Ophthalmology Ophthalmology 160.01
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Openoptix NCLE Study Guide V0.2
OpenOptix NCLE Study Guide Ver. 0.2 This document is licensed under the Creative Commons Attribution 3.0 License. 6/15/2009 1 About This Document The OpenOptix NCLE Study Guide, sponsored by Laramy-K Optical has been written and is maintained by volunteer members of the optical community. This document is completely free to use, share, and distribute. For the latest version please, visit www.openoptix.org or www.laramyk.com. The quality, value, and success of this document are dependent upon your participation. If you benefit from this document, we only ask that you consider doing one or both of the following: 1. Make an effort to share this document with others whom you believe may benefit from its content. 2. Make a knowledge contribution to improve the quality of this document. Examples of knowledge contributions include original (non-copyrighted) written chapters, sections, corrections, clarifications, images, photographs, diagrams, or simple suggestions. With your help, this document will only continue to improve over time. The OpenOptix NCLE Study Guide is a product of the OpenOptix initiative. Taking a cue from the MIT OpenCourseWare initiative and similar programs from other educational institutions, OpenOptix is an initiative to encourage, develop, and host free and open optical education to improve optical care worldwide. By providing free and open access to optical education the goals of the OpenOptix initiative are to: • Improve optical care worldwide by providing free and open access to optical training materials, particularly for parts of the world where training materials and trained professionals may be limited. • Provide opportunities for optical professionals of all skill levels to review and improve their knowledge, allowing them to better serve their customers and patients • Provide staff training material for managers and practitioners • Encourage ABO certification and advanced education for opticians in the U.S. -
Shape of the Posterior Vitreous Chamber in Human Emmetropia and Myopia
City Research Online City, University of London Institutional Repository Citation: Gilmartin, B., Nagra, M. and Logan, N. S. (2013). Shape of the posterior vitreous chamber in human emmetropia and myopia. Investigative Ophthalmology and Visual Science, 54(12), pp. 7240-7251. doi: 10.1167/iovs.13-12920 This is the published version of the paper. This version of the publication may differ from the final published version. Permanent repository link: https://openaccess.city.ac.uk/id/eprint/14183/ Link to published version: http://dx.doi.org/10.1167/iovs.13-12920 Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to. Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. City Research Online: http://openaccess.city.ac.uk/ [email protected] Visual Psychophysics and Physiological Optics Shape of the Posterior Vitreous Chamber in Human Emmetropia and Myopia Bernard Gilmartin, Manbir Nagra, and Nicola S. Logan School of Life and Health Sciences, Aston University, Birmingham, United Kingdom Correspondence: Bernard Gilmartin, PURPOSE. To compare posterior vitreous chamber shape in myopia to that in emmetropia. School of Life and Health Sciences, Aston University, Birmingham, UK, METHODS. -
Semaphorin3a/Neuropilin-1 Signaling Acts As a Molecular Switch Regulating Neural Crest Migration During Cornea Development
Developmental Biology 336 (2009) 257–265 Contents lists available at ScienceDirect Developmental Biology journal homepage: www.elsevier.com/developmentalbiology Semaphorin3A/neuropilin-1 signaling acts as a molecular switch regulating neural crest migration during cornea development Peter Y. Lwigale a,⁎, Marianne Bronner-Fraser b a Department of Biochemistry and Cell Biology, MS 140, Rice University, P.O. Box 1892, Houston, TX 77251, USA b Division of Biology, 139-74, California Institute of Technology, Pasadena, CA 91125, USA article info abstract Article history: Cranial neural crest cells migrate into the periocular region and later contribute to various ocular tissues Received for publication 2 April 2009 including the cornea, ciliary body and iris. After reaching