Chapter 3. the Structure of the Atom
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Optical Properties of Bulk and Nano
Lecture 3: Optical Properties of Bulk and Nano 5 nm Course Info First H/W#1 is due Sept. 10 The Previous Lecture Origin frequency dependence of χ in real materials • Lorentz model (harmonic oscillator model) e- n(ω) n' n'' n'1= ω0 + Nucleus ω0 ω Today optical properties of materials • Insulators (Lattice absorption, color centers…) • Semiconductors (Energy bands, Urbach tail, excitons …) • Metals (Response due to bound and free electrons, plasma oscillations.. ) Optical properties of molecules, nanoparticles, and microparticles Classification Matter: Insulators, Semiconductors, Metals Bonds and bands • One atom, e.g. H. Schrödinger equation: E H+ • Two atoms: bond formation ? H+ +H Every electron contributes one state • Equilibrium distance d (after reaction) Classification Matter ~ 1 eV • Pauli principle: Only 2 electrons in the same electronic state (one spin & one spin ) Classification Matter Atoms with many electrons Empty outer orbitals Outermost electrons interact Form bands Partly filled valence orbitals Filled Energy Inner Electrons in inner shells do not interact shells Do not form bands Distance between atoms Classification Matter Insulators, semiconductors, and metals • Classification based on bandstructure Dispersion and Absorption in Insulators Electronic transitions No transitions Atomic vibrations Refractive Index Various Materials 3.4 3.0 2.0 Refractive index: n’ index: Refractive 1.0 0.1 1.0 10 λ (µm) Color Centers • Insulators with a large EGAP should not show absorption…..or ? • Ion beam irradiation or x-ray exposure result in beautiful colors! • Due to formation of color (absorption) centers….(Homework assignment) Absorption Processes in Semiconductors Absorption spectrum of a typical semiconductor E EC Phonon Photon EV ωPhonon Excitons: Electron and Hole Bound by Coulomb Analogy with H-atom • Electron orbit around a hole is similar to the electron orbit around a H-core • 1913 Niels Bohr: Electron restricted to well-defined orbits n = 1 + -13.6 eV n = 2 n = 3 -3.4 eV -1.51 eV me4 13.6 • Binding energy electron: =−=−=e EB 2 2 eV, n 1,2,3,.. -
Bohr Model of Hydrogen
Chapter 3 Bohr model of hydrogen Figure 3.1: Democritus The atomic theory of matter has a long history, in some ways all the way back to the ancient Greeks (Democritus - ca. 400 BCE - suggested that all things are composed of indivisible \atoms"). From what we can observe, atoms have certain properties and behaviors, which can be summarized as follows: Atoms are small, with diameters on the order of 0:1 nm. Atoms are stable, they do not spontaneously break apart into smaller pieces or collapse. Atoms contain negatively charged electrons, but are electrically neutral. Atoms emit and absorb electromagnetic radiation. Any successful model of atoms must be capable of describing these observed properties. 1 (a) Isaac Newton (b) Joseph von Fraunhofer (c) Gustav Robert Kirch- hoff 3.1 Atomic spectra Even though the spectral nature of light is present in a rainbow, it was not until 1666 that Isaac Newton showed that white light from the sun is com- posed of a continuum of colors (frequencies). Newton introduced the term \spectrum" to describe this phenomenon. His method to measure the spec- trum of light consisted of a small aperture to define a point source of light, a lens to collimate this into a beam of light, a glass spectrum to disperse the colors and a screen on which to observe the resulting spectrum. This is indeed quite close to a modern spectrometer! Newton's analysis was the beginning of the science of spectroscopy (the study of the frequency distri- bution of light from different sources). The first observation of the discrete nature of emission and absorption from atomic systems was made by Joseph Fraunhofer in 1814. -
Particle Nature of Matter
Solved Problems on the Particle Nature of Matter Charles Asman, Adam Monahan and Malcolm McMillan Department of Physics and Astronomy University of British Columbia, Vancouver, British Columbia, Canada Fall 1999; revised 2011 by Malcolm McMillan Given here are solutions to 5 problems on the particle nature of matter. The solutions were used as a learning-tool for students in the introductory undergraduate course Physics 200 Relativity and Quanta given by Malcolm McMillan at UBC during the 1998 and 1999 Winter Sessions. The solutions were prepared in collaboration with Charles Asman and Adam Monaham who were graduate students in the Department of Physics at the time. The problems are from Chapter 3 The Particle Nature of Matter of the course