Consulfamoye2006 Lagrangian.Probability.Distributions

Total Page:16

File Type:pdf, Size:1020Kb

Consulfamoye2006 Lagrangian.Probability.Distributions About the Authors Prem C. Consul is professor emeritus in the Department of Mathematics and Statistics at the University of Calgary in Calgary, Alberta, Canada. Dr. Consul received his Ph.D. degree in mathematical statistics and a master’s degree in mathematics from Dr. Bhimrao Ambedkar University (formerly Agra University), Agra in India. Prior to joining the University of Calgary in 1967, he was a professor at the University of Libya for six years, the principal of a degree college in India for four years, and was a professor and assistant professor in degree colleges for ten years. He was on the editorial board of Communications in Statistics for many years. He is a well-known researcher in distribution theory and multivariate analysis. He published three books prior to the present one. Felix Famoye is a professor and a consulting statistician in the Department of Mathematics at Central Michigan University in Mount Pleasant, Michigan, USA. Prior to joining the staff at Central Michigan University, he was a postdoctoral research fellow and an associate at the University of Calgary, Calgary, Canada. He received his B.SC. (Honors) degree in statistics from the University of Ibadan, Ibadan, Nigeria. He received his Ph.D. degree in statistics from the University of Calgary under the Canadian Commonwealth Scholarship. Dr. Famoye is a well-known researcher in statistics. He has been a visiting scholar at the University of Kentucky, Lexington and University of North Texas Health Science Center, Fort Worth, Texas. Prem C. Consul Felix Famoye Lagrangian Probability Distributions Birkhauser¨ Boston • Basel • Berlin Prem C. Consul Felix Famoye University of Calgary Central Michigal University Department of Mathematics and Statistics Department of Mathematics Calgary, Alberta T2N 1N4 Mount Pleasant, MI 48859 Canada USA Cover design by Alex Gerasev. Mathematics Subject Classification (2000): 60Exx, 60Gxx, 62Exx, 62Pxx (primary); 60E05, 60G50, 60J75, 60J80, 60K25, 62E10, 62P05, 62P10, 62P12, 62P30, 65C10 (secondary) Library of Congress Control Number: 2005tba ISBN-10 0-8176-4365-6 eISBN 0-8176- ISBN-13 978-0-8176-4365-2 Printed on acid-free paper. c 2006 Birkhauser¨ Boston All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Birkhauser¨ Boston, c/o Springer Science+Business Media Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed in the United States of America. (KeS/MP) 987654321 www.birkhauser.com Joseph Louis Lagrange (1736–1813) Joseph Louis Lagrange was one of the two great mathematicians of the eighteenth century. He was born in France and was appointed professor at the age of 19. He helped in founding the Royal Academy of Sciences at the Royal Artillery School in 1757. He was very close to the famous mathematician Euler, who appreciated his work immensely. When Euler left the Berlin Academy of Science in 1766, Lagrange succeeded him as director of mathematics. He left Berlin in 1787 and became a member of the Paris Academy of Science and remained there for the rest of his career. He helped in the establishment of Ecole´ Polytechnique and taught there for some time. He survived the French revolution, and Napoleon appointed him to the Legion of Honour and Count of the Empire. Lagrange had given two formulae for the expansion of the function f (z) in a power series of u when z = ug(z) (memoires´ de l’Acad. Roy. des Sci. Berlin, 24, 1768, 251) which have been extensively used by various researchers for developing the class of Lagrangian probability models and its families described in this book. Lagrange developed the calculus of variations, which was very effective in dealing with mechanics. His work Mecanique´ Analytique (1788), summarizing all the work done earlier in mechanics, contained unique methods using differential equations and mathematical analysis. He created Lagrangian mechanics, provided many new solutions and theorems in number the- ory, the method of Lagrangian multipliers, and numerous other results which were found to be extremely useful. To Shakuntla Consul and Busola Famoye Foreword It is indeed an honor and pleasure to write a Foreword to the book on Lagrangian Probability Distributions by P. C. Consul and Felix Famoye. This book has been in the making for some time and its appearance marks an important milestone in the series of monographs on basic statistical distributions which have originated in the second half of the last century. The main impetus for the development of an orderly investigation of statistical distributions and their applications was the International Symposium on Classical and Contagious Discrete Distributions, organized by G. P. Patil in August of 1969–some forty years ago—with the active participation of Jerzy Neyman and a number