Numerical Models for Pricing Barrier Options

Total Page:16

File Type:pdf, Size:1020Kb

Numerical Models for Pricing Barrier Options Numerical Mo dels for Pricing Barrier Options Oskar Milton th March Contents Abstract Variable sp ecication Intro duction Briey ab out options What is a barrier option Upandout call Upandin call Downandout call Downandin call Upandout put Upandin put Downandout put Downandin put Double barrier option Delimitations Standard option contract BlackScholes analytic formula and theory Binomial Tree Mo del CoxRossRubinstein Binomial Mo del Trigeorgis Mo del Calculating a barrier options value using Trigeorgis Mo del Howtocho ose only the b est p oints Computing hedge sensitivities Trinomial Tree Mo del Implementing a stretch parameter Testing the adjusted trinomial mo del Computing hedge sensitivities Finite Dierence Mo del Explicit approach Implementation Stability and convergence Implicit CrancNicolson Construction of the grid Boundary conditions Implicit not fully centered Comparison b etween the Finite Dierence Mo dels Monte Carlo Simulation Comparison Evaluation of the b est suited numerical mo del for pricing the standard contract Evaluation of the b est suited numerical mo del for pricing contracts with asset price very close to the barrier Evaluation of the b est suited numerical mo del for pricing contracts with asset price far away from the barrier Computing Hedge Sensitivities Delta Gamma Omega Theta Vega v Rho Including Discrete Dividends Conclutions and Results Diculties in the evaluation pro cess Notes ab out the Finite Dierence mo del Further Development App endix Ab out the evaluation to ol built in Java How to add new features to the program The develop ers environment Bibliography Abstract A Barrier options is a typ of option that is path dep endent That is the payo is dep endent of the motion of the underlying asset from the day the contract is written until it expires In this working pap er I am evaluating the b est suited numerical mo del for pricing this typ e of contract Of the four dierenttyp es of mo dels I have found one that is very fast and robust There are some earlier works in this eld but non of them has came up with a mo del as fast as the one presented here The mo del is a Finite Dierence Mo del with CrancNicolson the results is accurate due to earlier works but here is the results presented with a higher precision this is not scientically proved and shall just b e used as a help to understand the very fast convergence of this mo del Variable sp ecication Symbol Description Co de notation S Current price of the underlying asset S S t or S Continuous price of the underlying asset at anytime t S Price of the underlying asset at p osition i j Stij ij in a tree or a grid Standard deviation of return volatilityofas sigS set price S r Continuously comp ounded interest rate r K Strike or exercise price of a contingent claim K Drift of asset price S mu t Time t T Maturitydateofcontingent claim T q Continuous dividend yield on an asset q cKT Europ ean call price with strike price K and time to maturityT pKT Europ ean put price with strike price K and time to maturityT C t s or C The contingent claim price at time t and asset price s for some conract C The contingent claim price at p osition i j in Cii ij a tree or a grid y The natural logarithm of the asset price S y Risk neutral drift of y nu u Size of prop ortional upward move of sto chastic u variable or subscript indicating upward move of a sto chastic variable d Size of prop ortional downward move of d sto chastic variable or subscript indicating downward moveofastochastic variable Symbol Description Co de notation p Probabilityofupward move in a tree pu u p Probability of straightforward move in a tree pm m p Probabilityofdownward move in a tree pd d i Time step index in a tree or a grid i j Asset price state index in a tree or a grid j N Numb er of discretizations ie the number of Ni i time steps b etween current date and maturity date N Number of discretizations of the asset price Nj j between the lowest and the highest no de in the tree or the grid M Number of simulations for the MonteCarlo M simulation mo del B Barrier level B X Cash rebate paied when barrier kno cks out Xrebate r ebate D Dividend paymentattimestepi Di i i D Discounted cumulativevalue of all future div Dsumi sum idend payments at time step i including pay ment at time step i Hedge sensitivities The rate of change of the value of an option delta with resp ect to changes in the sto ck price The rate of change of the delta with resp ect gamma to changes in the sto ck price The rate of change of the gamma with resp ect omega to changes in the sto ck price The rate of change of the value of an option theta with resp ect to time The rate of change of the value of an option rho with resp ect to the riskfree rate of interest v The rate of change of the