the eye, they initially pause before migrating over Revised 11 September 2009 the lens to form the cornea. Interestingly, removal of the lens leads to premature invasion and abnormal Accepted 6 October 2009 differentiation of the cornea. In exploring the molecular mechanisms underlying this effect, we find that Available online 13 October 2009 semaphorin3A (Sema3A) is expressed in the lens placode and epithelium continuously throughout eye development. Interestingly, neuropilin-1 (Npn-1) is expressed by periocular neural crest but down- Keywords: Semaphorin3A regulated, in a manner independent of the lens, by the subpopulation that migrates into the eye and gives Neuropilin-1 rise to the cornea endothelium and stroma. In contrast, Npn-1 expressing neural crest cells remain in the Neural crest periocular region and contribute to the anterior uvea and ocular blood vessels. Introduction of a peptide that Cornea inhibits Sema3A/Npn-1 signaling results in premature entry of neural crest cells over the lens that Lens phenocopies lens ablation. -
Using the Ophthalmoscope: Viewing the Optic Disc and Retina
Using the Ophthalmoscope: Viewing the Optic Disc and Retina Judith Warner, MD University of Utah THE OPHTHALMOSCOPE DIRECT OPHTHALMOSCOPY • Jan Purkinje 1823 • Hermann von Helmholtz 1851 • Hand held ophthalmoscope • Direct up-right image Dials of the Ophthalmoscope RED-FREE FILTER (GREEN LIGHT) 450 nm monochromatic light nerve fiber layer optic nerve drusen OTHER DIALS • Used for measuring lesion size • Looking for the center of fixation OTHER DIALS: SLIT BEAM The wheel has lenses of power Panoptic-ophthalmoscope Direct type Wider field of view Distance from pt greater Similar apertures Not as easy to carry Slightly dimmer light source Not as magnified view of Disc Clean the rubber cup between patients Photographs: http://panoptic.welchallyn.com/faq.html WHEN EVER POSSIBLE: DILATE THE PATIENT Steps to Direct Ophthalmoscopy • Dimly lit room • Dilating drops • Patient fixates distant target • Align yourself • Red reflex • Dial in HOW TO USE THE DIRECT Ophthalmoscope.avi ophthalmoscope.wmv THE RED REFLEX The layers you will go through to see the optic disc THE OPTIC NERVE WHAT YOU SHOULD OBSERVE IN EVERYONE RIGHT EYE AND LEFT EYE THE NORMAL DISC • The disc is 1.62 mm or 1 million fibers • Central retinal artery and vein • Lamina Cribrosa • The optic cup The Normal Disc Appearance The lamina cribrosa is an important disc structure --Means Sieve --Anatomically present in all discs --Visible in about 1/3 --Shallow in myopia Look at the Cup-to-disc ratio: WHAT IS THE CUP-TO-DISC RATIO? .7 NO CUP 0.1 CUP 0.3 CUP 0.7 CUP 0.9 CUP What is the cup -
Ovalness* of the Optic Cup and Disc in the Normal Eye
Br J Ophthalmol: first published as 10.1136/bjo.58.5.543 on 1 May 1974. Downloaded from Brit. J. Ophthal. (1974) 58, 543 Ovalness* of the optic cup and disc in the normal eye ALAN TOMLINSON Department of Ophthalmic Optics, University of Manchester Institute of Science and Technology AND CALBERT I. PHILLIPS Department of Ophthalmology, University ofEdinburgh Observations have been made of the horizontal extent of cupping of the optic nerve head in both normal and glaucomatous eyes in an attempt to determine the factors which influ- ence cup size in the normal eye (Armaly, I967; Armaly and Sayegh, I969; Armaly, 1969a, b; Tomlinson and Phillips, I969; Jonsas, I972) and to establish differential diagnostic criteria for glaucomatous excavation (Armaly, I969c; Armaly, I970; Becker, 1970; Kirsch and Anderson, I973a). In our series (i969) cup-disc area ratio was chosen to take account of oval or other shapes. Recently the vertical elongation of the optic cup has been considered as a possible diagnostic feature of glaucomatous cupping by Kirsch and Anderson (I973a, b) and Weisman, Asseff, Phelps, Podos, and Becker (I973). It is important, however, to consider factors which influence physiological variations of any feature before it may be utilized as http://bjo.bmj.com/ a diagnostic criterion ofany condition, e.g. it has been found (Tomlinson and Phillips, I 969) that the area of cup of the optic disc in normal eyes is related to axial length of the eyeball and that this in turn is related to intraocular pressure (Tomlinson and Phillips, 1970); similarly the degree of angulation and position of emergence of vessels at the optic disc are dependent on the area of physiological cupping present (Tomlinson and Phillips, 1977 ). -
