A Review on Liquefied Natural Gas As Fuels for Dual Fuel Engines

Total Page:16

File Type:pdf, Size:1020Kb

A Review on Liquefied Natural Gas As Fuels for Dual Fuel Engines energies Review A Review on Liquefied Natural Gas as Fuels for Dual Fuel Engines: Opportunities, Challenges and Responses Md Arman Arefin 1 , Md Nurun Nabi 2,*, Md Washim Akram 3 , Mohammad Towhidul Islam 1 and Md Wahid Chowdhury 1 1 Department of Mechanical Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh; arefi[email protected] (M.A.A.); [email protected] (M.T.I.); [email protected] (M.W.C.) 2 School of Engineering and Technology, Central Queensland University, Perth, WA 6000, Australia 3 Department of Mechanical Engineering, Bangladesh Army University of Science and Technology, Saidpur 5310, Bangladesh; [email protected] * Correspondence: [email protected] Received: 22 October 2020; Accepted: 20 November 2020; Published: 23 November 2020 Abstract: Climate change and severe emission regulations in many countries demand fuel and engine researchers to explore sustainable fuels for internal combustion engines. Natural gas could be a source of sustainable fuels, which can be produced from renewable sources. This article presents a complete overview of the liquefied natural gas (LNG) as a potential fuel for diesel engines. An interesting finding from this review is that engine modification and proper utilization of LNG significantly improve system efficiency and reduce greenhouse gas (GHG) emissions, which is extremely helpful to sustainable development. Moreover, some major recent researches are also analyzed to find out drawbacks, advancement and future research potential of the technology. One of the major challenges of LNG is its higher flammability that causes different fatal hazards and when using in dual-fuel engine causes knock. Though researchers have been successful to find out some ways to overcome some challenges, further research is necessary to reduce the hazards and make the fuel more effective and environment-friendly when using as a fuel for a diesel engine. Keywords: liquefied natural gas; diesel engine; greenhouse gas emissions; sustainable development 1. Introduction Recently, it is projected that global energy demand has been increasing day by day [1,2]. The increased amount of energy demand produces a large amount of greenhouse gases (GHGs) by the burning of fossil fuels, which ultimately causes global warming. Currently, in the industrial and transportation sectors, diesel is mainly used as fossil fuel. The consumption of diesel fuel is increasing day by day unexpectedly because of the dramatic increase in vehicles, mostly in Asian countries like Bangladesh, Korea, India and China [3]. Currently, researchers all over the world are concerned about the way of mitigating this large amount of energy demand and at the same time, carbon dioxide (CO2) emission reduction, which is one of the major components of GHGs [4,5]. In this regards, other sources of fuel may be a feasible alternative to conventional fuels. Natural gas would be a promising alternative fuel source in the transportation sector because of some of its remarkable advantages. Though natural gas is also derived from fissile resources, it can be converted from renewable sources, i.e., it can be produced through the biomass conversion process (biomethane, which is also known as biogas, is a pipeline-quality gas made from organic matter), attractive cost, better combustion efficiency and greenhouse gas reduction, which are the significant advantages as alternative fuel [3]. Energies 2020, 13, 6127; doi:10.3390/en13226127 www.mdpi.com/journal/energies Energies 2020, 13, 6127 2 of 19 Energies 2020, 13, x FOR PEER REVIEW 2 of 22 Besides, thethe interest interest in in alternative alternative fuels fuels is rapidly is rapidly growing growing because because of the energyof the securityenergy security concern allconcern over theall world.over the Among world. the Among candidates the candidates of alternative of alternative fuel, biofuels, fuel, liquefiedbiofuels, petroleumliquefied petroleum gas (LPG) andgas (LPG) liquefied and naturalliquefied gas natural (LNG) gas are (LNG) the potentialare the potential ones. Nevertheless,ones. Nevertheless, the economic the economic aspects aspects and availabilityand availability