text Modern Physics by Raymond A. Serway, Clement J. Moses and Curt A. Moyer, Saunders College Publishing, 2nd ed., (1997). Coulomb's Constant and the Elementary Charge When solving numerical problems on the particle nature of matter it is useful to note that the product of Coulomb's constant k = 8:9876 × 109 m2= C2 (1) and the square of the elementary charge e = 1:6022 × 10−19 C (2) is ke2 = 1:4400 eV nm = 1:4400 keV pm = 1:4400 MeV fm (3) where eV = 1:6022 × 10−19 J (4) Breakdown of the Rutherford Scattering Formula: Radius of a Nucleus Problem 3.9, page 39 It is observed that α particles with kinetic energies of 13.9 MeV or higher, incident on copper foils, do not obey Rutherford's (sin φ/2)−4 scattering formula. • Use this observation to estimate the radius of the nucleus of a copper atom. -
Pioneers of Atomic Theory Darius Bermudez Discoverers of the Atom
Pioneers of Atomic Theory Darius Bermudez Discoverers of the Atom Democritus- Greek Philosopher proposed that if something was divided enough times, eventually the particles would be too small to divide any further. Ex: Identify this Greek philosopher who postulated that if an object was divided enough times, there would eventually be small particles that could not be divided any further. Discoverers of the Atom John Dalton- English chemist who made the “billiard ball” atom model. First to prove that rainfall was a result of temperature change. He was the first scientist after Democritus to build on atomic theory. He also created a law on partial pressures. Common Clues: Partial pressures, pioneer of atomic theory, and temperature change causes rainfall. The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. Discoverers of the Atom J.J. Thomson- English Scientist who discovered electrons through a cathode. Made the “plum pudding model” with Lord Kelvin (Kelvin Scale) which stated that negative charges were spread about a positive charged medium, making atoms neutral. Common Clues: Plum pudding, Electrons had negative charges, disproved by either Rutherford or Mardsen and Geiger The image cannot be displayed. -
Series 1 Atoms and Bohr Model.Pdf
Atoms and the Bohr Model Reading: Gray: (1-1) to (1-7) OGN: (15.1) and (15.4) Outline of First Lecture I. General information about the atom II. How the theory of the atomic structure evolved A. Charge and Mass of the atomic particles 1. Faraday 2. Thomson 3. Millikan B. Rutherford’s Model of the atom Reading: Gray: (1-1) to (1-7) OGN: (15.1) and (15.4) H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Atoms consist of: Mass (a.m.u.) Charge (eu) 6 6 Protons ~1 +1 Neutrons ~1 0 C Electrons 1/1836 -1 12.01 10-5 Å (Nucleus) Electron Cloud 1 Å 1 Å = 10 –10 m Note: Nucleus not drawn to scale! HOWHOW DODO WEWE KNOW:KNOW: Atomic Size? Charge and Mass of an Electron? Charge and Mass of a Proton? Mass Distribution in an Atom? Reading: Gray: (1-1) to (1-7) OGN: (15.1) and (15.4) A Timeline of the Atom 400 BC ..... -
Arxiv:1512.01765V2 [Physics.Atom-Ph]
August12,2016 1:27 WSPCProceedings-9.75inx6.5in Antognini˙ICOLS˙3 page 1 1 Muonic atoms and the nuclear structure A. Antognini∗ for the CREMA collaboration Institute for Particle Physics, ETH, 8093 Zurich, Switzerland Laboratory for Particle Physics, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland ∗E-mail: [email protected] High-precision laser spectroscopy of atomic energy levels enables the measurement of nu- clear properties. Sensitivity to these properties is particularly enhanced in muonic atoms which are bound systems of a muon and a nucleus. Exemplary is the measurement of the proton charge radius from muonic hydrogen performed by the CREMA collaboration which resulted in an order of magnitude more precise charge radius as extracted from other methods but at a variance of 7 standard deviations. Here, we summarize the role of muonic atoms for the extraction of nuclear charge radii, we present the status of the so called “proton charge radius puzzle”, and we sketch how muonic atoms can be used to infer also the magnetic nuclear radii, demonstrating again an interesting interplay between atomic and particle/nuclear physics. Keywords: Proton radius; Muon; Laser spectroscopy, Muonic atoms; Charge and mag- netic radii; Hydrogen; Electron-proton scattering; Hyperfine splitting; Nuclear models. 1. What atomic physics can do for nuclear physics The theory of the energy levels for few electrons systems, which is based on bound- state QED, has an exceptional predictive power that can be systematically improved due to the perturbative nature of the theory itself [1, 2]. On the other side, laser spectroscopy yields spacing between energy levels in these atomic systems so pre- cisely, that even tiny effects related with the nuclear structure already influence several significant digits of these measurements. -
