Unique Dynamics and Exocytosis Properties of Gabaergic Synaptic Vesicles Revealed by Three-Dimensional Single Vesicle Tracking

Total Page:16

File Type:pdf, Size:1020Kb

Unique Dynamics and Exocytosis Properties of Gabaergic Synaptic Vesicles Revealed by Three-Dimensional Single Vesicle Tracking Unique dynamics and exocytosis properties of GABAergic synaptic vesicles revealed by three-dimensional single vesicle tracking Chungwon Parka, Xingxiang Chena, Chong-Li Tianb,c, Gyu Nam Parkd,e, Nicolas Chenouardf, Hunki Leea,g, Xin Yi Yeoh,i, Sangyong Jungh,j, Richard W. Tsienk,1, Guo-Qiang Bib,c, and Hyokeun Parka,l,m,1 aDivision of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, 999077 Kowloon, Hong Kong; bSchool of Life Sciences, University of Science and Technology of China, Hefei, 230052 Anhui, China; cChinese Academy of Sciences, Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, 230052 Anhui, China; dDepartment of Chemistry, Chung-Ang University, 06974 Seoul, Korea; eCreative Research Initiative Center for Chemical Dynamics in Living Cells, Chung-Ang University, 06974 Seoul, Korea; fCNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, University of Bordeaux, F-33000 Bordeaux, France; gInstitute of Medical Physics and Biophysics, University of Münster, 48149 Münster, Germany; hSingapore Bioimaging Consortium, Agency for Science, Technology, and Research, 138667 Singapore; iDepartment of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore; jDepartment of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore; kDepartment of Neuroscience and Physiology, New York University Neuroscience Institute, New York University, New York, NY 10016; lDepartment of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, 999077 Kowloon, Hong Kong; and mState Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, 999077 Kowloon, Hong Kong Contributed by Richard W. Tsien, December 8, 2020 (sent for review October 26, 2020; reviewed by Ege T. Kavalali and Yulong Li) Maintaining the balance between neuronal excitation and inhibi- synchronization of the neuronal network, thereby regulating tion is essential for proper function of the central nervous system. neuronal excitability (8, 9). Thus, maintaining a tightly regulated Inhibitory synaptic transmission plays an important role in main- coordination between excitatory and inhibitory neurotransmis- taining this balance. Although inhibitory transmission has higher sion is essential for proper brain function. kinetic demands compared to excitatory transmission, its proper- An extensive analysis of the components and molecular events ties are poorly understood. In particular, the dynamics and exocy- involved in vesicle fusion and neurotransmitter release has yielded tosis of single inhibitory vesicles have not been investigated, due general models describing the organization and functional NEUROSCIENCE largely to both technical and practical limitations. Using a combi- properties of both presynaptic and postsynaptic components nation of quantum dots (QDs) conjugated to antibodies against (10–12). On the presynaptic side, a transient increase in local the luminal domain of the vesicular GABA transporter to selec- Ca2+ concentration due to activation of voltage-gated Ca2+ chan- tively label GABAergic (i.e., predominantly inhibitory) vesicles nels triggers the localized buckling of the plasma membrane via a together with dual-focus imaging optics, we tracked the real- direct interaction between the C2B domain in the protein time three-dimensional position of single GABAergic vesicles up synaptotagmin-1 (Syt1) and lipids in the membrane (13–15). This to the moment of exocytosis (i.e., fusion). Using three-dimensional leads to the synchronous fusion between the synaptic vesicles and the trajectories, we found that GABAergic synaptic vesicles traveled a plasma membrane and release of the vesicle’s contents into the syn- shorter distance prior to fusion and had a shorter time to fusion aptic cleft (16), enabling excitatory and inhibitory neurotransmitters to compared to synaptotagmin-1 (Syt1)-labeled vesicles, which were mostly from excitatory neurons. Moreover, our analysis revealed that GABAergic synaptic vesicles move more straightly to their Significance release sites than Syt1-labeled vesicles. Finally, we found that GABAergic vesicles have a higher prevalence of kiss-and-run fu- Despite playing an important role in maintaining brain func- sion than Syt1-labeled vesicles. These results indicate that inhibi- tion, the