make make LPG andLPG LNG and moreLNG realisticmore realistic solutions solutions compared compared to biofuels. to biofuels. Additionally, Additionally, natural gasnatural can begas considered can be considered as one of theas one solutions of the to solutions control engine to control emissions engine at emissions present as at compared present toas traditionalcompared to fuels. traditional In a homogenous fuels. In a chargehomogenous compression charge ignition compression engine ignition (HCCI), engine the after-treatment (HCCI), the techniqueafter-treatment combined technique with naturalcombined gas wi presentth natural an outstanding gas present potential an outstanding to meet potential strict requirements to meet strict for reducingrequirements the emissions for reducing [6]. Inthe the emissions transportation [6]. In sector,the transportation both forms of sector, natural both gas, forms i.e., liquefied of natural natural gas, gasi.e., (LNG)liquefied and natural compressed gas (LNG) natural and gas compressed (CNG) can benatural used asgas an (CNG) alternative can be fuel. used However, as an alternative CNG has alreadyfuel. However, gained popularityCNG has already in the automobilegained popularity sector due in the to itsautomobile lower cost. sector due to its lower cost. LNG is mainly used for electricity production and transportation. The main advantages oofferedffered by LNG are higherhigher safety,safety, easiereasier transportationtransportation andand storagestorage capacitycapacity comparedcompared toto CNGCNG [[3].3]. LNG is cleaner than coal and oil, therefore, itit hashas gotgot aa plethoraplethora ofof recognitionrecognition inin thethe globalglobal marketmarket [[7].7]. Since LNG isis clean,clean, itit isis a a promising promising alternative alternative to to diesel diesel vehicles vehicles and and is capableis capable of compensatingof compensating some some of the of severethe severe drawbacks drawbacks of natural of natural gas vehicles; gas vehicles; for instance, for instance, LNG fuelledLNG fuelled trucks trucks have ahave higher a higher range (uprange to 700–1000(up to 700–1000 km) due km) tohigher due to energy higher density energy [ 8density]. However, [8]. However, while considering while considering LNG as an LNG alternative, as an thealternative, economic the viability economic should viability also beshould taken also into be consideration. taken into consideration. The cost of an The LNG cost fuel of tankan LNG and fuel the enginetank and is approximatelythe engine is approximately twice as high as twice a diesel as enginehigh as and a diesel tank [ 9engine]. Consequently, and tank during[9]. Consequently, this decade, theduring main this contributors decade, the to main LNG contributors supply growth to LNG will supply be Australia growth and will USA, be Au thoughstralia 18 and other USA, countries though have18 other already countries joined have and othersalready have joined a short and andothers long have term a short goal to and join long the industryterm goal [10 to]. join Besides, the industry among various[10]. Besides, alternatives among of various natural gas,alternatives LNG is theof natura most preferredl gas, LNG mode is the for most long distancepreferred transportation mode for long as becausedistance oftransportation its liquefaction as because attribute, of its its volume liquefaction reduces attribute, by a factor its volume of 600 reduces [11]. Compared by a factor to pipedof 600 natural[11]. Compared gas (PNG), to thepiped annual natural growth gas (PNG), of LNG the trade an isnual two growth times higher,of LNG which trade accounts is two times for 10% higher, and 31%which of globalaccounts natural for 10% gas consumptionand 31% of global and trade natural respectively gas consumption [8]. According and totrade recent respectively study reports, [8]. fromAccording 2005 to to 2015, recent Europe, study Asiareports, and from Oceania 2005 were to 2015, the primary Europe, recipients Asia and of Oceania LNG imports were the consisted primary of 90%recipients of global of LNG imports imports [12]. consisted of 90% of global imports [12]. 1.1. Economics and Life Cycle of LNG Figure1 1 shows shows the the worldwide worldwide LNG LNG price price as as of of June June 2019. 