of other distinguished researchers in the field of statistical distributions. This was followed by a number of international conferences on this topic in various lo- cations, including Trieste, Italy and Calgary, Canada. These meetings, which took place dur- ing the period of intensive development of computer technology and its rapid penetration into statistical analyses of numerical data, served inter alia, as a shield, resisting the growing at- titude and belief among theoreticians and practitioners that it may perhaps be appropriate to de-emphasize the parametric approach to statistical models and concentrate on less invasive nonparametric methodology. However, experience has shown that parametric models cannot be ignored, in particular in problems involving a large number of variables, and that without a distributional “saddle,” the ride towards revealing and analyzing the structure of data repre- senting a certain “real world” phenomenon turns out to be burdensome and often less reliable. P. C. Consul and his former student and associate for the last 20 years Felix Famoye were at the forefront of intensive study of statistical distribution—notably the discrete one—during the golden era of the last three decades of the twentieth century. In addition to numerous papers, both of single authorship and jointly with leading scholars, P. C. Consul opened new frontiers in the field of statistical distributions and applications by discovering many useful and elegant distributions and simultaneously paying attention to com- putational aspects by developing efficient and relevant computer programs. His earlier (1989) 300-page volume on Generalized Poisson Distributions exhibited very substantial erudition and the ability to unify and coordinate seemingly isolated results into a coherent and reader-friendly text (in spite of nontrivial and demanding concepts and calculations). The comprehensive volume under consideration, consisting of 16 chapters, provides a broad panorama of Lagrangian probability distributions, which utilize the series expansion of an an- alytic function introduced by the well-known French mathematician J. L. Lagrange (1736– 1813) in 1770 and substantially extended by the German mathematician H. B¨urmann in 1779. viii Foreword A multivariate extension was developed by I. J. Good in 1955, but the definition and basic properties of the Lagrangian distributions are due to P. C. Consul, who in collaboration with R. L. Shenton wrote in the early 1970s in a number of pioneering papers with detailed discus- sion of these distributions. This book is a welcome addition to the literature on discrete univariate and multivariate distributions and is an important source of information on numerous topics associated with powerful new tools and probabilistic models. The wealth of materials is overwhelming and the well-organized, lucid presentation is highly commendable. Our thanks go to the authors for their labor of love, which will serve for many years as a textbook, as well as an up-to-date handbook of the results scattered in the periodical literature and as an inspiration for further research in an only partially explored field. Samuel Kotz The George Washington University, U.S.A. December 1, 2003 Preface Lagrange had given two expansions for a function towards the end of the eighteenth century, but they were used very little. Good (1955, 1960, 1965) did the pioneering work by developing their multivariate generalization and by applying them effectively to solve a number of impor- tant problems. However, his work did not generate much interest among researchers, possibly because the problems he considered were complex and his presentation was too concise. The Lagrange expansions can be used to obtain very useful numerous probability models. During the last thirty years, a very large number of research papers has been published by numerous researchers in various journals on the class of Lagrangian probability distributions, its interesting families, and related models. These probability models have been applied to many real life situations including, but not limited to, branching processes, queuing processes, stochastic processes, environmental toxicology, diffusion of information, ecology, strikes in industries, sales of new products, and amounts of production for optimum profits. The first author of this book was the person who defined the Lagrangian probability distrib- utions and who had actively started research on some of these models, in collaboration with his associates, about thirty years ago. After the appearance of six research papers in quick succes- sion until 1974, other researchers were anxious to know more. He vividly remembers the day in the 1974 NATO Conference at Calgary, when a special meeting was held and the first au- thor was asked for further elucidation of the work on Lagrangian probability models.