dynamics and exocytosis of inhibitory synaptic vesi- tory synaptic vesicles have a unique set of dynamics and exocytosis cles are poorly understood. Here, we tracked the three- properties to support rapid synaptic inhibition, thereby maintain- dimensional position of single GABAergic vesicles up to the ing a tightly regulated coordination between excitation and inhi- moment of exocytosis in real time by loading single GABAergic bition in the central nervous system. vesicles with quantum dots conjugated to antibodies against the luminal domain of the vesicular GABA transporter. We synaptic vesicles | dynamics | exocytosis | three-dimensional tracking | found that GABAergic synaptic vesicles have a smaller total inhibitory synaptic transmission travel length before fusion, a shorter fusion latency, and a higher prevalence of kiss-and-run fusion than synaptotagmin- 1–labeled vesicles. Our findings provide evidence that inhibi- eurons communicate with other neurons by releasing neu- tory vesicles have a unique set of dynamics and exocytosis rotransmitters from their presynaptic terminals via the exocy- N properties to support rapid inhibitory synaptic transmission. tosis (i.e., fusion) of synaptic vesicles at the presynaptic membrane, subsequently activating postsynaptic receptors to mediate down- Author contributions: C.P. and H.P. designed research; C.P., X.C., C.-L.T., X.Y.Y., and S.J. stream effects (1–4). Synapses in the central nervous system can performed research; C.P. and H.P. contributed new reagents/analytic tools; C.P., X.C., be broadly classified as either excitatory or inhibitory, depending C.-L.T., G.N.P., N.C., and H.L. analyzed data; C.P., X.C., N.C., X.Y.Y., S.J., R.W.T., G.-Q.B., and on the type of neurotransmitters that they release and the effects H.P. wrote the paper; and S.J., G.-Q.B., and H.P. supervised researching graduate students. Reviewers: E.T.K., Vanderbilt University; and Y.L., Peking-Tsinghua Center for of those neurotransmitters. While excitatory synapses cause the Life Sciences. generation, propagation, and potentiation of neuronal responses The authors declare no competing interest. for processing information (5), inhibitory synapses play an es- Published under the PNAS license. sential role in feedback and feedforward inhibition in order to 1To whom correspondence may be addressed. Email: [email protected] or control neural excitability (6) and in the control of brain rhythms [email protected]. (7). In the central nervous system, inhibitory synaptic transmis- This article contains supporting information online at https://www.pnas.org/lookup/suppl/ sion is mediated primarily by release of the neurotransmitter doi:10.1073/pnas.2022133118/-/DCSupplemental. GABA and serves to coordinate the pattern of excitation and the Published February 23, 2021. PNAS 2021 Vol. 118 No. 9 e2022133118 https://doi.org/10.1073/pnas.2022133118 | 1of10 Downloaded by guest on September 24, 2021 diffuse to and act upon postsynaptic glutamate and GABA receptors, with VGAT–CypHer5E were used for studying GABAergic respectively. vesicle dynamics and exocytosis. Importantly, our general understanding of neurotransmitter In our experiments, exocytosis of a QD-loaded vesicle is release stems from studying excitatory neurotransmission and is reflected by a sudden, irreversible drop in QD fluorescence currently unable to adequately explain the distinct features as- caused by quenching with extracellular Trypan blue (23). To sociated with inhibitory synaptic transmission. For example, the measure the position of single QD-loaded GABAergic synaptic size of the readily releasable pool (RRP) of synaptic vesicles in vesicles in the x-y plane, we used fluorescence imaging with one- striatal inhibitory GABAergic neurons—probed by a hypertonic nanometer accuracy (FIONA) (23, 25, 26); the vesicle’s z-position sucrose solution—is three times larger than the RRP in excit- was localized using dual-focus imaging (23, 27). Fig. 1C shows the atory hippocampal glutamatergic neurons (17). Furthermore, real-time three-dimensional position of a single QD-loaded inhibitory neurons have both higher average vesicular release GABAergic synaptic vesicle in a cultured neuron stimulated at x y probability (Pr) and more release sites compared to excitatory 10 Hz up to the time of exocytosis; the - plane projection is neurons (17–19). These results suggest that quantitative differ- overlaid on the fluorescence image of a GABAergic presynaptic ences exist between inhibitory and excitatory synapses with re- terminal labeled with VGAT–CypHer5E, showing that the spect to vesicle dynamics, release, and recycling. In addition, GABAergic vesicle remained near the edge of the presynaptic disproportionate effects between inhibitory and excitatory syn- terminal before undergoing exocytosis. Fluorescence images of apses following knockout of some or all synapsin genes provide a the QD-loaded GABAergic vesicle just before and after exocy- molecular perspective on the putative differences between these tosis show near-complete, irreversible quenching