Bmps and Ventral Optic Cup Differentiation 3163
Development 129, 3161-3171 (2002) 3161 Printed in Great Britain © The Company of Biologists Limited 2002 DEV1795 The role of bone morphogenetic proteins in the differentiation of the ventral optic cup Ruben Adler1 and Teri L. Belecky-Adams2,* 1The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA 2Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA *Author for correspondence (e-mail: [email protected]) Accepted 20 March 2002 SUMMARY The ventral region of the chick embryo optic cup undergoes stages of development, this treatment resulted in a complex process of differentiation leading to the microphthalmia with concomitant disruption of the formation of four different structures: the neural retina, developing neural retina, RPE and lens. At optic cup the retinal pigment epithelium (RPE), the optic disk/optic stages, however, noggin overexpression caused colobomas, stalk, and the pecten oculi. Signaling molecules such as pecten agenesis, replacement of the ventral RPE by retinoic acid and sonic hedgehog have been implicated neuroepithelium-like tissue, and ectopic expression of optic in the regulation of these phenomena. We have now stalk markers in the region of the ventral retina and RPE. investigated whether the bone morphogenetic proteins This was frequently accompanied by abnormal growth of (BMPs) also regulate ventral optic cup development. Loss- ganglion cell axons, which failed to enter the optic nerve. of-function experiments were carried out in chick embryos The data suggest that endogenous BMPs have significant in ovo, by intraocular overexpression of noggin, a protein effects on the development of ventral optic cup structures. that binds several BMPs and prevents their interactions with their cognate cell surface receptors. -
Participation of Retinal Glucagonergic Amacrine Cells in the Regulation of Eye Growth and Refractive Error: Evidence from Neurotoxins and in Vivo Immunolesioning
Participation of retinal glucagonergic amacrine cells in the regulation of eye growth and refractive error: evidence from neurotoxins and in vivo immunolesioning by Diane Rachel Nava A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Vision Science in the Graduate Division Of the University of California, Berkeley Committee in charge: Professor Christine F. Wildsoet, Chair Professor John Flanagan Professor Joseph Napoli Spring 2016 Participation of retinal glucagonergic amacrine cells in the regulation of eye growth and refractive error: evidence from neurotoxins and in vivo immunolesioning C 2016 By Diane Rachel Nava University of California, Berkeley Abstract Participation of retinal glucagonergic amacrine cells in the regulation of eye growth and refractive error: evidence from neurotoxins and in vivo immunolesioning by Diane Rachel Nava Doctor of Philosophy in Vision Science University of California, Berkeley Professor Christine Wildsoet, Chair Growth is one of the fundamental characteristics of biological systems. The study of eye growth regulation presents an interesting window that allows for the investigation of the role of the visual environment on internal processes. We now know that there is an intricate circuitry within the eye, independent of higher brain processes, that controls the growth of the eye but more needs to be elucidated about these local regulatory circuits. An improved understanding of this circuitry is critical to developing new therapies for abnormalities in eye growth regulation such as myopia, which is impacting more and more individuals around the world each day and in its more severe from, is linked to potentially blinding ocular complications. -
Anatomy & Physiology of The
