Environmentally Driven Suppression of Star Formation in Galaxies Over the Last 10 Billion Years

Total Page:16

File Type:pdf, Size:1020Kb

Environmentally Driven Suppression of Star Formation in Galaxies Over the Last 10 Billion Years Environmentally driven suppression of star formation in galaxies over the last 10 billion years Matteo Fossati M¨unchen 2016 Environmentally driven suppression of star formation in galaxies over the last 10 billion years Matteo Fossati Dissertation an der Fakult¨at f¨ur Physik der Ludwig–Maximilians–Universit¨at M¨unchen vorgelegt von Matteo Fossati aus Monza, Italien M¨unchen, den 22.09.2016 Erstgutachter: Priv.-Doz. Dr. Roberto P. Saglia Zweitgutachter: Prof. Dr. Andreas Burkert Tag der m¨undlichen Pr¨ufung: 07.11.2016 Zusammenfassung Die große Menge an photometrischen und spektroskopischen Daten, die uns in den letzten Jahrzehnten aus umfangreichen Datens¨atzen zur Verf¨ugung stehen, hat zu bedeutenden Erkenntnissen ¨uber die Galaxienentwicklung in den unterschiedlichen kosmischen Epochen gef¨uhrt. Beobachtungen und Simulationen zeigen ¨ubereinstimmend, dass zwei Klassen von Prozessen f¨ur die Entwicklung von Galaxien ausschlaggebend sind: i) Innere Prozesse, die eng mit der Form und der Tiefe des Gravitationspotentials der Galaxie korreliert sind (Kauffmann et al., 2003; Smith et al., 2009; Lang et al., 2014). ii) Außere¨ Prozesse, die abh¨angig von der jeweiligen Umgebung der Galaxie durch Wechselwirkungen innerhalb der Galaxiengruppen und Galaxienhaufen hervorgerufen werden (Balogh et al., 2000; Boselli & Gavazzi, 2006, 2014). Die Natur der zugrundeliegenden physikalischen Prozesse und die relative Wichtigkeit von ¨außeren bzw. inneren Prozessen unterschiedlicher kosmischer Epochen und Galaxienmassen geh¨ort zu den wichtigsten offenen Fragen der modernen Astronomie. In dieser Arbeit untersuchen wir die Rolle der Galaxienumgebung. Wir entwickeln eine neuartige Methode zur Kalibration physikalisch motivierter Gr¨oßen (z.B. Masse des Halos) ausgehend vom lokalen Dichtefeld der Galaxien (durch das Z¨ahlen benachbarter Objekte). Mit Hilfe dieses Verfahrens k¨onnen wir auch ermitteln, ob sich die Galaxie im tiefsten Punkt des Gravitationspotentials ihres Halos befindet, d.h. ob es sich um eine zentrale Galaxie oder eine Satellitengalaxie handelt. Jede Galaxie hat dann zum einen genau definierte beobachtbare Eigenschaften (z.B. stellare Masse, lokale Galaxiendichte), zum anderen wer- den die Eigenschaften ihrer Umgebung probabilistisch aus unserer Kalibrationsmethode gewonnen (z.B. Masse des Halos, Klassifikation als zentrale oder Satellitengalaxie). Let- zteres erreichen wir, indem wir die beobachteten Galaxien einem synthetischen Datensatz zuordnen, den wir anhand von semi-analytischen Modellen zur Galaxienentstehung erzeu- gen. Dabei w¨ahlen wir die synthetischen Datens¨atze so, dass sie auf die Eigenschaften der jeweils beobachteten sample von Galaxien abgestimmt sind. Wir wenden unsere Methode auf den 3D-HST Survey an, welcher mit dem Hubble Space Teleskop durchgef¨urth wurde und genaue Rotverschiebungen durch spaltlose Spektroskopie f¨ur die große Mehrzahl der beobachteten Galaxien gemessen hat. Der gewonnene Datensatz besteht aus Galaxien in f¨unf Gebieten mit langer Belichtungszeit (engl. deep fields) und ist magnitudenlimitiert (engl. magnitude limited). Die Genauigkeit der Rotverschiebungsmes- sungen ist ausschlaggebend f¨ur die Rekonstruktion des Dichtefelds. Bisherige Datens¨atze mit genauen Rotverschiebungen sind jedoch durch ihre geringe Objektzahl begrenzt und vi Zusammenfassung werden dadurch verf¨alscht, dass sie ¨uberwiegend besonders helle Galaxien untersuchen. Die Verbindung von 3D-HST Spektroskopie mit tiefer Photometrie aus dem CANDELS Survey erm¨oglicht es, diese bisherigen Beschr¨ankungen aufzuheben, und stellt somit einen idealen Datensatz f¨ur eine genaue Quantifizierung der Galaxienumgebung f¨ur eine Rotver- schiebung von 0.5 <z< 2.0 zur Verf¨ugung. Wir wenden unsere Methode auch auf einen Datensatz bzgl. des lokalen Universums an, der