Chapter 1: Eye History and Physical
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Interactions Between Biomaterials and the Sclera: Implications on Myopia
Interactions between Biomaterials and the Sclera: Implications on Myopia Progression by James Su A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Vision Science in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Christine F. Wildsoet, Chair Professor Kevin E. Healy Professor Xiaohua Gong Fall 2009 Interactions between Biomaterials and the Sclera: Implications on Myopia Progression © 2009 by James Su University of California, Berkeley Abstract Interactions between Biomaterials and the Sclera: Implications on Myopia Progression by James Su Doctor of Philosophy in Vision Science University of California, Berkeley Professor Christine F. Wildsoet, Chair Myopia prevalence has steadily climbed worldwide in recent decades with the most dramatic impact in East Asian countries. Treatments such as eyeglasses, contact lenses, and laser surgery for the refractive error are widely available, but none cures the underlying cause. In progressive high myopia, invasive surgical procedures using a scleral buckle for mechanical support are performed since the patient is at risk of becoming blind. The treatment outcome is highly dependent on the surgeon’s skills and the patient’s myopia progression rate, with limited choices in buckling materials. This dissertation, in four main studies, represents efforts made to control high myopia progression through the exploration and development of biomaterials that influence scleral growth. First, mRNA expression levels of the chick scleral matrix metalloproteinases, tissue- inhibitor of matrix metalloproteinases, and transforming growth factor-beta 2 were assessed for temporal and defocus power effects. The first study elucidated the roles that these factors play in scleral growth regulation and suggested potential motifs that can be incorporated in future biomaterials design. -
Openoptix NCLE Study Guide V0.2
OpenOptix NCLE Study Guide Ver. 0.2 This document is licensed under the Creative Commons Attribution 3.0 License. 6/15/2009 1 About This Document The OpenOptix NCLE Study Guide, sponsored by Laramy-K Optical has been written and is maintained by volunteer members of the optical community. This document is completely free to use, share, and distribute. For the latest version please, visit www.openoptix.org or www.laramyk.com. The quality, value, and success of this document are dependent upon your participation. If you benefit from this document, we only ask that you consider doing one or both of the following: 1. Make an effort to share this document with others whom you believe may benefit from its content. 2. Make a knowledge contribution to improve the quality of this document. Examples of knowledge contributions include original (non-copyrighted) written chapters, sections, corrections, clarifications, images, photographs, diagrams, or simple suggestions. With your help, this document will only continue to improve over time. The OpenOptix NCLE Study Guide is a product of the OpenOptix initiative. Taking a cue from the MIT OpenCourseWare initiative and similar programs from other educational institutions, OpenOptix is an initiative to encourage, develop, and host free and open optical education to improve optical care worldwide. By providing free and open access to optical education the goals of the OpenOptix initiative are to: • Improve optical care worldwide by providing free and open access to optical training materials, particularly for parts of the world where training materials and trained professionals may be limited. • Provide opportunities for optical professionals of all skill levels to review and improve their knowledge, allowing them to better serve their customers and patients • Provide staff training material for managers and practitioners • Encourage ABO certification and advanced education for opticians in the U.S. -
MIOTICS in CATARACT SURGERY by Harold Beasley, MD
MIOTICS IN CATARACT SURGERY BY Harold Beasley, MD PROMPT MIOSIS OF the pupil after delivery of the lens in round pupil cataract surgery is recommended to protect the vitreous face, to prevent iris incarceration, and to facilitate the postplacement of corneoscleral sutures.1 It has been postulated that miosis also prevents the formation of peripheral anterior synechia, but this has not been demonstrated experimentally.2 An ideal miotic should produce prompt pupillary constriction and for a duration of 12 to 24 hours. It should also be nonirritating to anterior chamber structures. Acetylcholine ( 1.0 per cent)37 and a weak solution of carbachol (0.01 per cent) ,8 as well as pilocarpine, have been found to be satisfactory for this purpose. The purposes of this study were (1) to evaluate the effectiveness of miotics in preventing peripheral anterior synechia and in preserving the integrity of the vitreous face; and (2) to compare the effectiveness of acetylcholine 1 per cent and carbachol 0.01 per cent as miotics in round pupil cataract surgery. PROCEDURE This study compared three experimental treatments in a double blind procedure in which the code was left unbroken until all the data were accumulated. Selected patients were gonioscoped prior to surgery and only patients with grades Im or iv angles were chosen for this study. All patients were predosed with 2 per cent homatropine and 10 per cent phenylephrine. Prior to the injection of the test solution the pupillary diameters were measured before the section was made and immediately after lens extraction. Measurements were then made at two minutes and at five minutes after the intracameral instillation of 0.4- to 0.5-cc of the test solutions. -