Anatomy & Physiology of The Eye 2017-2018 Done By: 433 Team Abdullah M. Khattab Important Doctor’s Notes Extra Abdullah AlOmair Resources: Team 433, Doctors Notes, Vaughan & Asbury’s General ophthalmology. Editing File Embryology of The Eye ............................................................................................. 2 ● Defects: ........................................................................................................................... 2 Development of The Eye After Birth .......................................................................... 3 ● Refractive power depends on two factors: ...................................................................... 3 The Orbit ................................................................................................................... 4 ● Seven bones contribute the bony orbit and surrounded by nasal sinuses. .................... 4 ● The orbital wall, pear-like shaped, formed by: ................................................................ 4 ● Structures Passing Through the Optic Openings: ........................................................... 4 Extraocular Muscles .................................................................................................. 1 ● Anatomy .......................................................................................................................... 1 ● Notes: .............................................................................................................................. 1 ● Field of action: -
How Place of Pressurization Effects Ocular Structures
HOW PLACE OF PRESSURIZATION EFFECTS OCULAR STRUCTURES Mikayla Ferchaw, Ning-Jiun Jan, Ian Sigal, PhD. Laboratory of Ocular Biomechanics, Department of Ophthalmology, University of Pittsburgh School of Medicine INTRODUCTION loading could be observed and clearly indicated on the obtained Glaucoma is the second leading cause of irreversible images produced. Once the eyes were fixed, they were blindness worldwide [1]. The main risk factor for glaucoma is cryosectioned axially. Cryosectioning is a process where the elevated intraocular pressure (IOP), which is regulated by the eyes are frozen and then sliced into very thin sections, which in production and drainage of aqueous humor in the anterior this case is 30 microns. Next, the sections were imaged with chamber of the eye [2]. Whole eye pressurization experiments polarization light microscopy and then loaded into FIJI, an can be used to understand how increased IOP affects different image processing package, where the collagen fiber bundles structures in the eye and how that results in risk for were then marked in small increments. Simultaneously, the glaucomatous damage [3]. Current pressurization experiments, original images were processed to determine collagen fiber however, consider pressurization through the anterior and orientation. The final step to this experiment was performing vitreous chamber as interchangeable and equivalent. IOP is the statistical analysis in R, a statistical coding software, to find regulated by the dynamics of the anterior chamber, not the the difference in collagen waviness in the different regions of vitreous chamber [3]. The anterior chamber is continuously the eye when pressurized through the anterior chamber versus replenished with aqueous humor via the trabecular meshwork the vitreous chamber. -
Photogrammetric Measurement of the Optic Disc Cup in Glaucoma*
Photogrammetric Measurement of the Optic Disc Cup in Glaucoma* Takenori Takamoto, Ph .D. Assistant Professor Bernard Schwartz, M.D. Ph .D. Professor and Chairman Department of Ophthalmology New England Medical Center and Tufts University School of Medicine 171 Harrison Avenue Boston, Massachusetts 02111 ABSTRACT Cupping of the optic disc associated with the atrophy of the optic nerve is one of the earliest recognizable signs of glaucoma. Measure ments of the optic cup changes would provide objective evaluation in early diagnosis and therapy of glaucomatous eyes, by following the course of the patient in relation to the loss of visual field and medical or surgical control. A semi-analytical photogrammetric technique, the radial section method, has been devised to provide general references so that any differences in optic discs can be compared objectively. The coefficient of variation of the cup parameters is about 4% for cup diameter, and abour 5% for cup depth and volume . Due to the small size of the dilated pupil and refractive index of the eye , the accuracy