2019. SouthSouth KoreaKorea andand ChinaChina hadhad thethe highesthighest landedlanded price of LNGLNG inin thethe world.world. The price received at the regasificationregasification plant is referred to asas thethe landedlanded price.price. Netback price is taken into consideration for the determination of these prices, which isis based on the eeffectiveffective priceprice forfor aa sellerseller andand producerproducer atat aa definitedefinite location.location. 5.0 4.44 4.45 4.41 4.34 4.31 4 4.0 3.56 3.33 3.0 2.25 2.23 2.0 1.0 0.0 British thermal units) thermal British UK Price (Dollars per million million per (Dollars Price India Spain China Korea Belgium Altamira Canaport Cover Point BahiaBlanca Figure 1. Worldwide landed price of liquefied natural gas (LNG) [13]. Figure 1. Worldwide landed price of liquefied natural gas (LNG) [13]. It is also required to make an economic calculation of the LNG liquefaction plant because fuel It is also required to make an economic calculation of the LNG liquefaction plant because fuel imposes the second highest operational cost after labor. There are
Recommended publications
  • Combustion and Heat Release Characteristics of Biogas Under Hydrogen- and Oxygen-Enriched Condition
    energies Article Combustion and Heat Release Characteristics of Biogas under Hydrogen- and Oxygen-Enriched Condition Jun Li 1, Hongyu Huang 2,*, Huhetaoli 2, Yugo Osaka 3, Yu Bai 2, Noriyuki Kobayashi 1,* and Yong Chen 2 1 Department of Chemical Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan; [email protected] 2 Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; [email protected] (H.); [email protected] (Y.B.); [email protected] (Y.C.) 3 Faculty of Mechanical Engineering, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan; [email protected] * Correspondence: [email protected] (H.H.); [email protected] (N.K.); Tel.: +86-20-870-48394 (H.H.); +81-52-789-5428 (N.K.) Received: 10 May 2017; Accepted: 20 July 2017; Published: 13 August 2017 Abstract: Combustion and heat release characteristics of biogas non-premixed flames under various hydrogen-enriched and oxygen-enriched conditions were investigated through chemical kinetics simulation using detailed chemical mechanisms. The heat release rates, chemical reaction rates, and molar fraction of all species of biogas at various methane contents (35.3–58.7%, mass fraction), hydrogen addition ratios (10–50%), and oxygen enrichment levels (21–35%) were calculated considering the GRI 3.0 mechanism and P1 radiation model. Results showed that the net reaction rate of biogas increases with increasing hydrogen addition ratio and oxygen levels, leading to a higher net heat release rate of biogas flame. Meanwhile, flame length was shortened with the increase in hydrogen addition ratio and oxygen levels.
    [Show full text]
  • Fuel Properties Comparison
    Alternative Fuels Data Center Fuel Properties Comparison Compressed Liquefied Low Sulfur Gasoline/E10 Biodiesel Propane (LPG) Natural Gas Natural Gas Ethanol/E100 Methanol Hydrogen Electricity Diesel (CNG) (LNG) Chemical C4 to C12 and C8 to C25 Methyl esters of C3H8 (majority) CH4 (majority), CH4 same as CNG CH3CH2OH CH3OH H2 N/A Structure [1] Ethanol ≤ to C12 to C22 fatty acids and C4H10 C2H6 and inert with inert gasses 10% (minority) gases <0.5% (a) Fuel Material Crude Oil Crude Oil Fats and oils from A by-product of Underground Underground Corn, grains, or Natural gas, coal, Natural gas, Natural gas, coal, (feedstocks) sources such as petroleum reserves and reserves and agricultural waste or woody biomass methanol, and nuclear, wind, soybeans, waste refining or renewable renewable (cellulose) electrolysis of hydro, solar, and cooking oil, animal natural gas biogas biogas water small percentages fats, and rapeseed processing of geothermal and biomass Gasoline or 1 gal = 1.00 1 gal = 1.12 B100 1 gal = 0.74 GGE 1 lb. = 0.18 GGE 1 lb. = 0.19 GGE 1 gal = 0.67 GGE 1 gal = 0.50 GGE 1 lb. = 0.45 1 kWh = 0.030 Diesel Gallon GGE GGE 1 gal = 1.05 GGE 1 gal = 0.66 DGE 1 lb. = 0.16 DGE 1 lb. = 0.17 DGE 1 gal = 0.59 DGE 1 gal = 0.45 DGE GGE GGE Equivalent 1 gal = 0.88 1 gal = 1.00 1 gal = 0.93 DGE 1 lb. = 0.40 1 kWh = 0.027 (GGE or DGE) DGE DGE B20 DGE DGE 1 gal = 1.11 GGE 1 kg = 1 GGE 1 gal = 0.99 DGE 1 kg = 0.9 DGE Energy 1 gallon of 1 gallon of 1 gallon of B100 1 gallon of 5.66 lb., or 5.37 lb.