Recommended publications
  • Variable Priming of a Docked Synaptic Vesicle PNAS PLUS
    Variable priming of a docked synaptic vesicle PNAS PLUS Jae Hoon Junga,b,c, Joseph A. Szulea,c, Robert M. Marshalla,c, and Uel J. McMahana,c,1 aDepartment of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305; bDepartment of Physics, Stanford University School of Humanities and Sciences, Stanford, CA 94305; and cDepartment of Biology, Texas A&M University, College Station, TX 77845 Edited by Thomas S. Reese, National Institutes of Health, Bethesda, MD, and approved January 12, 2016 (received for review November 30, 2015) The priming of a docked synaptic vesicle determines the proba- transition. Biochemical and electrophysiological approaches have bility of its membrane (VM) fusing with the presynaptic membrane provided evidence that priming is mediated by interactions be- (PM) when a nerve impulse arrives. To gain insight into the nature tween the SNARE proteins and their regulators (7, 12–14, 24) and of priming, we searched by electron tomography for structural can involve differences in positioning of docked SVs relative to + relationships correlated with fusion probability at active zones of Ca2 channels (25). Biochemistry has also led to the suggestion axon terminals at frog neuromuscular junctions. For terminals that primed SVs may become deprimed (26). fixed at rest, the contact area between the VM of docked vesicles We have previously shown by electron tomography on frog and PM varied >10-fold with a normal distribution. There was no neuromuscular junctions (NMJs) fixed at rest that there are, for merging of the membranes. For terminals fixed during repetitive docked SVs, variations in the extent of the VM–PM contact area evoked synaptic transmission, the normal distribution of contact and in the length of the several AZM macromolecules linking areas was shifted to the left, due in part to a decreased number of the VM to the PM, the so-called ribs, pegs, and pins (2, 27).
    [Show full text]
  • Molecular Biology of Neuronal Voltage-Gated Calcium Channels
    EXPERIMENTAL and MOLECULAR MEDICINE, Vol. 30, No 3, 123-130, September 1998 Molecular biology of neuronal voltage-gated calcium channels Hemin Chin and is capable of directing expression of calcium channel activity in heterologous expression systems. In the central Genetics Research Branch, Division of Basic and Clinical Neuroscience Research, nervous system (CNS), VGCCs are expressed by five National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, distinct a1 subunit genes (α1A, α1B, α1C, α1D and α1E), U.S.A. which exhibit further variations due to alternative splicing of the primary RNA transcripts. The α1C and, α1D su b u n i t Accepted 3 August 1998 genes encode dihydropyridine (DHP)-sensitive L-type channels, while the three other α1 subunit genes (α1A, α1B and α1E) give rise to DHP-insensitive P/Q-, N- and R-type channels, respectively. The α2 and δ s u b u n i t proteins are produced by proteolytic cleavage of a larger precursor produced by the single α2-δ gene (Table 1). Introduction Three alternatively spliced variants of the α2 subunit are expressed in a tissue-specific manner. Two variants Calcium ions are important intracellular messengers have been isolated from the brain and skeletal muscle mediating a number of neuronal functions including neuro- (Kim et al., 1992; Williams et al., 1992), and a distinct transmitter release, neurosecretion, neuronal excitation, third splice variant which is expressed in glial cells has survival of eurons, and regulation of gene expression. been recently identified (Puro et al., 1996). In addition to The entry of calcium across the plasmamembrane in the gene encoding the skeletal muscle β subunit, three response to membrane depolarization or activation of 1 other β subunit genes (β2, β3 and β4) have been isolated neurotransmitter receptors represents a major pathway thus far.
