Schwartz operators M. Keyl TU München, Fakultät Mathematik, Boltzmannstr. 3, 85748 Garching, Germany
[email protected] J. Kiukas School of Math. Sci., Univ. Nottingham, University Park, Nottingham, NG7 2RD, UK
[email protected] R. F. Werner Inst. Theor. Physik, Leibniz Univ. Hannover, Appelstr. 2, 30167 Hannover, Germany
[email protected] March 16, 2015 In this paper we introduce Schwartz operators as a non-commutative analog of Schwartz functions and provide a detailed discussion of their properties. We equip them in particular with a number of different (but equivalent) families of seminorms which turns the space of Schwartz operators into a Frechet space. The study of the topological dual leads to non-commutative tempered distributions which are discussed in detail as well. We show in particular that the latter can be identified with a certain class of quadratic forms, therefore making operations like products with bounded (and also some unbounded) operators and quantum harmonic analysis available to objects which are otherwise too singular for being a Hilbert space operator. Finally we show how the new methods can be applied by studying operator moment problems and convergence properties of fluctuation operators. 1 Introduction arXiv:1503.04086v1 [math-ph] 13 Mar 2015 The theory of tempered distributions is used extensively in various areas of mathematical physics, in order to regularise singular objects, most notably "delta-functions" that often appear as a result of some convenient idealisation (e.g. plane wave, or point interaction). The well-known intuitive idea is to make sense of the functional R2N φ(f) = S f(x)φ(x)dx, f ∈ S( ) (1) 1 to cases where φ is no longer a function, by making use of the highly regular behaviour of the 2N Schwartz functions f ∈ S(R ).