Shape of the Posterior Vitreous Chamber in Human Emmetropia and Myopia
City Research Online City, University of London Institutional Repository Citation: Gilmartin, B., Nagra, M. and Logan, N. S. (2013). Shape of the posterior vitreous chamber in human emmetropia and myopia. Investigative Ophthalmology and Visual Science, 54(12), pp. 7240-7251. doi: 10.1167/iovs.13-12920 This is the published version of the paper. This version of the publication may differ from the final published version. Permanent repository link: https://openaccess.city.ac.uk/id/eprint/14183/ Link to published version: http://dx.doi.org/10.1167/iovs.13-12920 Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to. Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. City Research Online: http://openaccess.city.ac.uk/ [email protected] Visual Psychophysics and Physiological Optics Shape of the Posterior Vitreous Chamber in Human Emmetropia and Myopia Bernard Gilmartin, Manbir Nagra, and Nicola S. Logan School of Life and Health Sciences, Aston University, Birmingham, United Kingdom Correspondence: Bernard Gilmartin, PURPOSE. To compare posterior vitreous chamber shape in myopia to that in emmetropia. School of Life and Health Sciences, Aston University, Birmingham, UK, METHODS. -
Ophthalmology Ophthalmology 160.01
Introduction to Ophthalmology Ophthalmology 160.01 Fall 2019 Tuesdays 12:10-1 pm Location: Library, Room CL220&223 University of California, San Francisco WELCOME OBJECTIVES This is a 1-unit elective designed to provide 1st and 2nd year medical students with - General understanding of eye anatomy - Knowledge of the basic components of the eye exam - Recognition of various pathological processes that impact vision - Appreciation of the clinical and surgical duties of an ophthalmologist INFORMATION This elective is composed of 11 lunchtime didactic sessions. There is no required reading, but in this packet you will find some background information on topics covered in the lectures. You also have access to Vaughan & Asbury's General Ophthalmology online through the UCSF library. AGENDA 9/10 Introduction to Ophthalmology Neeti Parikh, MD CL220&223 9/17 Oculoplastics Robert Kersten, MD CL220&223 9/24 Ocular Effects of Systemic Processes Gerami Seitzman, MD CL220&223 10/01 Refractive Surgery Stephen McLeod, MD CL220&223 10/08 Comprehensive Ophthalmology Saras Ramanathan, MD CL220&223 10/15 BREAK- AAO 10/22 The Role of the Microbiome in Eye Disease Bryan Winn, MD CL220&223 10/29 Retinal imaging in patients with hereditary retinal degenerations Jacque Duncan, MD CL220&223 11/05 Pediatric Ophthalmology Maanasa Indaram, MD CL220&223 11/12 Understanding Glaucoma from a Retina Circuit Perspective Yvonne Ou, MD CL220&223 11/19 11/26 Break - Thanksgiving 12/03 Retina/Innovation/Research Daniel Schwartz, MD CL220&223 CONTACT Course Director Course Coordinator Dr. Neeti Parikh Shelle Libberton [email protected] [email protected] ATTENDANCE Two absences are permitted. -
Refractive Changes After Scleral Buckling Surgery
Refractive changes after scleral buckling surgery Alterações refracionais após retinopexia com explante escleral João Jorge Nassaralla Junior1 ABSTRACT Belquiz Rodriguez do Amaral Nassaralla2 Purpose: A prospective study was conducted to compare the refractive changes after three different types of scleral buckling surgery. Methods: A total of 100 eyes of 100 patients were divided into three groups according to the type of performed buckling procedure: Group 1, encircling scleral buckling (42 patients); Group 2, encircling with vitrectomy (30 patients); Group 3, encircling with additional segmental buckling (28 patients). Refractive examinations were performed before and at 1, 3 and 6 months after surgery. Results: Changes in spherical equivalent and axial length were significant in all 3 groups. The amount of induced astigmatism was more significant in Group 3. No statistically significant difference was found in the amount of surgically induced changes between Groups 1 and 2, at any postoperative period. Conclusions: All three types of scleral buckling surgery were found to produce refractive changes. A correlation exists between additional segments and extent of refractive changes. Keywords: Retinal detachment/surgery; Scleral buckling/adverse effects; Refraction/ ocular; Biometry INTRODUCTION During the past several years, our Retina Service and others(1) have continued to use primarily solid implants with encircling bands. Only occa- sionally episcleral silicone rubber sponges are utilized. Changes in refrac- tion are frequent after retinal detachment surgery. The surgical technique used appears to influence these changes. Hyperopia(2) and hyperopic astig- matism may occur presumably by shortening the anteroposterior axis of the globe after scleral resections(1). Scleral buckling procedures employing an encircling band generally are expected to produce an increase in myopia and myopic astigmatism(1,3). -