Lecture #3, Atomic Structure (Rutherford, Bohr Models)
Welcome to 3.091 Lecture 3 September 14, 2009 Atomic Models: Rutherford & Bohr Periodic Table Quiz 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 Name Grade /10 Image by MIT OpenCourseWare. La Lazy Ce college Pr professors Nd never Pm produce Sm sufficiently Eu educated Gd graduates Tb to Dy dramatically Ho help Er executives Tm trim Yb yearly Lu losses. © source unknown. All rights reserved. This image is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse. La Loony Ce chemistry Pr professor Nd needs Pm partner: Sm seeking cannot be referring Eu educated to 3.091! Gd graduate Tb to must be the “other” Dy develop Ho hazardous chemistry professor Er experiments Tm testing Yb young Lu lab assistants. © source unknown. All rights reserved. This image is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse. 138.9055 920 57 3455 3 6.146 * 1.10 57 5.577 La [Xe]5d16s2 Lanthanum CEase not I to slave, back breaking to tend; PRideless and bootless stoking hearth and fire. No Dream of mine own precious time to spend Pour'ed More to sate your glutt'nous desire. -
Compton Wavelength, Bohr Radius, Balmer's Formula and G-Factors
Compton wavelength, Bohr radius, Balmer's formula and g-factors Raji Heyrovska J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague 8, Czech Republic. [email protected] Abstract. The Balmer formula for the spectrum of atomic hydrogen is shown to be analogous to that in Compton effect and is written in terms of the difference between the absorbed and emitted wavelengths. The g-factors come into play when the atom is subjected to disturbances (like changes in the magnetic and electric fields), and the electron and proton get displaced from their fixed positions giving rise to Zeeman effect, Stark effect, etc. The Bohr radius (aB) of the ground state of a hydrogen atom, the ionization energy (EH) and the Compton wavelengths, λC,e (= h/mec = 2πre) and λC,p (= h/mpc = 2πrp) of the electron and proton respectively, (see [1] for an introduction and literature), are related by the following equations, 2 EH = (1/2)(hc/λH) = (1/2)(e /κ)/aB (1) 2 2 (λC,e + λC,p) = α2πaB = α λH = α /2RH (2) (λC,e + λC,p) = (λout - λin)C,e + (λout - λin)C,p (3) α = vω/c = (re + rp)/aB = 2πaB/λH (4) aB = (αλH/2π) = c(re + rp)/vω = c(τe + τp) = cτB (5) where λH is the wavelength of the ionizing radiation, κ = 4πεo, εo is 2 the electrical permittivity of vacuum, h (= 2πħ = e /2εoαc) is the 2 Planck constant, ħ (= e /κvω) is the angular momentum of spin, α (= vω/c) is the fine structure constant, vω is the velocity of spin [2], re ( = ħ/mec) and rp ( = ħ/mpc) are the radii of the electron and -
Muonic Hydrogen: All Orders Calculations
Muonic Hydrogen: all orders calculations Paul Indelicato ECT* Workshop on the Proton Radius Puzzle, Trento, October 29-November 2, 2012 Theory • Peter Mohr, National Institute of Standards and Technology, Gaithersburg, Maryland • Paul Indelicato, Laboratoire Kastler Brossel, École Normale Supérieure, CNRS, Université Pierre et Marie Curie, Paris, France and Helmholtz Alliance HA216/ EMMI (Extreme Mater Institute) Trento, October 2012 2 Present status • Published result: – 49 881.88(76)GHz ➙rp= 0.84184(67) fm – CODATA 2006: 0.8768(69) fm (mostly from hydrogen and electron-proton scattering) – Difference: 5 σ • CODATA 2010 (on line since mid-june 2011) – 0.8775 (51) fm – Difference: 6.9 σ – Reasons (P.J. Mohr): • improved hydrogen calculation • new measurement of 1s-3s at LKB (F. Biraben group) • Mainz electron-proton scattering result • The mystery deepens... – Difference on the muonic hydrogen Lamb shift from the two radii: 0.3212 (51 µH) (465 CODATA) meV Trento, October 2012 3 Hydrogen QED corrections QED at order α and α2 Self Energy Vacuum Polarization H-like “One Photon” order α H-like “Two Photon” order α2 = + + +! Z α expansion; replace exact Coulomb propagator by expansion in number of interactions with the nucleus Trento, October 2012 5 Convergence of the Zα expansion Trento, October 2012 6 Two-loop self-energy (1s) V. A. Yerokhin, P. Indelicato, and V. M. Shabaev, Phys. rev. A 71, 040101(R) (2005). Trento, October 2012 7 Two-loop self-energy (1s) V. A. Yerokhin, P. Indelicato, and V. M. Shabaev, Phys. rev. A 71, 040101(R) (2005). V. A. Yerokhin, Physical Review A 80, 040501 (2009) Trento, October 2012 8 Evolution at low-Z All order numerical calculations V. -
Electron Charge Density: a Clue from Quantum Chemistry for Quantum Foundations