    [Show full text]
  • Protein Scaffolds in the Coupling of Synaptic Exocytosis and Endocytosis
    REVIEWS Protein scaffolds in the coupling of synaptic exocytosis and endocytosis Volker Haucke*§, Erwin Neher‡ and Stephan J. Sigrist§|| Abstract | Mechanisms that ensure robust long-term performance of synaptic transmission over a wide range of activity are crucial for the integrity of neuronal networks, for processing sensory information and for the ability to learn and store memories. Recent experiments have revealed that such robust performance requires a tight coupling between exocytic vesicle fusion at defined release sites and endocytic retrieval of synaptic vesicle membranes. Distinct presynaptic scaffolding proteins are essential for fulfilling this requirement, providing either ultrastructural coordination or acting as signalling hubs. Active zone Communication between nerve cells largely occurs at restore functional synaptic vesicle pools for reuse and to 6–8 (Often abbreviated to AZ.) An chemical synapses — specialized sites of cell–cell con- ensure long-term functionality of the synapse (FIG. 1). area in the presynaptic tact where electrical signals trigger the exocytic release Depending on the type of synapse and the stimulation fre- compartment that is specialized of neurotransmitter, which in turn activates postsynaptic quency, several modes of endocytosis with different time for rapid exocytosis and contains multidomain proteins receptor channels. The efficacy with which such chemi- constants — for example, fast and slow endocytosis — 7,9,10 acting as scaffolds in the cal signals are transmitted is crucial for the functioning seem to operate . Clathrin-mediated endocytosis organization of release sites. of the nervous system. Modulation of neurotransmission arguably represents the main pathway of synaptic vesicle 6,8,11 Periactive zone enables nerve cells to respond to a vast range of stimu- endocytosis , although other modes — for example, An array of endocytic proteins lus patterns.
    [Show full text]
  • Mechanisms of Synaptic Plasticity Mediated by Clathrin Adaptor-Protein Complexes 1 and 2 in Mice
    Mechanisms of synaptic plasticity mediated by Clathrin Adaptor-protein complexes 1 and 2 in mice Dissertation for the award of the degree “Doctor rerum naturalium” at the Georg-August-University Göttingen within the doctoral program “Molecular Biology of Cells” of the Georg-August University School of Science (GAUSS) Submitted by Ratnakar Mishra Born in Birpur, Bihar, India Göttingen, Germany 2019 1 Members of the Thesis Committee Prof. Dr. Peter Schu Institute for Cellular Biochemistry, (Supervisor and first referee) University Medical Center Göttingen, Germany Dr. Hans Dieter Schmitt Neurobiology, Max Planck Institute (Second referee) for Biophysical Chemistry, Göttingen, Germany Prof. Dr. med. Thomas A. Bayer Division of Molecular Psychiatry, University Medical Center, Göttingen, Germany Additional Members of the Examination Board Prof. Dr. Silvio O. Rizzoli Department of Neuro-and Sensory Physiology, University Medical Center Göttingen, Germany Dr. Roland Dosch Institute of Developmental Biochemistry, University Medical Center Göttingen, Germany Prof. Dr. med. Martin Oppermann Institute of Cellular and Molecular Immunology, University Medical Center, Göttingen, Germany Date of oral examination: 14th may 2019 2 Table of Contents List of abbreviations ................................................................................. 5 Abstract ................................................................................................... 7 Chapter 1: Introduction ............................................................................