Ocular Complications of Endocarditis
7 Ocular Complications of Endocarditis Ozlem Sahin Middle East Technical University Health Sciences Department of Ophthalmology, Ankara Turkey 1. Introduction Cardiac complications are the most common complications in patients with infective endocarditis, and they can be related to significant mortality and morbidity. (1) Extra- cardiac manifestations along with their historical descriptions such as splinter hemorrhages, emboli, Osler’s nodes, Janeway and Bowman lesions of the eye, Roth’s spots, patechiae and clubbing generally result from thromboemboli or septic emboli. (2) Inflammatory complications may occur as a result of septic emboli, and these include endogenous (metastatic) endophthalmitis, focal abscess, and vasculitis. (3) In this chapter we mainly focus on the endogenous endophthalmitis arising as a complication of infective endocarditis. Endogenous (metastatic) endophthalmitis is an inflammatory condition of the intraocular structures including the aqueous, iris, lens, ciliary body, vitreous, choroid and retina. (4-6) It results from the hematogenous spread of organisms from a distant source of infection, most commonly infective endocarditis, gastrointestinal tract and urinary tract infections and wound infections. (7-9) Other sources of infection have included pharyngitis, pneumonia, septic arthritis and meningitis. (10,11) Compared with endophthalmitis following trauma or surgery, endogenous endophthalmitis is relatively rare, accounting 2-8% of all reported endophthalmitis cases. (5) However, endogenous endophthalmitis carries with it the danger of bilateral infection in 15-25% of cases. (6,12) 2. Epidemiology Endogenous endophthalmitis has been reported to occur at any age and no sexual predilection. (13) However, in the recent years the mean age of endogenous endophthalmitis has shifted to 65 years possibly because of the reduction in the incidence of rheumatic heart disease. -
Anesthesia Management of Ophthalmic Surgery in Geriatric Patients
Anesthesia Management of Ophthalmic Surgery in Geriatric Patients Zhuang T. Fang, M.D., MSPH Clinical Professor Associate Director, the Jules Stein Eye Institute Operating Rooms Department of Anesthesiology and Perioperative Medicine David Geffen School of Medicine at UCLA 1. Overview of Ophthalmic Surgery and Anesthesia Ophthalmic surgery is currently the most common procedure among the elderly population in the United States, primarily performed in ambulatory surgical centers. The outcome of ophthalmic surgery is usually good because the eye disorders requiring surgery are generally not life threatening. In fact, cataract surgery can improve an elderly patient’s vision dramatically leading to improvement in their quality of life and prevention of injury due to falls. There have been significant changes in many of the ophthalmic procedures, especially cataract and retinal procedures. Revolutionary improvements of the technology making these procedures easier and taking less time to perform have rendered them safer with fewer complications from the anesthesiology standpoint. Ophthalmic surgery consists of cataract, glaucoma, and retinal surgery, including vitrectomy (20, 23, 25, or 27 gauge) and scleral buckle for not only retinal detachment, but also for diabetic retinopathy, epiretinal membrane and macular hole surgery, and radioactive plaque implantation for choroidal melanoma. Other procedures include strabismus repair, corneal transplantation, and plastic surgery, including blepharoplasty (ptosis repair), dacryocystorhinostomy (DCR) -
Clinical Practice Guidelines: Care of the Patient with Anterior Uveitis
OPTOMETRY: OPTOMETRIC CLINICAL THE PRIMARY EYE CARE PROFESSION PRACTICE GUIDELINE Doctors of optometry are independent primary health care providers who examine, diagnose, treat, and manage diseases and disorders of the visual system, the eye, and associated structures as well as diagnose related systemic conditions. Optometrists provide more than two-thirds of the primary eye care services in the United States. They are more widely distributed geographically than other eye care providers and are readily accessible for the delivery of eye and vision care services. There are approximately 32,000 full-time equivalent doctors of optometry currently in practice in the United States. Optometrists practice in more than 7,000 communities across the United States, serving as the sole primary eye care provider in more than 4,300 communities. Care of the Patient with The mission of the profession of optometry is to fulfill the vision and eye Anterior Uveitis care needs of the public through clinical care, research, and education, all of which enhance the quality of life. OPTOMETRIC CLINICAL PRACTICE GUIDELINE CARE OF THE PATIENT WITH ANTERIOR UVEITIS Reference Guide for Clinicians Prepared by the American Optometric Association Consensus Panel on Care of the Patient with Anterior Uveitis: Kevin L. Alexander, O.D., Ph.D., Principal Author Mitchell W. Dul, O.D., M.S. Peter A. Lalle, O.D. David E. Magnus, O.D. Bruce Onofrey, O.D. Reviewed by the AOA Clinical Guidelines Coordinating Committee: John F. Amos, O.D., M.S., Chair Kerry L. Beebe, O.D. Jerry Cavallerano, O.D., Ph.D. John Lahr, O.D. -