Recommended publications
  • A Note on the Screaming Toes Game
    A note on the Screaming Toes game Simon Tavar´e1 1Department of Statistics, Columbia University, 1255 Amsterdam Avenue, New York, NY 10027, USA June 11, 2020 Abstract We investigate properties of random mappings whose core is composed of derangements as opposed to permutations. Such mappings arise as the natural framework to study the Screaming Toes game described, for example, by Peter Cameron. This mapping differs from the classical case primarily in the behaviour of the small components, and a number of explicit results are provided to illustrate these differences. Keywords: Random mappings, derangements, Poisson approximation, Poisson-Dirichlet distribu- tion, probabilistic combinatorics, simulation, component sizes, cycle sizes MSC: 60C05,60J10,65C05, 65C40 1 Introduction The following problem comes from Peter Cameron’s book, [4, p. 154]. n people stand in a circle. Each player looks down at someone else’s feet (i.e., not at their own feet). At a given signal, everyone looks up from the feet to the eyes of the person they were looking at. If two people make eye contact, they scream. What is the probability qn, say, of at least one pair screaming? The purpose of this note is to put this problem in its natural probabilistic setting, namely that of a random mapping whose core is a derangement, for which many properties can be calculated simply. We focus primarily on the small components, but comment on other limiting regimes in the discussion. We begin by describing the usual model for a random mapping. Let B1,B2,...,Bn be indepen- arXiv:2006.04805v1 [math.PR] 8 Jun 2020 dent and identically distributed random variables satisfying P(B = j)=1/n, j [n], (1) i ∈ where [n] = 1, 2,...,n .
    [Show full text]
  • Please Scroll Down for Article
    This article was downloaded by: [informa internal users] On: 4 September 2009 Access details: Access Details: [subscription number 755239602] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Communications in Statistics - Theory and Methods Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597238 Sequential Testing to Guarantee the Necessary Sample Size in Clinical Trials Andrew L. Rukhin a a Statistical Engineering Division, Information Technologies Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, USA Online Publication Date: 01 January 2009 To cite this Article Rukhin, Andrew L.(2009)'Sequential Testing to Guarantee the Necessary Sample Size in Clinical Trials',Communications in Statistics - Theory and Methods,38:16,3114 — 3122 To link to this Article: DOI: 10.1080/03610920902947584 URL: http://dx.doi.org/10.1080/03610920902947584 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
    [Show full text]
  • Chapter 8 - Frequently Used Symbols
    UNSIGNALIZED INTERSECTION THEORY BY ROD J. TROUTBECK13 WERNER BRILON14 13 Professor, Head of the School, Civil Engineering, Queensland University of Technology, 2 George Street, Brisbane 4000 Australia. 14 Professor, Institute for Transportation, Faculty of Civil Engineering, Ruhr University, D 44780 Bochum, Germany. Chapter 8 - Frequently used Symbols bi = proportion of volume of movement i of the total volume on the shared lane Cw = coefficient of variation of service times D = total delay of minor street vehicles Dq = average delay of vehicles in the queue at higher positions than the first E(h) = mean headway E(tcc ) = the mean of the critical gap, t f(t) = density function for the distribution of gaps in the major stream g(t) = number of minor stream vehicles which can enter into a major stream gap of size, t L = logarithm m = number of movements on the shared lane n = number of vehicles c = increment, which tends to 0, when Var(tc ) approaches 0 f = increment, which tends to 0, when Var(tf ) approaches 0 q = flow in veh/sec qs = capacity of the shared lane in veh/h qm,i = capacity of movement i, if it operates on a separate lane in veh/h qm = the entry capacity qm = maximum traffic volume departing from the stop line in the minor stream in veh/sec qp = major stream volume in veh/sec t = time tc = critical gap time tf = follow-up times tm = the shift in the curve Var(tc ) = variance of critical gaps Var(tf ) = variance of follow-up-times Var (W) = variance of service times W = average service time.
