CRM-Memoria-2011 LR 1P.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
AR 96 Covers/Contents
ICTP FULL TECHNICAL REPORT 2018 INTRODUCTION This document is the full technical report of ICTP for the year 2018. For the non-technical description of 2018 highlights, please see the printed “ICTP: A Year in Review” publication. 2 ICTP Full Technical Report 2018 CONTENTS Research High Energy, Cosmology and Astroparticle Physics (HECAP) ........................................................................ 7 Director's Research Group – String Phenomenology and Cosmology ...................................... 30 Condensed Matter and Statistical Physics (CMSP)............................................................................................ 32 Sustainable Energy Synchrotron Radiation Related Theory Mathematics ........................................................................................................................................................................ 63 Earth System Physics (ESP) ......................................................................................................................................... 71 Applied Physics Multidisciplinary Laboratory (MLab) ....................................................................................................... 97 Telecommunications/ICT for Development Laboratory (T/ICT4D) ....................................... 108 Medical Physics ................................................................................................................................................. 113 Fluid Dynamics .................................................................................................................................................. -
An Invitation to Model-Theoretic Galois Theory
AN INVITATION TO MODEL-THEORETIC GALOIS THEORY. ALICE MEDVEDEV AND RAMIN TAKLOO-BIGHASH Abstract. We carry out some of Galois’ work in the setting of an arbitrary first-order theory T . We replace the ambient algebraically closed field by a large model M of T , replace fields by definably closed subsets of M, assume that T codes finite sets, and obtain the fundamental duality of Galois theory matching subgroups of the Galois group of L over F with intermediate exten- sions F ≤ K ≤ L. This exposition of a special case of [11] has the advantage of requiring almost no background beyond familiarity with fields, polynomials, first-order formulae, and automorphisms. 1. Introduction. Two hundred years ago, Evariste´ Galois contemplated symmetry groups of so- lutions of polynomial equations, and Galois theory was born. Thirty years ago, Saharon Shelah found it necessary to work with theories that eliminate imaginar- ies; for an arbitrary theory, he constructed a canonical definitional expansion with this property in [16]. Poizat immediately recognized the importance of a theory already having this property in its native language; indeed, he defined “elimina- tion of imaginaries” in [11]. It immediately became clear (see [11]) that much of Galois theory can be developed for an arbitrary first-order theory that eliminates imaginaries. This model-theoretic version of Galois theory can be generalized be- yond finite or even infinite algebraic extensions, and this can in turn be useful in other algebraic settings such as the study of Galois groups of polynomial differential equations (already begun in [11]) and linear difference equations. On a less applied note, it is possible to bring further ideas into the model-theoretic setting, as is done in [10] for the relation between Galois cohomology and homogeneous spaces. -
Prizes and Awards Session
PRIZES AND AWARDS SESSION Wednesday, July 12, 2021 9:00 AM EDT 2021 SIAM Annual Meeting July 19 – 23, 2021 Held in Virtual Format 1 Table of Contents AWM-SIAM Sonia Kovalevsky Lecture ................................................................................................... 3 George B. Dantzig Prize ............................................................................................................................. 5 George Pólya Prize for Mathematical Exposition .................................................................................... 7 George Pólya Prize in Applied Combinatorics ......................................................................................... 