    [Show full text]
  • Energy and the Hydrogen Economy
    Energy and the Hydrogen Economy Ulf Bossel Fuel Cell Consultant Morgenacherstrasse 2F CH-5452 Oberrohrdorf / Switzerland +41-56-496-7292 and Baldur Eliasson ABB Switzerland Ltd. Corporate Research CH-5405 Baden-Dättwil / Switzerland Abstract Between production and use any commercial product is subject to the following processes: packaging, transportation, storage and transfer. The same is true for hydrogen in a “Hydrogen Economy”. Hydrogen has to be packaged by compression or liquefaction, it has to be transported by surface vehicles or pipelines, it has to be stored and transferred. Generated by electrolysis or chemistry, the fuel gas has to go through theses market procedures before it can be used by the customer, even if it is produced locally at filling stations. As there are no environmental or energetic advantages in producing hydrogen from natural gas or other hydrocarbons, we do not consider this option, although hydrogen can be chemically synthesized at relative low cost. In the past, hydrogen production and hydrogen use have been addressed by many, assuming that hydrogen gas is just another gaseous energy carrier and that it can be handled much like natural gas in today’s energy economy. With this study we present an analysis of the energy required to operate a pure hydrogen economy. High-grade electricity from renewable or nuclear sources is needed not only to generate hydrogen, but also for all other essential steps of a hydrogen economy. But because of the molecular structure of hydrogen, a hydrogen infrastructure is much more energy-intensive than a natural gas economy. In this study, the energy consumed by each stage is related to the energy content (higher heating value HHV) of the delivered hydrogen itself.
    [Show full text]
  • Hydrogen-Enriched Compressed Natural Gas (HCNG)
    Year 2005 UCD—ITS—RR—05—29 Hydrogen Bus Technology Validation Program Andy Burke Zach McCaffrey Marshall Miller Institute of Transportation Studies, UC Davis Kirk Collier Neal Mulligan Collier Technologies, Inc. Institute of Transportation Studies ◊ University of California, Davis One Shields Avenue ◊ Davis, California 95616 PHONE: (530) 752-6548 ◊ FAX: (530) 752-6572 WEB: http://its.ucdavis.edu/ Hydrogen Bus Technology Validation Program Andy Burke, Zach McCaffrey, Marshall Miller Institute of Transportation Studies, UC Davis Kirk Collier, Neal Mulligan Collier Technologies, Inc. Technology Provider: Collier Technologies, Inc. Grant number: ICAT 01-7 Grantee: University of California, Davis Date: May 12, 2005 Conducted under a grant by the California Air Resources Board of the California Environmental Protection Agency The statements and conclusions in this Report are those of the grantee and not necessarily those of the California Air Resources Board. The mention of commercial products, their source, or their use in connection with material reported herein is not to be construed as actual or implied endorsement of such products 2 Acknowledgments Work on this program was funded by the Federal Transit Administration, the California Air Resources Board, and the Yolo-Solano Air Quality Management District. This Report was submitted under Innovative Clean Air Technologies grant number 01-7 from the California Air Resources Board. 3 Table of Contents Abstract………………………………………………………………………………...................6 Executive Summary…………………………………………………………………...................7
    [Show full text]
  • 14. Diesel Fuel Standard and Compliance Program
    California’s Diesel Fuel Program November 29, 2018 1 Oil & Gas and GHG Mitigation Branch California Air Resources Board (CARB) 2 California Diesel Fuel Requirements ´ASTM D975, Standard Specification for Diesel Fuel Oils (enforced by the California Department of Agriculture’s Division of Measurement Standards) ´The California Diesel Fuel Regulations ´13 CCR 2281, Sulfur Content of Diesel Fuel ´13 CCR 2282, Aromatic Hydrocarbon Content of Diesel Fuel ´13 CCR 2293, et seq., Commercialization of Alternative Diesel Fuel 3 ASTM D975 - 2018, Standard Specification for Diesel Fuel Oils, Grade No. 2-D, S15 ´Flash Point, minimum, 52 °C (126 °F) ´Kinematic Viscosity at 40 °C, 1.9 - 4.1 mm2/s ´Cetane Number, minimum, 40 ´Cetane Index, minimum, or Aromaticity, maximum, 40 or 35 percent by volume ´Lubricity, High-Frequency Reciprocating Rig (HFRR), at 60 °C, maximum, 520 microns ´Conductivity, minimum, 25 pS/m (10-12 ohm-1m-1) 4 13 CCR 2281, Sulfur Content of Diesel Fuel ´Sulfur content maximum of 15 ppmw (mg/kg) ´Applicable to every gallon of vehicular and non-vehicular diesel fuel sold or supplied in California ´Enforced at all points of storage and distribution in California, from production or importation to dispensing 13 CCR 2282, Aromatic Content of 5 Diesel Fuel ´Aromatic hydrocarbon (AHC) content maximum of 10 percent by volume, or ´Certified emission-equivalent formulation established by engine emission testing, or ´Designated equivalent limits: ´AHC content, maximum, 21.0 percent by weight ´Polycyclic aromatic hydrocarbon (PAH) content,