Electron Charge Density: A Clue from Quantum Chemistry for Quantum Foundations Charles T. Sebens California Institute of Technology arXiv v.2 June 24, 2021 Forthcoming in Foundations of Physics Abstract Within quantum chemistry, the electron clouds that surround nuclei in atoms and molecules are sometimes treated as clouds of probability and sometimes as clouds of charge. These two roles, tracing back to Schr¨odingerand Born, are in tension with one another but are not incompatible. Schr¨odinger'sidea that the nucleus of an atom is surrounded by a spread-out electron charge density is supported by a variety of evidence from quantum chemistry, including two methods that are used to determine atomic and molecular structure: the Hartree-Fock method and density functional theory. Taking this evidence as a clue to the foundations of quantum physics, Schr¨odinger'selectron charge density can be incorporated into many different interpretations of quantum mechanics (and extensions of such interpretations to quantum field theory). Contents 1 Introduction2 2 Probability Density and Charge Density3 3 Charge Density in Quantum Chemistry9 3.1 The Hartree-Fock Method . 10 arXiv:2105.11988v2 [quant-ph] 24 Jun 2021 3.2 Density Functional Theory . 20 3.3 Further Evidence . 25 4 Charge Density in Quantum Foundations 26 4.1 GRW Theory . 26 4.2 The Many-Worlds Interpretation . 29 4.3 Bohmian Mechanics and Other Particle Interpretations . 31 4.4 Quantum Field Theory . 33 5 Conclusion 35 1 1 Introduction Despite the massive progress that has been made in physics, the composition of the atom remains unsettled. J. J. Thomson [1] famously advocated a \plum pudding" model where electrons are seen as tiny negative charges inside a sphere of uniformly distributed positive charge (like the raisins|once called \plums"|suspended in a plum pudding). -
Cbiescss05.Pdf
Science IX Sample Paper 5 Solved www.rava.org.in CLASS IX (2019-20) SCIENCE (CODE 086) SAMPLE PAPER-5 Time : 3 Hours Maximum Marks : 80 General Instructions : (i) The question paper comprises of three sections-A, B and C. Attempt all the sections. (ii) All questions are compulsory. (iii) Internal choice is given in each sections. (iv) All questions in Section A are one-mark questions comprising MCQ, VSA type and assertion-reason type questions. They are to be answered in one word or in one sentence. (v) All questions in Section B are three-mark, short-answer type questions. These are to be answered in about 50-60 words each. (vi) All questions in Section C are five-mark, long-answer type questions. These are to be answered in about 80-90 words each. (vii) This question paper consists of a total of 30 questions. 4. What is the S.I. unit of momentum ? [1] SECTION -A (a) kgms (b) mskg−1 −1 −1 DIRECTION : For question numbers 1 and 2, two statements (c) kgms (d) kg() ms are given- one labelled Assertion (A) and the other labelled Ans : (c) kgms−1 Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below. 5. Which of the following is not a perfectly in elastic collision ? [1] (a) Both A and R are true and R is correct explanation (a) Capture of an electron by proton. of the assertion. (b) Man jumping on to a moving cart. (b) Both A and R are true but R is not the correct explanation of the assertion. -
Excitons in 3D and 2D Systems
Excitons in 3D and 2D systems Electrons and holes in an excited semiconductor create a quasiparticle, named exciton. After separation of centre of gravity and relative orbital motion a series of bound exciton states (n=1,2,3…) are located below the band gap. Solving the Schrödinger equation the binding energy in 3D is R * E X (3D) ,n 1,2,.... n n2 *e4 Where R* is the Rydberg energy by R* 2 2 2 2 with µ* as reduced effective mass. It 32 0 defines a series of exciton states which can be populated. In analogy to the hydrogen problem the respective orbital wave function for n=1 is X 1 r (r) exp( ) n1 3/ 2 a0 a0 2 X 4 0 With exciton Bohr radius a (3D) and r=re-rh is the 3D relative electron-hole 0 *e2 coordinate. In k-Space the wave function represented by 3/ 2 X 8 a0 n1 (k) 2 2 2 (1 a0 k ) The k-space representation is important to estimate the oscillator strength of excitonic processes. For discussion of PL excitation spectra and the bleaching of exciton absorption it is important to consider the influence of unbound electron-hole states above the ionization limit (E>0). It is expressed by the Sommerfeld factor 2 R * /( E ) 3D 3D g CEF | E0 (r 0) 1 exp(2 R * /( Eg ) This equation describes the enhancement of absorption above the band gap due to correlated electron-hole pairs. Since equ. Above diverges for Eg one observes a “tooth-like” absorption line.