8 I.E. Block Community Lecture .................................................................................................................. 9 John von Neumann Prize ......................................................................................................................... 11 Lagrange Prize in Continuous Optimization .......................................................................................... 13 Ralph E. Kleinman Prize .......................................................................................................................... 15 SIAM Prize for Distinguished Service to the Profession ....................................................................... 17 SIAM Student Paper Prizes .................................................................................................................... -
BILLIARDS in REGULAR 2N-GONS and the SELF-DUAL INDUCTION
BILLIARDS IN REGULAR 2n-GONS AND THE SELF-DUAL INDUCTION SEBASTIEN´ FERENCZI Abstract. We build a coding of the trajectories of billiards in regular 2n-gons, similar but different from the one in [16], by applying the self-dual induction [9] to the underlying one-parameter family of n-interval exchange transformations. This allows us to show that, in that family, for n = 3 non-periodicity is enough to guarantee weak mixing, and in some cases minimal self-joinings, and for every n we can build examples of n-interval exchange transformations with weak mixing, which are the first known explicitly for n > 6. In [16], see also [15], John Smillie and Corinna Ulcigrai develop a rich and original theory of billiards in the regular octagons, and more generally of billiards in the regular 2n-gons, first studied by Veech [17]: their aim is to build explicitly the symbolic trajectories, which generalize the famous Sturmian sequences (see for example [1] among a huge literature), and they achieve it through a new renormalization process which generalizes the usual continued fraction algorithm. In the present shorter paper, we show that similar results, with new consequences, can be obtained by using an existing, though recent, theory, the self-dual in- duction on interval exchange transformations. As in [16], we define a trajectory of a billiard in a regular 2n-gon as a path which starts in the interior of the polygon, and moves with constant velocity until it hits the boundary, then it re-enters the polygon at the corresponding point of the parallel side, and continues travelling with the same velocity; we label each pair of parallel sides with a letter of the alphabet (A1; :::An), and read the labels of the pairs of parallel sides crossed by the trajectory as time increases; studying these trajectories is known to be equivalent to studying the trajectories of a one-parameter family of n-interval exchange transformations, and to this family we apply a slightly modified version of the self-dual induction defined in [9]. -
On a Generalization of the Hadwiger-Nelson Problem
On a generalization of the Hadwiger-Nelson problem Mohammad Bardestani, Keivan Mallahi-Karai October 15, 2018 Abstract For a field F and a quadratic form Q defined on an n-dimensional vector space V over F , let QGQ, called the quadratic graph associated to Q, be the graph with the vertex set V where vertices u; w 2 V form an edge if and only if Q(v − w) = 1. Quadratic graphs can be viewed as natural generalizations of the unit-distance graph featuring in the famous Hadwiger-Nelson problem. In the present paper, we will prove that for a local field F of characteristic zero, the Borel chromatic number of QGQ is infinite if and only if Q represents zero non-trivially over F . The proof employs a recent spectral bound for the Borel chromatic number of Cayley graphs, combined with an analysis of certain oscillatory integrals over local fields. As an application, we will also answer a variant of question 525 proposed in the 22nd British Combinatorics Conference 2009 [6]. 1 Introduction The celebrated Hadwiger-Nelson problem asks for the minimum number of colors required to color n R such that no two points at distance one from each other have the same color. Recall that the chromatic number of a graph G, denoted by χ(G), is the least cardinal c such that the vertices of G can be partitioned into c sets (called color classes) such that no color class contains an edge in G. Hence, the Hadwiger-Nelson problem is the question of finding χ(Gn), where Gn is the graph with vertex set n V (Gn) = R , where the adjacency of vertices x; y 2 V (Gn) is defined by the equation Q(x − y) = 1; 2 2 n here, Q(x1; : : : ; xn) = x1 + ··· + xn is the canonical positive-definite quadratic form on R . -
