Pharmaceutical Aspects of Salt and Cocrystal Forms of Apis and Characterization Challenges
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Symmetry of Three-Center, Four-Electron Bonds†‡
Chemical Science EDGE ARTICLE View Article Online View Journal | View Issue Symmetry of three-center, four-electron bonds†‡ b a c Cite this: Chem. Sci., 2020, 11,7979 Ann Christin Reiersølmoen, § Stefano Battaglia, § Sigurd Øien-Ødegaard, Arvind Kumar Gupta, d Anne Fiksdahl,b Roland Lindh a and Mate Erdelyi *a All publication charges for this article ´ ´ ´ have been paid for by the Royal Society of Chemistry Three-center, four-electron bonds provide unusually strong interactions; however, their nature remains ununderstood. Investigations of the strength, symmetry and the covalent versus electrostatic character of three-center hydrogen bonds have vastly contributed to the understanding of chemical bonding, whereas the assessments of the analogous three-center halogen, chalcogen, tetrel and metallic s^-type long bonding are still lagging behind. Herein, we disclose the X-ray crystallographic, NMR spectroscopic and computational investigation of three-center, four-electron [D–X–D]+ bonding for a variety of cations (X+ ¼ H+,Li+,Na+,F+,Cl+,Br+,I+,Ag+ and Au+) using a benchmark bidentate model system. Formation of a three-center bond, [D–X–D]+ is accompanied by an at least 30% shortening of the D–X Received 11th April 2020 bonds. We introduce a numerical index that correlates symmetry to the ionic size and the electron Accepted 19th June 2020 affinity of the central cation, X+. Providing an improved understanding of the fundamental factors DOI: 10.1039/d0sc02076a Creative Commons Attribution 3.0 Unported Licence. determining bond symmetry on a comprehensive level is expected to facilitate future developments and rsc.li/chemical-science applications of secondary bonding and hypervalent chemistry. -
WO 2013/185114 A2 12 December 2013 (12.12.2013) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2013/185114 A2 12 December 2013 (12.12.2013) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 38/36 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/US20 13/044842 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, 7 June 2013 (07.06.2013) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/657,685 8 June 2012 (08.06.2012) US (84) Designated States (unless otherwise indicated, for every 61/759,817 1 February 20 13 (01.02.2013) US kind of regional protection available): ARIPO (BW, GH, 61/801,603 15 March 2013 (15.03.2013) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, 61/829,775 31 May 2013 (3 1.05.2013) US UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (71) Applicant: BIOGEN IDEC MA INC. -
Actual Symmetry of Symmetric Molecular Adducts in the Gas Phase, Solution and in the Solid State
S S symmetry Review Actual Symmetry of Symmetric Molecular Adducts in the Gas Phase, Solution and in the Solid State Ilya G. Shenderovich Institute of Organic Chemistry, University of Regensburg, Universitaetstrasse 31, 93053 Regensburg, Germany; [email protected] Abstract: This review discusses molecular adducts, whose composition allows a symmetric structure. Such adducts are popular model systems, as they are useful for analyzing the effect of structure on the property selected for study since they allow one to reduce the number of parameters. The main objectives of this discussion are to evaluate the influence of the surroundings on the symmetry of these adducts, steric hindrances within the adducts, competition between different noncovalent interactions responsible for stabilizing the adducts, and experimental methods that can be used to study the symmetry at different time scales. This review considers the following central binding units: hydrogen (proton), halogen (anion), metal (cation), water (hydrogen peroxide). Keywords: hydrogen bonding; noncovalent interactions; isotope effect; cooperativity; water; organ- ometallic complexes; NMR; DFT 1. Introduction If something is perfectly symmetric, it can be boring, but it cannot be wrong. If Citation: Shenderovich, I.G. Actual something is asymmetric, it has potential to be questioned. Note, for example, the symmetry Symmetry of Symmetric Molecular of time in physics [1,2]. Symmetry also plays an important role in chemistry. Whether Adducts in the Gas Phase, Solution it is stereochemistry [3], soft matter self-assembly [4,5], solids [6,7], or diffusion [8], the and in the Solid State. Symmetry 2021, dependence of the physical and chemical properties of a molecular system on its symmetry 13, 756. -