value of an option vega with resp ect to volatility For futher reading ab out the hedge sensitivities go to section Intro duction Ive b een commissioned by ABNAmro Software AB to evaluate dierentnumerical mo dels for pricing barrier options This pro ject is my thesis for MSc at the Royal Institute of Technology KTH in Sto ck holm The mo dels that are handled are the following The Binomial Tree Mo del The Trinomial Tree Mo del The Finite Dierence Mo del Monte Carlo Simulation When comparing dierent mo dels for pricing derivatives it is normally the tree or grid size ie the numb er of discretizations that is considered When a mo del is used in a transaction system where derivative traders need to recalculate their p ortfolio several times p er hour it is not the numb er of discretisations that is imp ortant but the calculation time These big sys tems are timecritical b ecause of the heavy load and must therefore use mo dels that give the best value at the lowest amount of time In the comparison later on in this pap er I will show b oth the numb er of discretizations and the calculationtime for the dierent mo dels When I say that one mo del is faster than another it is normally with resp ect to the calculationtime that I have made the comparison To get a clear idea of the behaviour of the dierent mo dels the diagrams are displayed with option value on the vertical axis and computerp ower or real calculation time on the horizontal axis The computerp ower is a relative factor that indicates how much time a calculation of an options price takes the real computer time on the other hand is the true calculation time measured by the computer and is displayed in milliseconds If the computer power or calculation time needed for one mo del is twice as high as for an other mo del for the same accuracy in the options price we come to the conclusion that the second mo del is twice as fast and twice as go o d as the rst one A computer program has been develop ed to simplify the evaluation pro cess and the com parison This to ol makes it p ossible to draw graphs from several dierent mo dels in the same diagram and makes it easy to compare the convergence of the dierent mo dels All the diagrams shown in the pap er comes from this to ol It also allows making diagrams for hedge parameters such as delta gamma omega etc The hedge parameters tell us much ab out the mo del and its accuracy near the barrier The to ol is constructed so that implementation and testing of dierentderivatives are made easy and fast This was already from the start a pronounced goal b ecause ABNAmro Soft ware AB wants to implement several new derivatives in their system All these derivatives need to be evaluated and tested A great thing ab out the to ol is that anyone including those with no programming exp erience can use the to ol and get the maximum of help in their evaluation pro cess from it In the end of this pap er I will showyou how the evaluation pro cess is to b e done and how to use the to ol to make it fast The to ol b elongs to ABNAmro Software AB and can not b e distributed with this pap er Briey ab out options Options are traded all around the world in bigger and bigger quantities but what is an option and why trade with them All options havean underlying asset As an example we have the sto ck option that has a sto ck as its underlying asset Commo dities as metals or corn are other underlying assets that an option can b e based on Often when dealing with options
Recommended publications
  • Trinomial Tree
    Trinomial Tree • Set up a trinomial approximation to the geometric Brownian motion dS=S = r dt + σ dW .a • The three stock prices at time ∆t are S, Su, and Sd, where ud = 1. • Impose the matching of mean and that of variance: 1 = pu + pm + pd; SM = (puu + pm + (pd=u)) S; 2 2 2 2 S V = pu(Su − SM) + pm(S − SM) + pd(Sd − SM) : aBoyle (1988). ⃝c 2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 599 • Above, M ≡ er∆t; 2 V ≡ M 2(eσ ∆t − 1); by Eqs. (21) on p. 154. ⃝c 2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 600 * - pu* Su * * pm- - j- S S * pd j j j- Sd - j ∆t ⃝c 2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 601 Trinomial Tree (concluded) • Use linear algebra to verify that ( ) u V + M 2 − M − (M − 1) p = ; u (u − 1) (u2 − 1) ( ) u2 V + M 2 − M − u3(M − 1) p = : d (u − 1) (u2 − 1) { In practice, we must also make sure the probabilities lie between 0 and 1. • Countless variations. ⃝c 2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 602 A Trinomial Tree p • Use u = eλσ ∆t, where λ ≥ 1 is a tunable parameter. • Then ( ) p r + σ2 ∆t ! 1 pu 2 + ; 2λ ( 2λσ) p 1 r − 2σ2 ∆t p ! − : d 2λ2 2λσ p • A nice choice for λ is π=2 .a aOmberg (1988). ⃝c 2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 603 Barrier Options Revisited • BOPM introduces a specification error by replacing the barrier with a nonidentical effective barrier.