    [Show full text]
  • Chemical Neurotransmission
    Cambridge University Press 978-1-107-02598-1 — Stahl's Essential Psychopharmacology 4th Edition Excerpt More Information Chapter1 Chemical neurotransmission Anatomical versus chemical basis of Beyond the second messenger to a neurotransmission 1 phosphoprotein cascade triggering gene 16 Principles of chemical neurotransmission 5 expression Neurotransmitters 5 How neurotransmission triggers gene 18 Neurotransmission: classic, retrograde, expression 18 and volume 6 Molecular mechanism of gene expression Excitation–secretion coupling 8 Epigenetics 24 Signal transduction cascades 9 What are the molecular mechanisms 24 Overview 9 of epigenetics? Forming a second messenger 11 How epigenetics maintains or changes the status quo 26 Beyond the second messenger to phosphoprotein messengers 13 Summary 26 Modern psychopharmacology is largely the story of neurons, not unlike millions of telephone wires chemical neurotransmission. To understand the actions within thousands upon thousands of cables. The ana- of drugs on the brain, to grasp the impact of diseases tomically addressed brain is thus a complex wiring upon the central nervous system, and to interpret the diagram, ferrying electrical impulses to wherever behavioral consequences of psychiatric medicines, the “wire” is plugged in (i.e., at a synapse). Synapses one must be fluent in the language and principles of canformonmanypartsofaneuron,notjustthe chemical neurotransmission. The importance of this dendrites as axodendritic synapses, but also on the fact cannot be overstated for the student of psychophar- soma as axosomatic synapses, and even at the begin- macology. This chapter forms the foundation for the ning and at the end of axons (axoaxonic synapses) entire book, and the roadmap for one’s journey through (Figure 1-2).
    [Show full text]
  • Presynaptic Modulation of Synaptic Transmission and Plasticity by Brain-Derived Neurotrophic Factor in the Developing Hippocampus
    The Journal of Neuroscience, September 1, 1998, 18(17):6830–6839 Presynaptic Modulation of Synaptic Transmission and Plasticity by Brain-Derived Neurotrophic Factor in the Developing Hippocampus Wolfram Gottschalk,1 Lucas D. Pozzo-Miller,2 Alexander Figurov,1 and Bai Lu1 1Unit on Synapse Development and Plasticity, Laboratory of Developmental Neurobiology, National Institute of Child Health and Human Development, and 2Laboratory of Neurobiology, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland 20892 In addition to the regulation of neuronal survival and differenti- interpulse intervals #20 msec. Changes in the extracellular ation, neurotrophins may play a role in synapse development calcium concentration altered the magnitude of the BDNF effect and plasticity. Application of brain-derived neurotrophic factor on PPF and synaptic responses to HFS, suggesting that BDNF (BDNF) promotes long-term potentiation (LTP) in CA1 synapses regulates neurotransmitter release. When the desensitization of of neonatal hippocampus, which otherwise exhibit only short- glutamate receptors was blocked by cyclothiazide or anirac- term potentiation. This is attributable, at least in part, to an etam, the BDNF potentiation of the synaptic responses to HFS attenuation of the synaptic fatigue induced by high-frequency was unaltered. Taken together, these results suggest that BDNF stimulation (HFS). However, the prevention of synaptic fatigue acts presynaptically. When two pathways in the same slice by BDNF could be mediated by an attenuation of synaptic were monitored simultaneously, BDNF treatment potentiated vesicle depletion from presynaptic terminals and/or a reduction the tetanized pathway without affecting the synaptic efficacy of of the desensitization of postsynaptic receptors. Here we pro- the untetanized pathway.