    [Show full text]
  • VGAM Package. R News, 8, 28–39
    Package ‘VGAM’ January 14, 2021 Version 1.1-5 Date 2021-01-13 Title Vector Generalized Linear and Additive Models Author Thomas Yee [aut, cre], Cleve Moler [ctb] (author of several LINPACK routines) Maintainer Thomas Yee <[email protected]> Depends R (>= 3.5.0), methods, stats, stats4, splines Suggests VGAMextra, MASS, mgcv Enhances VGAMdata Description An implementation of about 6 major classes of statistical regression models. The central algorithm is Fisher scoring and iterative reweighted least squares. At the heart of this package are the vector generalized linear and additive model (VGLM/VGAM) classes. VGLMs can be loosely thought of as multivariate GLMs. VGAMs are data-driven VGLMs that use smoothing. The book ``Vector Generalized Linear and Additive Models: With an Implementation in R'' (Yee, 2015) <DOI:10.1007/978-1-4939-2818-7> gives details of the statistical framework and the package. Currently only fixed-effects models are implemented. Many (150+) models and distributions are estimated by maximum likelihood estimation (MLE) or penalized MLE. The other classes are RR-VGLMs (reduced-rank VGLMs), quadratic RR-VGLMs, reduced-rank VGAMs, RCIMs (row-column interaction models)---these classes perform constrained and unconstrained quadratic ordination (CQO/UQO) models in ecology, as well as constrained additive ordination (CAO). Hauck-Donner effect detection is implemented. Note that these functions are subject to change; see the NEWS and ChangeLog files for latest changes. License GPL-3 URL https://www.stat.auckland.ac.nz/~yee/VGAM/ NeedsCompilation yes 1 2 R topics documented: BuildVignettes yes LazyLoad yes LazyData yes Repository CRAN Date/Publication 2021-01-14 06:20:05 UTC R topics documented: VGAM-package .
    [Show full text]
  • Concentration Inequalities from Likelihood Ratio Method
    Concentration Inequalities from Likelihood Ratio Method ∗ Xinjia Chen September 2014 Abstract We explore the applications of our previously established likelihood-ratio method for deriving con- centration inequalities for a wide variety of univariate and multivariate distributions. New concentration inequalities for various distributions are developed without the idea of minimizing moment generating functions. Contents 1 Introduction 3 2 Likelihood Ratio Method 4 2.1 GeneralPrinciple.................................... ...... 4 2.2 Construction of Parameterized Distributions . ............. 5 2.2.1 WeightFunction .................................... .. 5 2.2.2 ParameterRestriction .............................. ..... 6 3 Concentration Inequalities for Univariate Distributions 7 3.1 BetaDistribution.................................... ...... 7 3.2 Beta Negative Binomial Distribution . ........ 7 3.3 Beta-Prime Distribution . ....... 8 arXiv:1409.6276v1 [math.ST] 1 Sep 2014 3.4 BorelDistribution ................................... ...... 8 3.5 ConsulDistribution .................................. ...... 8 3.6 GeetaDistribution ................................... ...... 9 3.7 GumbelDistribution.................................. ...... 9 3.8 InverseGammaDistribution. ........ 9 3.9 Inverse Gaussian Distribution . ......... 10 3.10 Lagrangian Logarithmic Distribution . .......... 10 3.11 Lagrangian Negative Binomial Distribution . .......... 10 3.12 Laplace Distribution . ....... 11 ∗The author is afflicted with the Department of Electrical
    [Show full text]
  • On a Two-Parameter Yule-Simon Distribution
    On a two-parameter Yule-Simon distribution Erich Baur ♠ Jean Bertoin ♥ Abstract We extend the classical one-parameter Yule-Simon law to a version depending on two pa- rameters, which in part appeared in [1] in the context of a preferential attachment algorithm with fading memory. By making the link to a general branching process with age-dependent reproduction rate, we study the tail-asymptotic behavior of the two-parameter Yule-Simon law, as it was already initiated in [1]. Finally, by superposing mutations to the branching process, we propose a model which leads to the full two-parameter range of the Yule-Simon law, generalizing thereby the work of Simon [20] on limiting word frequencies. Keywords: Yule-Simon model, Crump-Mode-Jagers branching process, population model with neutral mutations, heavy tail distribution, preferential attachment with fading memory. AMS subject classifications: 60J80; 60J85; 60G55; 05C85. 1 Introduction The standard Yule process Y = (Y (t))t≥0 is a basic population model in continuous time and with values in N := 1, 2,... It describes the evolution of the size of a population started { } from a single ancestor, where individuals are immortal and give birth to children at unit rate, independently one from the other. It is well-known that for every t 0, Y (t) has the geometric −t ≥ distribution with parameter e . As a consequence, if Tρ denotes an exponentially distributed random time with parameter ρ > 0 which is independent of the Yule process, then for every k N, there is the identity ∈ ∞ P(Y (T )= k)= ρ e−ρt(1 e−t)k−1e−tdt = ρB(k, ρ + 1), (1) ρ − Z0 arXiv:2001.01486v1 [math.PR] 6 Jan 2020 where B is the beta function.