    [Show full text]
  • A Fuzzy Real Option Model for Pricing Grid Compute Resources
    A Fuzzy Real Option Model for Pricing Grid Compute Resources by David Allenotor A Thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfillment of the requirements of the degree of DOCTOR OF PHILOSOPHY Department of Computer Science University of Manitoba Winnipeg Copyright ⃝c 2010 by David Allenotor Abstract Many of the grid compute resources (CPU cycles, network bandwidths, computing power, processor times, and software) exist as non-storable commodities, which we call grid compute commodities (gcc) and are distributed geographically across organizations. These organizations have dissimilar resource compositions and usage policies, which makes pricing grid resources and guaranteeing their availability a challenge. Several initiatives (Globus, Legion, Nimrod/G) have developed various frameworks for grid resource management. However, there has been a very little effort in pricing the resources. In this thesis, we propose financial option based model for pricing grid resources by devising three research threads: pricing the gcc as a problem of real option, modeling gcc spot price using a discrete time approach, and addressing uncertainty constraints in the provision of Quality of Service (QoS) using fuzzy logic. We used GridSim, a simulation tool for resource usage in a Grid to experiment and test our model. To further consolidate our model and validate our results, we analyzed usage traces from six real grids from across the world for which we priced a set of resources. We designed a Price Variant Function (PVF) in our model, which is a fuzzy value and its application attracts more patronage to a grid that has more resources to offer and also redirect patronage from a grid that is very busy to another grid.
    [Show full text]
  • Local Volatility Modelling
    LOCAL VOLATILITY MODELLING Roel van der Kamp July 13, 2009 A DISSERTATION SUBMITTED FOR THE DEGREE OF Master of Science in Applied Mathematics (Financial Engineering) I have to understand the world, you see. - Richard Philips Feynman Foreword This report serves as a dissertation for the completion of the Master programme in Applied Math- ematics (Financial Engineering) from the University of Twente. The project was devised from the collaboration of the University of Twente with Saen Options BV (during the course of the project Saen Options BV was integrated into AllOptions BV) at whose facilities the project was performed over a period of six months. This research project could not have been performed without the help of others. Most notably I would like to extend my gratitude towards my supervisors: Michel Vellekoop of the University of Twente, Julien Gosme of AllOptions BV and Fran¸coisMyburg of AllOptions BV. They provided me with the theoretical and practical knowledge necessary to perform this research. Their constant guidance, involvement and availability were an essential part of this project. My thanks goes out to Irakli Khomasuridze, who worked beside me for six months on his own project for the same degree. The many discussions I had with him greatly facilitated my progress and made the whole experience much more enjoyable. Finally I would like to thank AllOptions and their staff for making use of their facilities, getting access to their data and assisting me with all practical issues. RvdK Abstract Many different models exist that describe the behaviour of stock prices and are used to value op- tions on such an underlying asset.
    [Show full text]
  • Pricing Options Using Trinomial Trees
    Pricing Options Using Trinomial Trees Paul Clifford Yan Wang Oleg Zaboronski 30.12.2009 1 Introduction One of the first computational models used in the financial mathematics community was the binomial tree model. This model was popular for some time but in the last 15 years has become significantly outdated and is of little practical use. However it is still one of the first models students traditionally were taught. A more advanced model used for the project this semester, is the trinomial tree model. This improves upon the binomial model by allowing a stock price to move up, down or stay the same with certain probabilities, as shown in the diagram below. 2 Project description. The aim of the project is to apply the trinomial tree to the following problems: ² Pricing various European and American options ² Pricing barrier options ² Calculating the greeks More precisely, the students are asked to do the following: 1. Study the trinomial tree and its parameters, pu; pd; pm; u; d 2. Study the method to build the trinomial tree of share prices 3. Study the backward induction algorithms for option pricing on trees 4. Price various options such as European, American and barrier 1 5. Calculate the greeks using the tree Each of these topics will be explained very clearly in the following sections. Students are encouraged to ask questions during the lab sessions about certain terminology that they do not understand such as barrier options, hedging greeks and things of this nature. Answers to questions listed below should contain analysis of numerical results produced by the simulation.
