privacy Directives (Citizens’ Rights Directive - 2009) Key amendments Main provisions Net Neutrality • NRAs will be able set minimum quality of service (QoS) requirements • NRAs to report annually on ‘internet freedoms’ Personal data breaches • Obligation on ECS providers to notify subscribers and other impacted individuals • Also inform NRA Data protection breaches • ECS providers must inform authorities when security breaches lead to personal data loss or misuse Use of cookies and spyware • End users to give explicit consent (opt-in) Information for end-users • any lawful conditions limiting access to or use of services and applications • minimum QoS levels offered • any restriction on the use of terminal equipment Number portability • Within 1 working day Emergency – single 112 • Broadened to all providers offering calls to national numbers. This includes number-based VoIP providers • Caller location information should be made available to the authority handling emergency calls as soon as the call reaches that authority.
    [Show full text]