    [Show full text]
  • Improving Performance of Compressed Natural Gas Fueled Passenger Car Engine by Addition of Hydrogen
    Journal of Scientific & Industrial Research Vol. 77, January 2018, pp. 61-65 Improving Performance of Compressed Natural Gas Fueled Passenger Car Engine by Addition of Hydrogen A K Sehgal1*, M Saxena2, S Pandey3 and R K Malhotra4 *1Indian Oil Corporation Ltd, Faridabad, India 2Univeristy of Technology and Management, Shillong, India 3University of Petroleum and Energy Studies, Dehradun, India 4Petroleum Federation of India, New Delhi, India Received 06 October 2016; revised 05 June 2017; accepted 07 October 2017 Hydrogen is a clean fuel that can be used as sole fuel or blends with compressed natural gas (CNG) in the spark ignition engines. Blending of hydrogen in CNG improves the burning velocity and calorific value of CNG. Engine tests were carried out using CNG and optimized fuel blend of 18%HCNG for comparing the engine performance and emissions behavior. Marginal improvement in engine performance (up to 2%) and significant reduction in emissions with18%HCNG compared to neat CNG. The brake specific fuel consumption was 5% lesser compared to CNG. Replacement of methane by hydrogen in the 18%HCNG blend reduced the HC emissions by ~20% and NOx emissions was increased by ~ 10-20% compared to CNG. 18% HCNG decreased the methane emissions up to 25% compared to CNG. The investigation showed that 18% HCNG has given better performance and emissions compared to CNG. Keywords: Hydrogen, Compressed Natural Gas, Emissions, Methane Emissions Introduction produce any major pollutants such as CO, HC, SOx, Natural gas is a naturally occurring form of fossil smoke and other toxic metals except NOx. Hydrogen energy. Utilization of natural gas as fuel for internal can be produced from renewable sources such as combustion engines was almost restricted to biomass and water as well as from non-renewable stationary applications prior to World War II.
    [Show full text]
  • Hydrogen Enriched Compressed Natural Gas (Hcng) – a Futuristic Fuel for Internal Combustion Engines
    HYDROGEN ENRICHED COMPRESSED NATURAL GAS (HCNG) – A FUTURISTIC FUEL FOR INTERNAL COMBUSTION ENGINES by Kasianantham NANTHAGOPAL a*, Rayapati SUBBARAO b, Thangavelu ELANGO a, Ponnusamy BASKAR a and Kandasamy ANNAMALAI c a Automotive Research Centre, SMBS,VIT University, Vellore-14, Tamilnadu, India, e-mail: [email protected] b Department of Mechanical Engineering , Indian Institute of Technology Madras, Chennai-25, India. c Department of Automobile Engineering , MIT Campus, Anna University, Chennai-25, India Air pollution is fast becoming a serious global problem with increasing population and its subsequent demands. This has resulted in increased usage of hydrogen as fuel for internal combustion engines. Hydrogen resources are vast and it is considered as one of the most promising fuel for automotive sector. As the required hydrogen infrastructure and refueling stations are not meeting the demand, widespread introduction of hydrogen vehicles is not possible in the near future. One of the solutions for this hurdle is to blend hydrogen with methane. Such types of blends take benefit of the unique combustion properties of hydrogen and at the same time reduce the demand for pure hydrogen. Enriching natural gas with hydrogen could be a potential alternative to common hydrocarbon fuels for internal combustion engine applications. Many researchers are working on this for the last few years and work is now focused on how to use this kind of fuel to its maximum extent. This technical note is an assessment of HCNG usage in case of internal combustion engines. Several examples and their salient features have been discussed. Finally, overall effects of hydrogen addition on an engine fueled with HCNG under various conditions are illustrated.