    [Show full text]
  • On Trinomial Trees for One-Factor Short Rate Models∗
    On Trinomial Trees for One-Factor Short Rate Models∗ Markus Leippoldy Swiss Banking Institute, University of Zurich Zvi Wienerz School of Business Administration, Hebrew University of Jerusalem April 3, 2003 ∗Markus Leippold acknowledges the financial support of the Swiss National Science Foundation (NCCR FINRISK). Zvi Wiener acknowledges the financial support of the Krueger and Rosenberg funds at the He- brew University of Jerusalem. We welcome comments, including references to related papers we inadvertently overlooked. yCorrespondence Information: University of Zurich, ISB, Plattenstr. 14, 8032 Zurich, Switzerland; tel: +41 1-634-2951; fax: +41 1-634-4903; [email protected]. zCorrespondence Information: Hebrew University of Jerusalem, Mount Scopus, Jerusalem, 91905, Israel; tel: +972-2-588-3049; fax: +972-2-588-1341; [email protected]. On Trinomial Trees for One-Factor Short Rate Models ABSTRACT In this article we discuss the implementation of general one-factor short rate models with a trinomial tree. Taking the Hull-White model as a starting point, our contribution is threefold. First, we show how trees can be spanned using a set of general branching processes. Secondly, we improve Hull-White's procedure to calibrate the tree to bond prices by a much more efficient approach. This approach is applicable to a wide range of term structure models. Finally, we show how the tree can be adjusted to the volatility structure. The proposed approach leads to an efficient and flexible construction method for trinomial trees, which can be easily implemented and calibrated to both prices and volatilities. JEL Classification Codes: G13, C6. Key Words: Short Rate Models, Trinomial Trees, Forward Measure.
    [Show full text]
  • Volatility Curves of Incomplete Markets
    Master's thesis Volatility Curves of Incomplete Markets The Trinomial Option Pricing Model KATERYNA CHECHELNYTSKA Department of Mathematical Sciences Chalmers University of Technology University of Gothenburg Gothenburg, Sweden 2019 Thesis for the Degree of Master Science Volatility Curves of Incomplete Markets The Trinomial Option Pricing Model KATERYNA CHECHELNYTSKA Department of Mathematical Sciences Chalmers University of Technology University of Gothenburg SE - 412 96 Gothenburg, Sweden Gothenburg, Sweden 2019 Volatility Curves of Incomplete Markets The Trinomial Asset Pricing Model KATERYNA CHECHELNYTSKA © KATERYNA CHECHELNYTSKA, 2019. Supervisor: Docent Simone Calogero, Department of Mathematical Sciences Examiner: Docent Patrik Albin, Department of Mathematical Sciences Master's Thesis 2019 Department of Mathematical Sciences Chalmers University of Technology and University of Gothenburg SE-412 96 Gothenburg Telephone +46 31 772 1000 Typeset in LATEX Printed by Chalmers Reproservice Gothenburg, Sweden 2019 4 Volatility Curves of Incomplete Markets The Trinomial Option Pricing Model KATERYNA CHECHELNYTSKA Department of Mathematical Sciences Chalmers University of Technology and University of Gothenburg Abstract The graph of the implied volatility of call options as a function of the strike price is called volatility curve. If the options market were perfectly described by the Black-Scholes model, the implied volatility would be independent of the strike price and thus the volatility curve would be a flat horizontal line. However the volatility curve of real markets is often found to have recurrent convex shapes called volatility smile and volatility skew. The common approach to explain this phenomena is by assuming that the volatility of the underlying stock is a stochastic process (while in Black-Scholes it is assumed to be a deterministic constant).