    [Show full text]
  • The Presynaptic Scaffold Protein Bassoon in Forebrain Excitatory Neurons Mediates Hippocampal Circuit Maturation: Potential Involvement of Trkb Signalling
    International Journal of Molecular Sciences Article The Presynaptic Scaffold Protein Bassoon in Forebrain Excitatory Neurons Mediates Hippocampal Circuit Maturation: Potential Involvement of TrkB Signalling Anil Annamneedi 1,2,3,* , Miguel del Angel 1, Eckart D. Gundelfinger 2,3,4, Oliver Stork 1,2 and Gürsel Çalı¸skan 1,2,* 1 Institute of Biology, Otto-Von-Guericke University, 39120 Magdeburg, Germany; [email protected] (M.d.A.); [email protected] (O.S.) 2 Center for Behavioral Brain Sciences (CBBS), 39120 Magdeburg, Germany; [email protected] 3 Leibniz Institute for Neurobiology (LIN), RG Neuroplasticity, 39118 Magdeburg, Germany 4 Institute of Pharmacology & Toxicology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany * Correspondence: [email protected] (A.A.); [email protected] (G.Ç.) Abstract: A presynaptic active zone organizer protein Bassoon orchestrates numerous important func- tions at the presynaptic active zone. We previously showed that the absence of Bassoon exclusively in forebrain glutamatergic presynapses (BsnEmx1cKO) in mice leads to developmental disturbances in dentate gyrus (DG) affecting synaptic excitability, morphology, neurogenesis and related behaviour during adulthood. Here, we demonstrate that hyperexcitability of the medial perforant path-to-DG (MPP-DG) pathway in BsnEmx1cKO mice emerges during adolescence and is sustained during adult- Citation: Annamneedi, A.; del hood. We further provide evidence for a potential involvement of tropomyosin-related kinase B Angel, M.; Gundelfinger, E.D.; Stork, (TrkB), the high-affinity receptor for brain-derived neurotrophic factor (BDNF), mediated signalling. O.; Çalı¸skan,G. The Presynaptic We detect elevated TrkB protein levels in the dorsal DG of adult mice (~3–5 months-old) but not in Scaffold Protein Bassoon in Forebrain Excitatory Neurons Mediates adolescent (~4–5 weeks-old) mice.
    [Show full text]
  • Part III: Modeling Neurotransmission – a Cholinergic Synapse
    Part III: Modeling Neurotransmission – A Cholinergic Synapse Operation of the nervous system is dependent on the flow of information through chains of neurons functionally connected by synapses. The neuron conducting impulses toward the synapse is the presynaptic neuron, and the neuron transmitting the signal away from the synapse is the postsynaptic neuron. Chemical synapses are specialized for release and reception of chemical neurotransmitters. For the most part, neurotransmitter receptors in the membrane of the postsynaptic cell are either 1.) channel-linked receptors, which mediate fast synaptic transmission, or 2.) G protein-linked receptors, which oversee slow synaptic responses. Channel-linked receptors are ligand-gated ion channels that interact directly with a neurotransmitter and are called ionotropic receptors. Alternatively, metabotropic receptors do not have a channel that opens or closes but rather, are linked to a G-protein. Once the neurotransmitter binds to the metabotropic receptor, the receptor activates the G-protein which, in turn, goes on to activate another molecule. 3a. Model the ionotropic cholinergic synapse shown below. Be sure to label all of the following: voltage-gated sodium channel, voltage-gated potassium channel, neurotransmitter, synaptic vesicle, presynaptic cell, postsynaptic cell, potassium leak channel, sodium-potassium pump, synaptic cleft, acetylcholine receptor, acetylcholinesterase, calcium channel. When a nerve impulse (action potential) reaches the axon terminal, it sets into motion a chain of events that triggers the release of neurotransmitter. You will next model the events of neurotransmission at a cholinergic synapse. Cholinergic synapses utilize acetylcholine as the chemical of neurotransmission. MSOE Center for BioMolecular Modeling Synapse Kit: Section 3-6 | 1 Step 1 - Action potential arrives at the Step 2 - Calcium channels open in the terminal end of the presynaptic cell.