WO 2013/149266 Al 3 October 2013 (03.10.2013) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2013/149266 Al 3 October 2013 (03.10.2013) P O P C T (51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, G01N 33/48 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (21) International Application Number: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, PCT/US20 13/034866 ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (22) International Filing Date: NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, 1 April 2013 (01 .04.2013) RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, (25) Filing Language: English ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 61/618,779 3 1 March 2012 (3 1.03.2012) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (71) Applicant: NVTGEN, INC. [US/US]; 265 Sobrante Way, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, Suite H, Sunnyvale, California 94086 (US). EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, ΓΓ, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, (72) Inventors: FU, Aihua; 265 Sobrante Way, Suite H, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Sunnyvale, California 94086 (US). -
Beyond the Bond1
Beyond the bond 1 More than ever before, new techniques show the bond to be a convenient fiction, albeit one that holds the field of chemistry together , finds Philip Ball 2. Not so long ago, the chemistry student's standard text on the theory of chemical bonding was Charles Coulson's Valence (1952). Absent from it was this theoretical chemist's real view on the sticks that generations of students have drawn to link atoms into molecules. "A chemical bond is not a real thing: it does not exist: no one has ever seen it, no one ever can. It is a figment of our own imagination;” he later wrote [1]. There is a good reason for postponing this awkward truth. The bond is literally the glue that makes the entire discipline cohere; to consider it an objective reality is necessary for any kind of discourse on chemistry. The discipline is in fact riddled with such convenient (and contested) fictions, such as electronegativity. oxidation state, tautomerism and acidity. Disputes about the correct description of bonding have ruffled chemists’ feathers since the concept of molecular structure first emerged in the mid-nineteenth century. Now they are proliferating, as new theoretical and experimental techniques present fresh ways to probe and quantify chemical bonds [2]. Traditional measures such as crystallographic interatomic distances and dissociation energies have been supplemented by spectroscopic techniques for determining vibrational frequencies, methods such as nuclear magnetic resonance to measure shifts in the electronic environment of atoms and their magnetic interactions, measurements of force constants (bond stiffness) and a host of quantum-chemical tools for calculating such aspects as electron distributions or localization. -
UNIVERSITY of CALIFORNIA, SAN DIEGO Insights Into Chemical
UNIVERSITY OF CALIFORNIA, SAN DIEGO Insights into Chemical Reactivity: I. Computational Study of the Primary Versus Secondary O-18 Equilibrium Isotope Effects on Acidity, II. Low-temperature Studies on the Hydrogen-bond Symmetry of Hydrogen Cyclohexene-1,2-dicarboxylate Monoanion in an Organic Medium, III. Computational Study of the Base-catalyzed Decomposition of Malonic Anhydride A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Chemistry by Kathryn D. Burke Committee in charge: Professor Charles L. Perrin, Chair Professor Joshua S. Figueroa Professor Nathan C. Gianneschi Professor Joseph M. O’Connor Professor Melvin Y. Okamura 2013 Copyright Kathryn D. Burke, 2013 All rights reserved. The dissertation of Kathryn D. Burke is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2013 iii DEDICATION To Travis Fork, Knife, Spoon iv TABLE OF CONTENTS Signature Page ............................................................................................................... iii Dedication ...................................................................................................................... iv Table of Contents ........................................................................................................... v List of Figures ................................................................................................................. x List of Tables ............................................................................................................ -
Hydrogen Bonds: Raman Spectroscopic Study