    [Show full text]
  • Robust Option Pricing: the Uncertain Volatility Model
    Imperial College London Department of Mathematics Robust option pricing: the uncertain volatility model Supervisor: Dr. Pietro SIORPAES Author: Hicham EL JERRARI (CID: 01792391) A thesis submitted for the degree of MSc in Mathematics and Finance, 2019-2020 El Jerrari Robust option pricing Declaration The work contained in this thesis is my own work unless otherwise stated. Signature and date: 06/09/2020 Hicham EL JERRARI 1 El Jerrari Robust option pricing Acknowledgements I would like to thank my supervisor: Dr. Pietro SIORPAES for giving me the opportunity to work on this exciting subject. I am very grateful to him for his help throughout my project. Thanks to his advice, his supervision, as well as the discussions I had with him, this experience was very enriching for me. I would also like to thank Imperial College and more particularly the \Msc Mathemat- ics and Finance" for this year rich in learning, for their support and their dedication especially in this particular year of pandemic. On a personal level, I want to thank my parents for giving me the opportunity to study this master's year at Imperial College and to be present and support me throughout my studies. I also thank my brother and my two sisters for their encouragement. Last but not least, I dedicate this work to my grandmother for her moral support and a tribute to my late grandfather. 2 El Jerrari Robust option pricing Abstract This study presents the uncertain volatility model (UVM) which proposes a new approach for the pricing and hedging of derivatives by considering a band of spot's volatility as input.
    [Show full text]
  • The Hull-White Model • Hull and White (1987) Postulate the Following Model, Ds √ = R Dt + V Dw , S 1 Dv = Μvv Dt + Bv Dw2
    The Hull-White Model • Hull and White (1987) postulate the following model, dS p = r dt + V dW ; S 1 dV = µvV dt + bV dW2: • Above, V is the instantaneous variance. • They assume µv depends on V and t (but not S). ⃝c 2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 599 The SABR Model • Hagan, Kumar, Lesniewski, and Woodward (2002) postulate the following model, dS = r dt + SθV dW ; S 1 dV = bV dW2; for 0 ≤ θ ≤ 1. • A nice feature of this model is that the implied volatility surface has a compact approximate closed form. ⃝c 2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 600 The Hilliard-Schwartz Model • Hilliard and Schwartz (1996) postulate the following general model, dS = r dt + f(S)V a dW ; S 1 dV = µ(V ) dt + bV dW2; for some well-behaved function f(S) and constant a. ⃝c 2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 601 The Blacher Model • Blacher (2002) postulates the following model, dS [ ] = r dt + σ 1 + α(S − S ) + β(S − S )2 dW ; S 0 0 1 dσ = κ(θ − σ) dt + ϵσ dW2: • So the volatility σ follows a mean-reverting process to level θ. ⃝c 2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 602 Heston's Stochastic-Volatility Model • Heston (1993) assumes the stock price follows dS p = (µ − q) dt + V dW1; (64) S p dV = κ(θ − V ) dt + σ V dW2: (65) { V is the instantaneous variance, which follows a square-root process. { dW1 and dW2 have correlation ρ.
    [Show full text]
  • Local and Stochastic Volatility Models: an Investigation Into the Pricing of Exotic Equity Options
    Local and Stochastic Volatility Models: An Investigation into the Pricing of Exotic Equity Options A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, South Africa, in ful¯llment of the requirements of the degree of Master of Science. Abstract The assumption of constant volatility as an input parameter into the Black-Scholes option pricing formula is deemed primitive and highly erroneous when one considers the terminal distribution of the log-returns of the underlying process. To account for the `fat tails' of the distribution, we consider both local and stochastic volatility option pricing models. Each class of models, the former being a special case of the latter, gives rise to a parametrization of the skew, which may or may not reflect the correct dynamics of the skew. We investigate a select few from each class and derive the results presented in the corresponding papers. We select one from each class, namely the implied trinomial tree (Derman, Kani & Chriss 1996) and the SABR model (Hagan, Kumar, Lesniewski & Woodward 2002), and calibrate to the implied skew for SAFEX futures. We also obtain prices for both vanilla and exotic equity index options and compare the two approaches. Lisa Majmin September 29, 2005 I declare that this is my own, unaided work. It is being submitted for the Degree of Master of Science to the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination to any other University. (Signature) (Date) I would like to thank my supervisor, mentor and friend Dr Graeme West for his guidance, dedication and his persistent e®ort.