    [Show full text]
  • Regulation of Neuronal Communication by G Protein-Coupled Receptors ⇑ Yunhong Huang, Amantha Thathiah
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 589 (2015) 1607–1619 journal homepage: www.FEBSLetters.org Review Regulation of neuronal communication by G protein-coupled receptors ⇑ Yunhong Huang, Amantha Thathiah VIB Center for the Biology of Disease, Leuven, Belgium Center for Human Genetics (CME) and Leuven Institute for Neurodegenerative Diseases (LIND), University of Leuven (KUL), Leuven, Belgium article info abstract Article history: Neuronal communication plays an essential role in the propagation of information in the brain and Received 31 March 2015 requires a precisely orchestrated connectivity between neurons. Synaptic transmission is the mech- Revised 5 May 2015 anism through which neurons communicate with each other. It is a strictly regulated process which Accepted 5 May 2015 involves membrane depolarization, the cellular exocytosis machinery, neurotransmitter release Available online 14 May 2015 from synaptic vesicles into the synaptic cleft, and the interaction between ion channels, G Edited by Wilhelm Just protein-coupled receptors (GPCRs), and downstream effector molecules. The focus of this review is to explore the role of GPCRs and G protein-signaling in neurotransmission, to highlight the func- tion of GPCRs, which are localized in both presynaptic and postsynaptic membrane terminals, in reg- Keywords: G protein-coupled receptors ulation of intrasynaptic and intersynaptic communication, and to discuss the involvement of G-proteins astrocytic GPCRs in the regulation of neuronal communication. Neuronal communication Ó 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. Synaptic transmission Signaling Astrocytes Neurons Autoreceptors Neurotransmitters 1.
    [Show full text]
  • RIM-BP2 Primes Synaptic Vesicles Via Recruitment of Munc13-1 At
    RESEARCH ARTICLE RIM-BP2 primes synaptic vesicles via recruitment of Munc13-1 at hippocampal mossy fiber synapses Marisa M Brockmann1†, Marta Maglione2,3,4†, Claudia G Willmes5†, Alexander Stumpf6, Boris A Bouazza1, Laura M Velasquez6, M Katharina Grauel1, Prateep Beed6, Martin Lehmann3, Niclas Gimber6, Jan Schmoranzer4, Stephan J Sigrist2,4,5*, Christian Rosenmund1,4*, Dietmar Schmitz4,5,6* 1Institut fu¨ r Neurophysiologie, Charite´ – Universita¨ tsmedizin Berlin, corporate member of Freie Universita¨ t Berlin, Humboldt-Universita¨ t zu Berlin, and Berlin Institute of Health, Berlin, Germany; 2Freie Universita¨ t Berlin, Institut fu¨ r Biologie, Berlin, Germany; 3Leibniz-Forschungsinstitut fu¨ r Molekulare Pharmakologie (FMP), Berlin, Germany; 4NeuroCure Cluster of Excellence, Berlin, Germany; 5DZNE, German Center for Neurodegenerative Diseases, Berlin, Germany; 6Neuroscience Research Center, Charite´ – Universita¨ tsmedizin Berlin, corporate member of Freie Universita¨ t Berlin, Humboldt-Universita¨ t zu Berlin, and Berlin Institute of Health, Berlin, Germany Abstract All synapses require fusion-competent vesicles and coordinated Ca2+-secretion coupling for neurotransmission, yet functional and anatomical properties are diverse across *For correspondence: different synapse types. We show that the presynaptic protein RIM-BP2 has diversified functions in [email protected] (SJS); neurotransmitter release at different central murine synapses and thus contributes to synaptic [email protected] diversity. At hippocampal pyramidal CA3-CA1 synapses, RIM-BP2 loss has a mild effect on (CR); neurotransmitter release, by only regulating Ca2+-secretion coupling. However, at hippocampal [email protected] (DS) mossy fiber synapses, RIM-BP2 has a substantial impact on neurotransmitter release by promoting †These authors contributed vesicle docking/priming and vesicular release probability via stabilization of Munc13-1 at the active equally to this work zone.