    [Show full text]
  • PDF Document
    Available at Applications and Applied http://pvamu.edu/aam Mathematics: Appl. Appl. Math. An International Journal ISSN: 1932-9466 (AAM) Vol. 15, Issue 2 (December 2020), pp. 764 – 800 Statistics of Branched Populations Split into Different Types Thierry E. Huillet Laboratoire de Physique Théorique et Modélisation CY Cergy Paris Université / CNRS UMR-8089 Site de Saint Martin, 2 Avenue Adolphe-Chauvin 95302 Cergy-Pontoise, France [email protected] Received: January 3, 2019; Accepted: May 30, 2020 Abstract Some population is made of n individuals that can be of P possible species (or types) at equilib- rium. How are individuals scattered among types? We study two random scenarios of such species abundance distributions. In the first one, each species grows from independent founders according to a Galton-Watson branching process. When the number of founders P is either fixed or random (either Poisson or geometrically-distributed), a question raised is: given a population of n individ- uals as a whole, how does it split into the species types? This model is one pertaining to forests of Galton-Watson trees. A second scenario that we will address in a similar way deals with forests of increasing trees. Underlying this setup, the creation/annihilation of clusters (trees) is shown to result from a recursive nucleation/aggregation process as one additional individual is added to the total population. Keywords: Branching processes; Galton-Watson trees; Increasing trees; Poisson and geometric forests of trees; Combinatorial probability; Canonical and grand-canonical species abundance distributions; Singularity analysis of large forests MSC 2010 No.: 60J80, 92D25 764 AAM: Intern.
    [Show full text]
  • A New Discrete Distribution for Vehicle Bunch Size Data: Model, Properties, Comparison and Application
    A NEW DISCRETE DISTRIBUTION FOR VEHICLE BUNCH SIZE DATA: MODEL, PROPERTIES, COMPARISON AND APPLICATION Adil Rashid1, Zahoor Ahmad2 and T. R. Jan3 1,2,3 P.G Department of Statistics, University of Kashmir, Srinagar(India) ABSTRACT In the present paper we shall construct a new probability distribution by compounding Borel distribution with beta distribution and it will be named as Borel-Beta Distribution (BBD). The newly proposed distribution finds its application in modeling traffic data sets where the concentration of observed frequency corresponding to the very first observation is maximum. BBD reduces to Borel-uniform distribution on specific parameter setting. Furthermore, we have also obtained compound version of Borel-Tanner distributions. Some mathematical properties such as mean, variance of some compound distributions have also been discussed. The estimation of parameters of the proposed distribution has been obtained via maximum likelihood estimation method. Finally the potentiality of proposed distribution is justified by using it to model the real life data set.. Keywords –Borel distribution, Borel-Tanner distribution, beta distribution, Consul distribution, Compound distribution I. INTRODUCTION Probability distributions are used to model the real world phenomenon so that scientists may predict the random outcome with somewhat certainty but to many complex systems in nature one cannot expect the behavior of random variables to be identical everytime. Most of the times researchers encounter the scientific data that lacks the sequential pattern and hence and to deal with such a randomness one must be well equipped knowledge of probability. The aim of researchers lies in predicting the random behavior of data under consideration efficiently and this can be done by using a suitable probability distributions but the natural question that arises here, is that limited account of probability distributions can’t be used to model vast and diverse forms of data sets.
    [Show full text]
  • Error Analysis of Structured Markov Chains Eleni Vatamidou
    Error analysis of structured Markov chains Error analysis of structured Markov chains Eleni Vatamidou Eleni Vatamidou Eindhoven University of Technology Department of Mathematics and Computer Science Error analysis of structured Markov chains Eleni Vatamidou This work is part of the research programme Error Bounds for Structured Markov Chains (project nr. 613.001.006), which is (partly) financed by the Netherlands Organ- isation for Scientific Research (NWO). c Eleni Vatamidou, 2015. Error analysis of structured Markov chains / by Eleni Vatamidou. { Mathematics Subject Classification (2010): Primary 60K25, 91B30; Secondary 68M20, 60F10, 41A99. A catalogue record is available from the Eindhoven University of Technology Library. ISBN: 978-90-386-3878-2 This thesis is number D 192 of the thesis series of the Beta Research School for Operations Management and Logistics. Kindly supported by a full scholarship from the legacy of K. Katseas. Error analysis of structured Markov chains proefschrift ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven, op gezag van de rector magnificus, prof.dr.ir. F.P.T. Baaijens, voor een commissie aangewezen door het College voor Promoties in het openbaar te verdedigen op maandag 22 juni 2015 om 16.00 uur door Eleni Vatamidou geboren te Thessaloniki, Griekenland Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de promotiecommissie is als volgt: voorzitter: prof.dr. M.G.J. van den Brand 1e promotor: prof.dr. A.P. Zwart 2e promotor: prof.dr.ir. I.J.B.F. Adan copromotor: dr. M. Vlasiou leden: prof.dr. H. Albrecher (Universite de Lausanne) dr. B. Van Houdt (Universiteit Antwerpen) prof.dr.ir.