Ophthalmic Drugs
A Supplement to 22nd EDITION Randall Thomas, OD, MPH Patrick Vollmer, OD The Clinical Guide to Dr. Melton Ophthalmic[ [ Dr. Thomas Drugs Dispense as writ ten — no substit utions. Refills: unlimit ed. May 15, 2018 Dr. Vollmer Peer-to-peer advice to help boost your prescribing prowess. Supported by an unrestricted grant from Bausch + Lomb 001_dg0518_fc.indd 3 5/11/18 10:52 AM FROM THE AUTHORS DEAR OPTOMETRIC COLLEAGUES: Supported by an Welcome to the 2018 edition of our annual Clinical Guide to Ophthalmic unrestricted grant from Drugs. Herein, we provide updates on our collective clinical experiences and Bausch + Lomb heavily season them with pertinent excerpts from the literature. This guide is intended to bring solid, scientifically accurate and clinically relevant information to our optometric colleagues. If you want to understand CONTENTS how the three of us treat, and what factors led us to develop these methods, you’ll find it explained here. The methods and opinions represented are our own. We recognize that other doctors may use alternative approaches. That First-year Impressions ...........3 is true in all of health care. But this three-doctor writing team has logged over 75 combined years of clinical optometry, and we bring that ‘real-world’ spirit to the discussions that follow. Know that, above all, we are doctors who are genuinely concerned for our patients’ well-being and who endeavor to Glaucoma Care .......................... 6 provide them the best of care, and we write from that perspective. The two topics of greatest interest and need for most eye physicians right now are glaucoma and dry eye disease. -
Participation of Retinal Glucagonergic Amacrine Cells in the Regulation of Eye Growth and Refractive Error: Evidence from Neurotoxins and in Vivo Immunolesioning
Participation of retinal glucagonergic amacrine cells in the regulation of eye growth and refractive error: evidence from neurotoxins and in vivo immunolesioning by Diane Rachel Nava A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Vision Science in the Graduate Division Of the University of California, Berkeley Committee in charge: Professor Christine F. Wildsoet, Chair Professor John Flanagan Professor Joseph Napoli Spring 2016 Participation of retinal glucagonergic amacrine cells in the regulation of eye growth and refractive error: evidence from neurotoxins and in vivo immunolesioning C 2016 By Diane Rachel Nava University of California, Berkeley Abstract Participation of retinal glucagonergic amacrine cells in the regulation of eye growth and refractive error: evidence from neurotoxins and in vivo immunolesioning by Diane Rachel Nava Doctor of Philosophy in Vision Science University of California, Berkeley Professor Christine Wildsoet, Chair Growth is one of the fundamental characteristics of biological systems. The study of eye growth regulation presents an interesting window that allows for the investigation of the role of the visual environment on internal processes. We now know that there is an intricate circuitry within the eye, independent of higher brain processes, that controls the growth of the eye but more needs to be elucidated about these local regulatory circuits. An improved understanding of this circuitry is critical to developing new therapies for abnormalities in eye growth regulation such as myopia, which is impacting more and more individuals around the world each day and in its more severe from, is linked to potentially blinding ocular complications. -
Findings of Perinatal Ocular Examination Performed on 3573
BJO Online First, published on February 20, 2013 as 10.1136/bjophthalmol-2012-302539 Br J Ophthalmol: first published as 10.1136/bjophthalmol-2012-302539 on 20 February 2013. Downloaded from Clinical science Findings of perinatal ocular examination performed on 3573, healthy full-term newborns Li-Hong Li,1 Na Li,1 Jun-Yang Zhao,2 Ping Fei,3 Guo-ming Zhang,4 Jian-bo Mao,5 Paul J Rychwalski6 1Maternal and Children’s ABSTRACT children who despite screening go undetected with Hospital, Kunming, Yunnan, Objective To document the findings of a newborn eye respect to vision and eye disorders. A careful China 2Beijing Tongren Ophthalmic examination programme for detecting ocular pathology review of Pubmed revealed no published literature Center, Capital University of in the healthy full-term newborn. on the universality, much less the sensitivity and Medical Sciences, Beijing, Methods This is a cross-sectional study of the majority false-negative rate of RRT of normal newborns. China 3 of newborns born in the Kunming Maternal and Child Further, this age group has not been studied exten- Shanghai Xinhua Hospital, Healthcare Hospital, China, between May 2010 and sively and the actual prevalence of ocular abnor- Shanghai, China 4Shenzhen Eye Hospital, Jinan June 2011. Infants underwent ocular examination within malities, transient and permanent, is largely University, Shenzhen, China 42 days after birth using a flashlight, retinoscope, hand- unknown. There are few previous studies looking 5Eye Hospital of Wenzhou held slit lamp microscope and wide-angle digital retinal at the incidence of retinal haemorrhages in healthy Medical College, Wenzhou, image acquisition system.