of photogrammetric measurements of the optic disc is limited. However, optimal geometry of fundus stereophotography can be obtained by convergent stereophotography. On model experiments with 15 degrees of convergent angle, the new method improves the accuracy eight times in cup depth and more than two times in cup diameter measure ments over that of non-convergent method . INTROIXJCTION Eye diseases and systemic diseases with ocular manifestations have been studied by examining living vascul ar and nerve tissue under magnificat ion. The information can be recorded on photographs , which can provide a ready means of estimating changes in establi shed l esions and can be a valuable diagnostic method . -
I. Eye Development
Sara Thomasy DVM, PhD, DACVO Mouse Day 8 Dog Day 11 Eye Fields Mouse Day 7 Dog Day 10 Prosencephalon https://syllabus.med.unc.edu/courseware/embryo_images/unit-eye/eye_htms/eyetoc.htm Mouse Day 8 Dog Day 12 Cyclopia Cyclopia - Formation of a single median globe Synophthalmia – Two incompletely separated or fused globes Concurrent severe craniofacial defects Veratrum californicum . Day 14 of gestation in sheep Steroidal alkaloids . Cyclopamine and jervine . Inhibit sonic hedgehog signal transduction during gastrulation Affects midline neural plate Corn Lily or False Hellebore Day 15 Optic vesicle Mouse Day 9.5 Optic stalk https://syllabus.med.unc.edu/courseware/embryo_images/unit-eye/eye_htms/eyetoc.htm Mouse Day 9.5 Dog Day 15 Optic vesicle Microphthalmia Optic stalk https://syllabus.med.unc.edu/courseware/embryo_images/unit-eye/eye_htms/eyetoc.htm Optic vesicle deficiency Corresponding small palpebral fissure Failure of normal optic cup growth . Failure of fusion of the choroid fissure → colobomas . Failure to establish normal IOP Associated with a myriad of ocular defects ASD PHPV Neural plate deficiency Cataract Retinal dysplasia Colobomatous malformations Merle ocular dysgenesis Intraretinal space Mouse Day 11 Dog Day 18 https://syllabus.med.unc.edu/courseware/embryo_images/unit-eye/eye_htms/eyetoc.htm Mouse Day 11 Iris coloboma Dog Day 18 https://syllabus.med.unc.edu/courseware/embryo_images/unit-eye/eye_htms/eyetoc.htm “Defect” Failure of fusion of the choroid fissure “Typical colobomas” at the 6 o’clock position Abnormal differentiation of the outer optic cup “Atypical colobomas” at other locations Charlois Collie Collie Day 25 Mouse Day 11 https://syllabus.med.unc.edu/courseware/embryo_images/unit-eye/eye_htms/eyetoc.htm Persistent keratolenticular attachment Classic example: Peter’s anomaly Corneal opacity with stromal & DM defects (B) Persistent pupillary membrane (A) . -
The Nervous System: General and Special Senses
18 The Nervous System: General and Special Senses PowerPoint® Lecture Presentations prepared by Steven Bassett Southeast Community College Lincoln, Nebraska © 2012 Pearson Education, Inc. Introduction • Sensory information arrives at the CNS • Information is “picked up” by sensory receptors • Sensory receptors are the interface between the nervous system and the internal and external environment • General senses • Refers to temperature, pain, touch, pressure, vibration, and proprioception • Special senses • Refers to smell, taste, balance, hearing, and vision © 2012 Pearson Education, Inc. Receptors • Receptors and Receptive Fields • Free nerve endings are the simplest receptors • These respond to a variety of stimuli • Receptors of the retina (for example) are very specific and only respond to light • Receptive fields • Large receptive fields have receptors spread far apart, which makes it difficult to localize a stimulus • Small receptive fields have receptors close together, which makes it easy to localize a stimulus. © 2012 Pearson Education, Inc. Figure 18.1 Receptors and Receptive Fields Receptive Receptive field 1 field 2 Receptive fields © 2012 Pearson Education, Inc. Receptors • Interpretation of Sensory Information • Information is relayed from the receptor to a specific neuron in the CNS • The connection between a receptor and a neuron is called a labeled line • Each labeled line transmits its own specific sensation © 2012 Pearson Education, Inc. Interpretation of Sensory Information • Classification of Receptors • Tonic receptors