    [Show full text]
  • 11 Introduction to the Nervous System and Nervous Tissue
    11 Introduction to the Nervous System and Nervous Tissue ou can’t turn on the television or radio, much less go online, without seeing some- 11.1 Overview of the Nervous thing to remind you of the nervous system. From advertisements for medications System 381 Yto treat depression and other psychiatric conditions to stories about celebrities and 11.2 Nervous Tissue 384 their battles with illegal drugs, information about the nervous system is everywhere in 11.3 Electrophysiology our popular culture. And there is good reason for this—the nervous system controls our of Neurons 393 perception and experience of the world. In addition, it directs voluntary movement, and 11.4 Neuronal Synapses 406 is the seat of our consciousness, personality, and learning and memory. Along with the 11.5 Neurotransmitters 413 endocrine system, the nervous system regulates many aspects of homeostasis, including 11.6 Functional Groups respiratory rate, blood pressure, body temperature, the sleep/wake cycle, and blood pH. of Neurons 417 In this chapter we introduce the multitasking nervous system and its basic functions and divisions. We then examine the structure and physiology of the main tissue of the nervous system: nervous tissue. As you read, notice that many of the same principles you discovered in the muscle tissue chapter (see Chapter 10) apply here as well. MODULE 11.1 Overview of the Nervous System Learning Outcomes 1. Describe the major functions of the nervous system. 2. Describe the structures and basic functions of each organ of the central and peripheral nervous systems. 3. Explain the major differences between the two functional divisions of the peripheral nervous system.
    [Show full text]
  • G-Protein-Coupled Receptors in CNS: a Potential Therapeutic Target for Intervention in Neurodegenerative Disorders and Associated Cognitive Deficits
    cells Review G-Protein-Coupled Receptors in CNS: A Potential Therapeutic Target for Intervention in Neurodegenerative Disorders and Associated Cognitive Deficits Shofiul Azam 1 , Md. Ezazul Haque 1, Md. Jakaria 1,2 , Song-Hee Jo 1, In-Su Kim 3,* and Dong-Kug Choi 1,3,* 1 Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; shofi[email protected] (S.A.); [email protected] (M.E.H.); md.jakaria@florey.edu.au (M.J.); [email protected] (S.-H.J.) 2 The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia 3 Department of Integrated Bioscience & Biotechnology, College of Biomedical and Health Science, and Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Korea * Correspondence: [email protected] (I.-S.K.); [email protected] (D.-K.C.); Tel.: +82-010-3876-4773 (I.-S.K.); +82-43-840-3610 (D.-K.C.); Fax: +82-43-840-3872 (D.-K.C.) Received: 16 January 2020; Accepted: 18 February 2020; Published: 23 February 2020 Abstract: Neurodegenerative diseases are a large group of neurological disorders with diverse etiological and pathological phenomena. However, current therapeutics rely mostly on symptomatic relief while failing to target the underlying disease pathobiology. G-protein-coupled receptors (GPCRs) are one of the most frequently targeted receptors for developing novel therapeutics for central nervous system (CNS) disorders. Many currently available antipsychotic therapeutics also act as either antagonists or agonists of different GPCRs. Therefore, GPCR-based drug development is spreading widely to regulate neurodegeneration and associated cognitive deficits through the modulation of canonical and noncanonical signals.
    [Show full text]