Letter from the President
Letter from the President Dear EATCS members, As usual this time of the year, I have the great pleasure to announce the assignments of this year’s Gódel Prize, EATCS Award and Presburger Award. The Gödel Prize 2012, which is co-sponsored by EATCS and ACM SIGACT, has been awarded jointly to Elias Koutsoupias, Christos H. Papadimitriou, Tim Roughgarden, Éva Tardos, Noam Nisan and Amir Ronen. In particular, the prize has been awarded to Elias Koutsoupias and Christos H. Papadimitriou for their paper Worst-case equilibria, Computer Science Review, 3(2): 65-69, 2009; to Tim Roughgarden and Éva Tardos for their paper How Bad Is Selfish Routing? , Journal of the ACM, 49(2): 236-259, 2002; and to Noam Nisan and Amir Ronen for their paper Algorithmic Mechanism Design, Games and Economic Behavior, 35: 166-196, 2001. As you can read in the laudation published in this issue of the bulletin, these three papers contributed highly influential concepts and results that laid the foundation for an explosive growth in algorithmic game theory, a trans-disciplinary combination of the theory of algorithms and the theory of games that has greatly enriched both fields. The purpose of all three papers was to improve our understanding of how the internet and other complex computational systems behave when users and service providers in these systems act selfishly. On behalf of this year’s Gödel Prize Committee (consisting of Sanjeev Arora, Josep Díaz, Giuseppe F. Italiano, Daniel ✸ ❇❊❆❚❈❙ ♥♦ ✶✵✼ ❊❆❚❈❙ ▼❆❚❚❊❘❙ Spielman, Eli Upfal and Mogens Nielsen as chair) and the whole EATCS community I would like to offer our congratulations and deep respect to all of the six winners! The EATCS Award 2012 has been granted to Moshe Vardi for his decisive influence on the development of theoretical computer science, for his pre-eminent career as a distinguished researcher, and for his role as a most illustrious leader and disseminator. -
Conference Timetable Summary
Conference Timetable Summary Monday Tuesday Wednesday Thursday Friday 8:00 8:30 Registration 9:00 South 1 Opening Ceremony Plenary talk Plenary talk Plenary talk 9:30 Lectures by Joshi Ulcigrai Giga 10:00 Prize Winners South 1 Coffee Break Coffee Break Coffee Break 10:30 Coffee Break Plenary talk Plenary talk Plenary talk 11:00 Plenary talk an Huef Steinberg Norbury 11:30 Krieger South 1 Plenary talk Plenary talk 12:00 Debate Trudgian Samotij 12:30 Lunch 13:00 Lunch Lunch Lunch 13:30 Plenary talk 14:00 Sikora Special Sessions Special Sessions Special Sessions 14:30 Education Special Afternoon Sessions 15:00 Coffee Break Coffee Break Coffee Break Coffee Break 15:30 Plenary talk Education Rylands 16:00 Afternoon Special Sessions Special 16:30 Sessions AustMS AGM Special Sessions 17:00 17:30 18:00 18:30 Welcome WIMSIG Reception 19:00 Dinner Conference Dinner Cinque Lire Cafe 19:30 Campus Centre MCG 20:00 1 Contents Foreword 4 Conference Sponsors 5 Conference Program 6 Education Afternoon 7 Session 1: Plenary Lectures 8 Special Sessions 2. Algebra 9 3. Applied and Industrial Mathematics 10 4. Category Theory 11 5. Combinatorics and Graph Theory 12 6. Computational Mathematics 14 7. Dynamical Systems and Ergodic Theory 15 8. Financial mathematics 16 9. Functional Analysis, Operator Algebra, Non-commutative Geometry 17 10. Geometric Analysis and Partial Differential Equations 18 11. Geometry including Differential Geometry 20 12. Harmonic and Semiclassical Analysis 21 13. Inclusivity, diversity, and equity in mathematics 22 14. Mathematical Biology 23 15. Mathematics Education 24 16. Mathematical Physics, Statistical Mechanics and Integrable systems 25 17. -
Mathematisches Forschungsinstitut Oberwolfach Dynamische Systeme