    [Show full text]
  • Numerical Methods in Finance
    NUMERICAL METHODS IN FINANCE Dr Antoine Jacquier wwwf.imperial.ac.uk/~ajacquie/ Department of Mathematics Imperial College London Spring Term 2016-2017 MSc in Mathematics and Finance This version: March 8, 2017 1 Contents 0.1 Some considerations on algorithms and convergence ................. 8 0.2 A concise introduction to arbitrage and option pricing ................ 10 0.2.1 European options ................................. 12 0.2.2 American options ................................. 13 0.2.3 Exotic options .................................. 13 1 Lattice (tree) methods 14 1.1 Binomial trees ...................................... 14 1.1.1 One-period binomial tree ............................ 14 1.1.2 Multi-period binomial tree ............................ 16 1.1.3 From discrete to continuous time ........................ 18 Kushner theorem for Markov chains ...................... 18 Reconciling the discrete and continuous time ................. 20 Examples of models ............................... 21 Convergence of CRR to the Black-Scholes model ............... 23 1.1.4 Adding dividends ................................. 29 1.2 Trinomial trees ...................................... 29 Boyle model .................................... 30 Kamrad-Ritchken model ............................. 31 1.3 Overture on stability analysis .............................. 33 2 Monte Carlo methods 35 2.1 Generating random variables .............................. 35 2.1.1 Uniform random number generator ....................... 35 Generating uniform random
    [Show full text]
  • Increasing the Accuracy of Option Pricing by Using Implied Parameters Related to Higher Moments
    Increasing the Accuracy of Option Pricing by Using Implied Parameters Related to Higher Moments Dasheng Ji and B. Wade Brorsen* Paper presented at the NCR-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management Chicago, Illinois, April 17-18, 2000 Copyright 2000 by Dasheng Ji and B. Wade Brorsen. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies. *Graduate research assistant ([email protected]) and Regents Professor (brorsen@ okway.okstate.edu), Department of Agricultural Economics, Oklahoma State University. Increasing the Accuracy of Option Pricing by Using Implied Parameters Related to Higher Moments The inaccuracy of the Black-Scholes formula arises from two aspects: the formula is for European options while most real option contracts are American; the formula is based on the assumption that underlying asset prices follow a lognormal distribution while in the real world asset prices cannot be described well by a lognormal distribution. We develop an American option pricing model that allows non-normality. The theoretical basis of the model is Gaussian quadrature and dynamic programming. The usual binomial and trinomial models are special cases. We use the Jarrow-Rudd formula and the relaxed binomial and trinomial tree models to imply the parameters related to the higher moments. The results demonstrate that using implied parameters related to the higher moments is more accurate than the restricted binomial and trinomial models that are commonly used. Keywords: option pricing, volatility smile, Edgeworth series, Gaussian Quadrature, relaxed binomial and trinomial tree models.
    [Show full text]
  • Trinomial Or Binomial: Accelerating American Put Option Price on Trees
    TRINOMIAL OR BINOMIAL: ACCELERATING AMERICAN PUT OPTION PRICE ON TREES JIUN HONG CHAN, MARK JOSHI, ROBERT TANG, AND CHAO YANG Abstract. We investigate the pricing performance of eight tri- nomial trees and one binomial tree, which was found to be most effective in an earlier paper, under twenty different implementation methodologies for pricing American put options. We conclude that the binomial tree, the Tian third order moment matching tree with truncation, Richardson extrapolation and smoothing performs bet- ter than the trinomial trees. 1. Introduction Various types of binomial and trinomial trees have been proposed in the literature for pricing financial derivatives. Since tree models are backward methods, they are effective for pricing American-type deriva- tives. Joshi (2007c) conducted an empirical investigation on the perfor- mance of eleven different binomial trees on American put options using twenty different combinations of acceleration techniques; he found that the best results were obtained by using the \Tian third order moment tree" (which we refer to as Tian3 binomial tree henceforth) together with truncation, smoothing and Richardson extrapolation. Here we per- form a similar analysis for trinomial trees and also compare the pricing results to the Tian3 binomial tree. We use the same four acceleration techniques implemented by Joshi (2007c): control variate due to Hull and White (1988), truncation due to Andicropoulos, Widdicks, Duck and Newton (2004), smoothing and Richardson extrapolation due to Broadie and Detemple (1996). These four techniques can be implemented independently or collectively and therefore yield 16 combinations of acceleration techniques one can use when pricing a derivative using trees. For detailed discussion and merits of these acceleration techniques, we refer reader to Joshi (2007c).
    [Show full text]