    [Show full text]
  • 2002-00201-01-E.Pdf (Pdf)
    report no. 2/95 alternative fuels in the automotive market Prepared for the CONCAWE Automotive Emissions Management Group by its Technical Coordinator, R.C. Hutcheson Reproduction permitted with due acknowledgement Ó CONCAWE Brussels October 1995 I report no. 2/95 ABSTRACT A review of the advantages and disadvantages of alternative fuels for road transport has been conducted. Based on numerous literature sources and in-house data, CONCAWE concludes that: · Alternatives to conventional automotive transport fuels are unlikely to make a significant impact in the foreseeable future for either economic or environmental reasons. · Gaseous fuels have some advantages and some growth can be expected. More specifically, compressed natural gas (CNG) and liquefied petroleum gas (LPG) may be employed as an alternative to diesel fuel in urban fleet applications. · Bio-fuels remain marginal products and their use can only be justified if societal and/or agricultural policy outweigh market forces. · Methanol has a number of disadvantages in terms of its acute toxicity and the emissions of “air toxics”, notably formaldehyde. In addition, recent estimates suggest that methanol will remain uneconomic when compared with conventional fuels. KEYWORDS Gasoline, diesel fuel, natural gas, liquefied petroleum gas, CNG, LNG, Methanol, LPG, bio-fuels, ethanol, rape seed methyl ester, RSME, carbon dioxide, CO2, emissions. ACKNOWLEDGEMENTS This literature review is fully referenced (see Section 12). However, CONCAWE is grateful to the following for their permission to quote in detail from their publications: · SAE Paper No. 932778 ã1993 - reprinted with permission from the Society of Automotive Engineers, Inc. (15) · “Road vehicles - Efficiency and emissions” - Dr. Walter Ospelt, AVL LIST GmbH.
    [Show full text]
  • Waste Motor Oil (WMO) to Diesel Fuel Project Blaine M
    Southern Illinois University Carbondale OpenSIUC Presentations Department of Automotive Technology 3-7-2019 Waste Motor Oil (WMO) to Diesel Fuel Project Blaine M. Heisner Southern Illinois University Carbondale, [email protected] Follow this and additional works at: https://opensiuc.lib.siu.edu/auto_pres PowerPoint slides from a technical presentation at the Illinois College Automotive Instructors Association Spring 2019 conference. Recommended Citation Heisner, Blaine M. "Waste Motor Oil (WMO) to Diesel Fuel Project." (Mar 2019). This Article is brought to you for free and open access by the Department of Automotive Technology at OpenSIUC. It has been accepted for inclusion in Presentations by an authorized administrator of OpenSIUC. For more information, please contact [email protected]. Waste Motor Oil (WMO) to Diesel Fuel Project -Update Spring 2019- SIUC Automotive Technology Department Blaine Heisner AJ McNay Jake Lichter Colton Karas Ryan Mukherjee WMO? (Waste Motor Oil!) • What is in WMO? • Total amount of WMO generated • Petroleum mainly… • 1.3B gallons annually in U.S. • Crankcase oil, transmission fluid, • Only 60% of oil sold is collected power steering fluid, brake fluid, axle grease, gear oil, compressor oil • However… • What happens to WMO • Dumped • Metal, dirt, leaves, additives, coolant, brake clean, solvent, dead • Burned in open fires (brush piles) animals, fuel, chew spit, water, • Collected with a fee (or payment) benzene, etc… • Dropped off at a collection area • Industrial burners (energy gen.) • WMO Generators • Re-refined into new products • Repair shops, dealerships, public and • Lube, fuel, asphalt, etc… private fleets, personal residences, schools, trucking companies, farms Cost/Value of WMO • “The recent softness in crude oil markets, along with the associated declines in fuel pricing, have decreased the value of our recycled fuel oil (RFO) and other products.
    [Show full text]
  • What's the Difference Between Gasoline, Kerosene, Diesel, Etc?