Mathematisches Forschungsinstitut Oberwolfach Report No. 32/2017 DOI: 10.4171/OWR/2017/32 Dynamische Systeme Organised by Hakan Eliasson, Paris Helmut Hofer, Princeton Vadim Kaloshin, College Park Jean-Christophe Yoccoz, Paris 9 July – 15 July 2017 Abstract. This workshop continued the biannual series at Oberwolfach on Dynamical Systems that started as the “Moser-Zehnder meeting” in 1981. The main themes of the workshop are the new results and developments in the area of dynamical systems, in particular in Hamiltonian systems and symplectic geometry. This year special emphasis where laid on symplectic methods with applications to dynamics. The workshop was dedicated to the memory of John Mather, Jean-Christophe Yoccoz and Krzysztof Wysocki. Mathematics Subject Classification (2010): 37, 53D, 70F, 70H. Introduction by the Organisers The workshop was organized by H. Eliasson (Paris), H. Hofer (Princeton) and V. Kaloshin (Maryland). It was attended by more than 50 participants from 13 countries and displayed a good mixture of young, mid-career and senior people. The workshop covered a large area of dynamical systems centered around classi- cal Hamiltonian dynamics and symplectic methods: closing lemma; Hamiltonian PDE’s; Reeb dynamics and contact structures; KAM-theory and diffusion; celes- tial mechanics. Also other parts of dynamics were represented. K. Irie presented a smooth closing lemma for Hamiltonian diffeomorphisms on closed surfaces. This result is the peak of a fantastic development in symplectic methods where, in particular, the contributions of M. Hutchings play an important role. 1988 Oberwolfach Report 32/2017 D. Peralta-Salas presented new solutions for the 3-dimensional Navier-Stokes equations with different vortex structures. -
Arxiv:1704.03853V4
TAME STRUCTURES VIA CHARACTER SUMS OVER FINITE FIELDS CHIEU-MINH TRAN Abstract. We show that the theory of algebraically closed fields with mul- tiplicative circular orders has a model companion ACFO. Using number- theoretic results on character sums over finite fields, we show that if F is an algebraic closure of a finite field, and ◁ is any translation-invariant circular order on the multiplicative group F×, then (F, ◁) is a model of ACFO. Our re- sults can be regarded as analogues of Ax’s results in [1] which utilize counting points over finite fields. 1. Introduction Throughout, F will be an algebraic closure of a finite field. We are interested in the following question: Are there natural expansions of F by order-type relations which are also model-theoretically tame? There is no known order-type relation on F which interacts in a sensible way with both addition and multiplication. This is in stark contrast to the situation with the field C of complex numbers where addition and multiplication are compatible with the Euclidean metric induced by the natural order on R. It is not hard to see the reason: the additive group of F is an infinite torsion group of finite exponent, so even finding an additively compatible order-type relation seems unlikely. On the other hand, the multiplicative group F× is a union of cyclic groups, so it is fairly natural to consider circular orders ◁ on F× which are compatible with the multiplicative structure. In this paper, we will show that the resulting structures (F, ◁) give a positive answer to some aspects of the above question. -
UOLUME 49 Contemporary MATHEMATICS
Complex Differential Geometry and Nonlinear Differential Equations Proceedings of a Summer Research Conference held August12-18,1984 AMERICAn MATHEMATICAL SOCIETY UOLUME 49 http://dx.doi.org/10.1090/conm/049 COnTEMPORARY MATHEMATICS Titles in This Series Volume 1 Markov random fields and their 15 Advanced analytic number theory. applications, Ross Kindermann and Part 1: Ramification theoretic J. Laurie Snell methods. Carlos J. Moreno 2 Proceedings of the conference 16 Complex representations of on integration. topology, and GL(2. K) for finite fields K, geometry in linear spaces. llya Piatetski-Shapiro William H. Graves. Editor 17 Nonlinear partial differential 3 The closed graph and P-closed equations, Joel A. Smoller. Editor graph properties in general topology, T. R. Hamlett and 18 Fixed points and nonexpansive L. L. Herrington mappings, Robert C. Sine. Editor 4 Problems of elastic stability and 19 Proceedings of the Northwestern vibrations, Vadim Komkov. Editor homotopy theory conference. 5 Rational constructions of Haynes R. Miller and Stewart B. modules for simple Lie algebras. Priddy, Editors George B. Seligman 20 Low dimensional topology, 6 Umbral calculus and Hopf algebras, Samuel J. Lomonaco. Jr.. Editor Robert Morris. Editor 21 Topological methods in nonlinear 7 Complex contour integral functional analysis, S. P. Singh. representation of cardinal spline S. Thomeier. and B. Watson. Editors functions, Walter Schempp 22 Factorizations of b" 1, b 8 Ordered fields and real algebraic ± = 2, 3, 5, 6, 7, 10,11,12 up to high geometry, D. W. Dubois and powers. John Brillhart. D. H. Lehmer. T. Recio. Editors J. L. Selfridge. Bryant Tuckerman. and 9 Papers in algebra. -