    [Show full text]
  • Galton--Watson Branching Processes and the Growth of Gravitational
    Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 23 September 2018 (MN LATEX style file v1.3) Galton–Watson branching processes and the growth of gravitational clustering Ravi K. Sheth Berkeley Astronomy Deptartment, Univeristy of California, Berkeley, CA 94720 23 September 2018 ABSTRACT The Press–Schechter description of gravitational clustering from an initially Poisson distribution is shown to be equivalent to the well studied Galton–Watson branching process. This correspondence is used to provide a detailed description of the evolution of hierarchical clustering, including a complete description of the merger history tree. The relation to branching process epidemic models means that the Press–Schechter description can also be understood using the formalism developed in the study of queues. The queueing theory formalism, also, is used to provide a complete description of the merger history of any given Press–Schechter clump. In particular, an analytic expression for the merger history of any given Poisson Press–Schechter clump is obtained. This expression allows one to calculate the partition function of merger history trees. It obeys an interesting scaling relation; the partition function for a given pair of initial and final epochs is the same as that for certain other pairs of initial and final epochs. The distribution function of counts in randomly placed cells, as a function of time, is also obtained using the branching process and queueing theory descriptions. Thus, the Press–Schechter description of the gravitational evolution of clustering from an initially Poisson distribution is now complete. All these interrelations show why the Press–Schechter approach works well in a statistical sense, but cannot provide a detailed description of the dynamics of the clustering particles themselves.
    [Show full text]
  • Count Data Is the Poisson Dis- Tribution with the Pmf Given By: E−Μµy P (Y = Y) =
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Drescher, Daniel Working Paper Alternative distributions for observation driven count series models Economics Working Paper, No. 2005-11 Provided in Cooperation with: Christian-Albrechts-University of Kiel, Department of Economics Suggested Citation: Drescher, Daniel (2005) : Alternative distributions for observation driven count series models, Economics Working Paper, No. 2005-11, Kiel University, Department of Economics, Kiel This Version is available at: http://hdl.handle.net/10419/21999 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative
    [Show full text]
  • On Total Claim Amount for Marked Poisson Cluster Models Bojan Basrak, Olivier Wintenberger, Petra Zugec
    On total claim amount for marked Poisson cluster models Bojan Basrak, Olivier Wintenberger, Petra Zugec To cite this version: Bojan Basrak, Olivier Wintenberger, Petra Zugec. On total claim amount for marked Poisson cluster models. Journal of Applied Probability, Cambridge University press, In press. hal-01788339v2 HAL Id: hal-01788339 https://hal.archives-ouvertes.fr/hal-01788339v2 Submitted on 21 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. On total claim amount for marked Poisson cluster models Bojan Basraka, Olivier Wintenbergerb, Petra Zugecˇ c,∗ aDepartment of Mathematics, University of Zagreb, Bijeniˇcka 30, Zagreb, Croatia bLPSM, Sorbonne university, Jussieu, F-75005, Paris, France cFaculty of Organization and Informatics, Pavlinska 2, Varaˇzdin, University of Zagreb, Croatia Abstract We study the asymptotic distribution of the total claim amount for marked Poisson cluster models. The marks determine the size and other characteris- tics of the individual claims and potentially influence arrival rate of the future claims. We find sufficient conditions under which the total claim amount sat- isfies the central limit theorem or alternatively tends in distribution to an infinite variance stable random variable. We discuss several Poisson cluster models in detail, paying special attention to the marked Hawkes processes as our key example.
    [Show full text]