    What's the difference between gasoline, kerosene, diesel, etc? Browse the article What's the difference between gasoline, kerosene, diesel, etc? The "crude oil" pumped out of the ground is a black liquid called petroleum. This liquid contains aliphatic hydrocarbons, or hydrocarbons composed of nothing but hydrogen and carbon. The carbon atoms link together in chains of different lengths. It turns out that hydrocarbon molecules of different lengths have different properties and behaviors. For example, a chain with just one carbon atom in it (CH4) is the lightest chain, known as methane. Methane is a gas so light that it floats like helium. As the chains get longer, they get heavier. The first four chains -- CH4 (methane), C2H6 (ethane), C3H8 (propane) and C4H10 (butane) -- are all gases, and they boil at -161, -88, -46 and -1 degrees F, respectively (-107, -67, -43 and -18 degrees C). The chains up through C18H32 or so are all liquids at room temperature, and the chains above C19 are all solids at room temperature. So what's the real chemical difference between gasoline, kerosene and diesel? It has to do with their boiling points. Carbon Chains in Petroleum Products The different chain lengths have progressively higher boiling points, so they can be separated out by distillation. This is what happens in an oil refinery -- crude oil is heated and the different chains are pulled out by their vaporization temperatures. (See How Oil Refining Works for details.) The chains in the C5, C6 and C7 range are all very light, easily vaporized, clear liquids called naphthas.
    [Show full text]
  • Replacing Gasoline: Alternative Fuels for Light-Duty Vehicles
    Executive Summary OVERVIEW als requirements, feedstock requirements, and so forth. The variety of effects, coupled with the Recent interest in alternative fuels for light-duty existence of the three separate “policy drivers” for highway vehicles (automobiles and light trucks) is introducing alternative fuels, create a complex set of based on their potential to address three important trade-offs for policymakers to weigh. Further, there societal problems: unhealthy levels of ozone in are temporal trade-offs: decisions made now about major urban areas; growing U.S. dependence on promoting short-term fuel options will affect the imported petroleum; and rising emissions of carbon range of options open to future policymakers, e.g., dioxide and other greenhouse gases. This assess- by emplacing new infrastructure that is more or less ment examines the following alternative fuels: adaptable to future fuel options, or by easing methanol, ethanol, natural gas (in either compressed pressure on oil markets and reducing pressure for (CNG) or liquid (LNG) form), electricity (to drive development of nonfossil alternative fuels. Table 1 electric vehicles (EVs)), hydrogen, and reformulated presents some of the trade-offs among the alternative gasoline. fuels relative to gasoline. Substituting another fuel for gasoline affects the Much is known about these fuels from their use in entire fuel cycle, with impacts not only on vehicular commerce and some vehicular experience. Much performance but on fuel handling and safety, materi- remains to be learned, however, especially about Photo credtt General Motors Corp. GM’s Impact electric vehicle, though a prototype requiring much additional testing and development, represents a promising direction for alternative fuel vehicles: a “ground up,” innovative design focused on the unique requirements of the fuel sources, in this case electricity.
    [Show full text]
  • Liquefied Natural Gas/ Compressed Natural Gas Opportunities
    Liquefied Natural Gas/ Compressed Natural Gas Opportunities Fixed Gas and Flame Detection Applications While there are many solutions that can help meet our energy needs into the future, natural gas and its benefits are available now. The significant increase in the supply of natural gas, brought about by technical advancements in producing gas from shale deposits, has revolutionized the gas industry; opening up new sources of gas production in North America. Such increased production has escalated U.S. competitiveness, promoted job growth and bolstered the economy with lower, more stable natural gas prices.¹ ¹http://www.powerincooperation.com Because every life has a purpose... LNG/CNG Opportunites Liquefied natural gas (LNG) is natural gas that has been converted Total U.S. natural gas production, consumption, to liquid form for ease of storage or transport, and its use allows for and net imports, 1990-2035 the production and marketing of natural gas deposits that were (trillion cubicfeet) History 2010 Projections previously economically unrecoverable. This technology is used for 30 natural gas supply operations and domestic storage, and in Net exports, 2035 5% consumption such as for vehicle fuel. 25 Compressed natural gas (CNG) is natural gas under pressure Consumption which remains clear, odorless, and non-corrosive. CNG is a fossil 11% Net imports, 2010 fuel substitute for gasoline (petrol), diesel, or propane/LPG and is a 20 Henry Hub spot market more environmentally clean alternative to those fuels, and it is natural gas prices (2010 dollars per million Btu) much safer in the event of a spill. Domestic production 10 Interest in LNG and CNG has been rekindled and is expected to play 15 5 an important role in the natural gas industry and energy markets 0 over the next several years.
    [Show full text]