International Journal of Molecular Sciences Article Hydrogen Bonds: Raman Spectroscopic Study Boris A. Kolesov A.V. Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; [email protected] Abstract: The work outlines general ideas on how the frequency and the intensity of proton vibrations of X–H···Y hydrogen bonding are formed as the bond evolves from weak to maximally strong bonding. For this purpose, the Raman spectra of different chemical compounds with moderate, strong, and extremely strong hydrogen bonds were obtained in the temperature region of 5 K–300 K. The dependence of the proton vibrational frequency is schematically presented as a function of the rigidity of O-H···O bonding. The problems of proton dynamics on tautomeric O–H···O bonds are considered. A brief description of the N–H···O and C–H···Y hydrogen bonds is given. Keywords: Raman spectra; strong hydrogen bonds; tautomerism; proton tunneling; proton hopping 1. Introduction An interaction between atomic and molecular systems can be divided into three main types: Coulomb, van der Waals, and chemical. Chemical interactions are usually divided into several types to make them more definite: Covalent, ionic, donor-acceptor, hydrogen, etc.; however, each of them is based on the well-known interaction of atomic or molecular orbitals. The different degree of overlap of the orbitals and the distribution of electron Citation: Kolesov, B.A. Hydrogen density on them (the occupancy of the orbitals) reveals the specified structuring of the Bonds: Raman Spectroscopic Study. chemical interaction. Int. J. Mol. Sci. 2021, 22, 5380. -
(12) United States Patent (10) Patent No.: US 9,711,266 B2 Fu (45) Date of Patent: Jul.18, 2017
USOO9711266B2 (12) United States Patent (10) Patent No.: US 9,711,266 B2 Fu (45) Date of Patent: Jul.18, 2017 (54) LOW DENSITY, HIGHLY POROUS NANO (58) Field of Classification Search STRUCTURE None See application file for complete search history. (71) Applicant: NVIGEN, INC., Sunnyvale, CA (US) (72) Inventor: Aihua Fu, Sunnyvale, CA (US) (56) References Cited (73) Assignee: NVIGEN, Inc., Sunnyvale, CA (US) U.S. PATENT DOCUMENTS 2005/0244322 A1 11/2005 Chen et al. (*) Notice: Subject to any disclaimer, the term of this 2008, OO26217 A1 1/2008 Kim et al. patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. (Continued) (21) Appl. No.: 14/373,899 FOREIGN PATENT DOCUMENTS CN 101633505. A 1, 2010 (22) PCT Fed: Jan. 23, 2013 CN 101966.344 A 2, 2011 (86) PCT No.: PCT/US2O13/02281.8 (Continued) S 371 (c)(1), OTHER PUBLICATIONS (2) Date: Jul. 22, 2014 Woods, Teri. “Aerogels: Thinner, Lighter, Stronger'. http://www. (87) PCT Pub. No.: WO2O13A112643 nasa.gov/topics/technology/features/aerogels.html, Jul. 28, 2011. PCT Pub. Date: Aug. 1, 2013 (Continued) (65) Prior Publication Data Primary Examiner — Humera Sheikh US 2015/OO76392 A1 Mar. 19, 2015 Assistant Examiner — Elaine M. Vazquez Related U.S. Application Data (74) Attorney, Agent, or Firm — Jun He Law Offices P.C.; James J. Zhu (60) Provisional application No. 61/589,777, filed on Jan. 23, 2012. (57) ABSTRACT (51) Int. C. The present invention relates to nanostructures having low HOIF IMOI (2006.01) density and porous coatings that Surround or are associated B22F IM02 (2006.01) with at least one core nanoparticles. -
2005 : Definitions of Hydrogen Bond Compiled by Arunan
DEFINITIONS OF A HYDROGEN BOND Compiled by E. Arunan with some/no comments given in italics Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore. 560 012. INDIA August 2005 (This is by no means comprehensive. These definitions are from books, papers and reports that I chanced upon. At best, they could be representative. Key word of ‘hydrogen bonding’ in SciFinder gave 346,465 references on 30 August 2005 and 348,410 (65928 as entered) on October 1, 2005. I could have missed many important contributions in this field and would appreciate hearing about any other contributions that could be mentioned here. These were collected mostly during the last one year. This is intended for private circulation among the IUPAC Task Group Members involved in the IUPAC project (No: 2004-026-2-100). The main objective is an attempt to help the IUPAC task group in coming out with a classification of intermolecular interactions, hydrogen bonding being the most important of all intermolecular interactions) I. FROM SPECIALIST BOOKS/REVIEWS/PAPERS 0) Early reports (From Huggins’s article and Jeffrey’s and Desiraju and Steiner’s books, all referred below) Werner (1902), Hantzsch (1910) and Pfeifer (1913) used terms such as nebenvalenz (near Valence) and innere komplexsalzbildung for inter- and itra-molecular hydrogen bonding. Moore and Winmill (1912) used the term weak union to describe the weaker basic properties of trimethylammonium hydroxide. A. Werenr, Leibig’s Annalen der Chemie 322, 261 (1902) ; Ber., 36, 147 (1903) A. Hantzsch, Chemische Berichte 43, 3049 (1910). T. S. Moore and T. F. -
US 2015/0353911A1 Salas Et Al