Scientific Workplace· • Mathematical Word Processing • LATEX Typesetting Scientific Word· • Computer Algebra
Scientific WorkPlace· • Mathematical Word Processing • LATEX Typesetting Scientific Word· • Computer Algebra (-l +lr,:znt:,-1 + 2r) ,..,_' '"""""Ke~r~UrN- r o~ r PooiliorK 1.931'J1 Po6'lf ·1.:1l26!.1 Pod:iDnZ 3.881()2 UfW'IICI(JI)( -2.801~ ""'"""U!NecteoZ l!l!iS'11 v~ 0.7815399 Animated plots ln spherical coordln1tes > To make an anlm.ted plot In spherical coordinates 1. Type an expression In thr.. variables . 2 WMh the Insertion poilt In the expression, choose Plot 3D The next exampfe shows a sphere that grows ftom radius 1 to .. Plot 3D Animated + Spherical The Gold Standard for Mathematical Publishing Scientific WorkPlace and Scientific Word Version 5.5 make writing, sharing, and doing mathematics easier. You compose and edit your documents directly on the screen, without having to think in a programming language. A click of a button allows you to typeset your documents in LAT£X. You choose to print with or without LATEX typesetting, or publish on the web. Scientific WorkPlace and Scientific Word enable both professionals and support staff to produce stunning books and articles. Also, the integrated computer algebra system in Scientific WorkPlace enables you to solve and plot equations, animate 20 and 30 plots, rotate, move, and fly through 3D plots, create 3D implicit plots, and more. MuPAD' Pro MuPAD Pro is an integrated and open mathematical problem solving environment for symbolic and numeric computing. Visit our website for details. cK.ichan SOFTWARE , I NC. Visit our website for free trial versions of all our products. www.mackichan.com/notices • Email: info@mac kichan.com • Toll free: 877-724-9673 It@\ A I M S \W ELEGRONIC EDITORIAL BOARD http://www.math.psu.edu/era/ Managing Editors: This electronic-only journal publishes research announcements (up to about 10 Keith Burns journal pages) of significant advances in all branches of mathematics. -
Mathematical Sciences Meetings and Conferences Section
OTICES OF THE AMERICAN MATHEMATICAL SOCIETY Richard M. Schoen Awarded 1989 Bacher Prize page 225 Everybody Counts Summary page 227 MARCH 1989, VOLUME 36, NUMBER 3 Providence, Rhode Island, USA ISSN 0002-9920 Calendar of AMS Meetings and Conferences This calendar lists all meetings which have been approved prior to Mathematical Society in the issue corresponding to that of the Notices the date this issue of Notices was sent to the press. The summer which contains the program of the meeting. Abstracts should be sub and annual meetings are joint meetings of the Mathematical Associ mitted on special forms which are available in many departments of ation of America and the American Mathematical Society. The meet mathematics and from the headquarters office of the Society. Ab ing dates which fall rather far in the future are subject to change; this stracts of papers to be presented at the meeting must be received is particularly true of meetings to which no numbers have been as at the headquarters of the Society in Providence, Rhode Island, on signed. Programs of the meetings will appear in the issues indicated or before the deadline given below for the meeting. Note that the below. First and supplementary announcements of the meetings will deadline for abstracts for consideration for presentation at special have appeared in earlier issues. sessions is usually three weeks earlier than that specified below. For Abstracts of papers presented at a meeting of the Society are pub additional information, consult the meeting announcements and the lished in the journal Abstracts of papers presented to the American list of organizers of special sessions.