US 20150353911A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0353911A1 Salas et al. (43) Pub. Date: Dec. 10, 2015 (54) CHMERC CLOTTING FACTORS on Feb. 1, 2013, provisional application No. 61/801, 603, filed on Mar. 15, 2013, provisional application (71) Applicant: Biogen Idec MA Inc., Cambridge, MA No. 61/829,775, filed on May 31, 2013. (US) Publication Classification (72) Inventors: Joe Salas, Wayland, MA (US); Elena Kistanova, Brookline, MA (US); Vu (51) Int. Cl. Phong Hong, Cambridge, MA (US); CI2N 9/64 (2006.01) Adam R. Mezo, Carmel, IN (US); A638/48 (2006.01) Robert T. Peters, West Roxbury, MA A647/48 (2006.01) (US) (52) U.S. Cl. CPC ........ CI2N 9/6432 (2013.01); A61K 47/48238 (73) Assignee: Biogen Idec MA Inc., Cambridge, MA (2013.01); A61 K38/4846 (2013.01): CI2N (US) 9/6437 (2013.01); C12Y 304/21021 (2013.01); CI2Y 304/21006 (2013.01) Appl. No.: 14/406,160 (21) (57) ABSTRACT (22) PCT Fled: Jun. 7, 2013 The invention provides chimeric clotting factors comprising an activatable clotting factor and an enhancer moiety. The (86) PCT NO.: PCT/US13A44842 activatable clotting factor allows the chimeric clotting factor S371 (c)(1), to be activated at the site of coagulation. The enhancer moiety (2) Date: Dec. 5, 2014 can additionally improve procoagulation activities of the chi meric clotting factors. The chimeric clotting factors can fur ther be improved by fusion to a half-life extender, which Related U.S. Application Data improves a pharmacokinetics property of the chimeric clot (60) Provisional application No. -
An Approach to the Design of Surface Stress-Based PDMS Micro-Membrane Biosensors — Concept, Numerical Simulations and Prototypes
An approach to the design of surface stress-based PDMS micro-membrane biosensors — Concept, Numerical simulations and Prototypes (PDMS-Mikro-Membran-Biosensoren auf Basis der Analyse von Oberflächenspannungen — Konzept, numerische Simulation und Prototypenbau) Dissertation zur Erlangung des akademischen Grades Doktoringenieur (Dr.-Ing.) vorgelegt der Fakultät für Maschinenbau der Technischen Universität Ilmenau von M.-Eng. Shengbo Sang geboren am 24. April 1979 in Shandong, P.R. China urn:nbn:de:gbv:ilm1-2010000423 Tag der Einreichung: 15. Juni 2010 Tag der Verteidigung: 12. November 2010 1. Gutachter: Univ.-Prof. Dipl.-Ing. Dr. med. (habil.) Hartmut Witte (Technische Universität Ilmenau) 2. Gutachter: Prof. Dr.-Ing. Klaus Liefeith (Institut für Bioprozess- und Analysenmesstechnik e.V.) 3. Gutachter: Professor Dr.-Ing. Theodor Doll (Johannes-Gutenberg-Universität Mainz) Acknowledgments Taking the chance, I would like to acknowledge a number of people who have contributed to the development of this thesis and to my overall experience as a PhD student at Ilmenau University of Technology. First and foremost, I would like to thank my supervisor Professor Hartmut Witte for having given me the opportunity to conduct research in the exciting field of BioMEMS. I am also deeply indebted to him for his support, encouragement and guidance as well as the freedom he gave me to work on areas of my interest during my graduate study. The professional interaction with my colleagues in biomechatronic group has had a significant influence on my research work, especial Dipl.-Ing. Ulrike Fröber, Dipl.-Ing. Mike Stubenrauch. I would also like to thank Dr. Arne Albrecht, Dipl.-Ing. Lars Dittrich and other colleagues in the Center for Micro- and Nanotechnologies (ZMN) for their help and support to the fabrication. -
Symmetry of Halonium Complexes in Solution
Symmetry of Halonium Complexes in Solution ANNA-CARIN CARLSSON Department of Chemistry and Molecular Biology University of Gothenburg 2012 DOCTORAL THESIS Submitted for partial fulfilment of the requirements for the degree of Doctor of Philosophy in Chemistry Symmetry of Halonium Complexes in Solution ANNA-CARIN CARLSSON Copyright © Anna-Carin Carlsson 2012 ISBN 978-91-628-8407-9 Available online at: http://hdl.handle.net/2077/27982 Department of Chemistry and Molecular Biology University of Gothenburg SE-412 96 Gothenburg Sweden Printed by Ineko AB Kållered, 2012 ii To my family iii iv ABSTRACT In this thesis the symmetry of two interaction types involving electropositive halogens have been studied in solution; the NX+N halogen bond (X = Br or I), and the CX+C interaction of previously characterised, cyclic, 1,2-bridged halonium ions (X = Cl or Br), respectively. The three NX+N model structures included are bispyridine, 1,2- bis(pyridine-2-ylethynyl)benzene and 1,2-bis((4-methylpyridin-2-yl)ethynyl)benzene halonium triflate complexes. Model structures representing the CX+C interaction are the dimethylethylene- and ethylenehalonium ions. All structures included in this thesis are comprised of symmetrically arranged atoms, but have the possibility to exist as either a static, symmetric structure, or as two asymmetric, fast equilibrating tautomers. For a symmetric structure, the positive halogen is positioned with equal distances to the electron donor nitrogens/carbons. In asymmetric structures, the halogen is always closer to one of the nitrogens/carbons, and is consistently jumping between the two nitrogens/carbons. In this investigation the NMR spectroscopic method Isotopic Perturbation of Equilibrium (IPE) has been applied for distinguishing a single symmetric structure from rapidly, interconverting tautomers.