vom Sloan Digital Sky Survey stammt. Dadurch k¨onnen wir den Einfluss der Galaxienumgebung an einem homogenen Datensatz in einer kosmischen Zeitspanne von 10 Milliarden Jahren auswerten. Wir verwenden die dadurch gewonnenen Kataloge der Galaxienumgebungen (die wir ver¨offentlichen), um das von der Umgebung verursachte “Quenching” (Unterdr¨uckung aus dem engl.) der Sternentstehung in Satellitengalaxien zu untersuchen. Wir berechnen den Anteil von passiven Zentralen- und Satellitengalaxien in Abh¨angigkeit von stellarer Masse, Halo-Masse und Rotverschiebung. Daraus ermitteln wir die Effizienz von Quenching in Satelliten: Darunter verstehen wir den Anteil der Galaxien, deren Sternenstehung durch Prozesse in ihrer Umgebung st¨arker unterdr¨uckt worden ist als nur durch innere Prozesse. Anhand unserer synthetischen Kataloge sch¨atzen wir die Zeitskala des Quenching in Satel- liten auf tquench 2 5 Gyr; wobei wir l¨angere Zeitskalen bei geringerer stellarer Masse und niedrigerer∼ Rotverschiebung− finden, diese allerdings unabh¨angig von der Halo-Masse sind. Das deutet darauf hin, dass “Quenching” eintritt, wenn das Gasreservoir der Satel- liten ersch¨opft ist, ohne dass zus¨atliches Gas von Aussen einf¨allt. Außerdem folgt daraus, dass der dynamische Verlust des Gases (z.B. durch das Entfernen des Kaltgasreservoirs durch hydrodynamische Prozesse) ineffizient im Massenbereich der betrachteten Halos aus dem 3D-HST-Datensatz ist. Die sogar deutlich l¨angere Zeitskala des “Quenching” bei z=0 weist darauf hin, dass die Ersch¨opfung des Gasreservoirs von allen Prozessen in der Umgebung haupts¨achlich f¨ur das “Quenching” verantwortlich ist. F¨ur die massereichsten Halos beobachten wir dagegen k¨urzere “Quenching”-Zeiten, welche man durch eine erh¨ohte Effizienz schneller dynamischer Prozesse in der Halo-Umgebung erkl¨aren kann. Aus der Verteilung der Sternentstehungsraten in den 3D-HST Galaxien ermitteln wir, dass man die zeitliche Entwicklung des Quenching einteilen kann in eine Verz¨ogerungsphase, in der sich Satelliten ¨ahnlich wie zentrale Galaxien der gleichen stellaren Masse verhalten, und eine Phase in der die Sternenstehungsrate schnell sinkt, wie bereits f¨ur das lokale Universum gezeigt (Wetzel et al., 2013). Daraus schließen wir, dass Satelliten w¨ahrend des Einfalls in den Galaxienhaufen große Reserven von mehrphasigem Gas beibehalten, und dass dieses Gas ein normales Maß an Sternentstehungsraten f¨ur die langen beobachteten Zeitskalen des Quenching aufrechterhalten muss. Statistische Auswertungen großer Galaxien-Datens¨atze erg¨anzt man ¨ublicherweise mit detaillierten Untersuchungen von Einzelobjekten, die eindeutig eine Entwicklung durch- laufen, die durch ¨außere Prozesse aus der Umgebung hervorgerufen wird, um die zu- grundeliegende Physik, sowohl bei niedrigen als auch bei hohen Rotverschiebungen, zu verstehen. In dieser Dissertation f¨uhren wir anhand von aufgel¨oster Spektroskopie die erste Analyse eines solchen Objekts durch, n¨amlich der Galaxie ESO137-001, inf den Norma-Galaxienhaufen einf¨allt. Diese Galaxie weist eindrucksvolle Gasschweife auf, die aus mehrphasigem Gas bestehen, welches von der Scheibe der Galaxie durch Staudruck Zusammenfassung vii (engl. ram pressure) abgestreift wird. Um ein vollst¨andiges Bild der Wirkungsweise des Staudrucks in dieser Galaxie zu erhalten, ben¨otigt man ein umfassendes Verst¨andnis der Gaskinematik und der Diagnostik der Emissionslinienspektren. Diese erhalten wir, indem wir die einzigartigen M¨oglichkeiten des Multi Unit Spectroscopic Explorer (MUSE), seit kurzem am Very Large Telescope, aussch¨opfen. Durch die Untersuchung der Fl¨achen- helligkeit der Rekombinationslinie Hα des Wasserstoffs und der Kinematik im gesamten Gasschweif in Verbindung mit dem stellaren Geschwindigkeitsfeld finden wir, dass der Staudruck das Kaltgasreservoir der ¨außeren Scheibe der Galaxie vollst¨andig entfernt hat, und dass dem Schweif nur noch aus dem inneren Bereich der Galaxie mit Gas versorgt wird. Unsere Analyse zeigt auch, dass das Abstreifen des Gases nicht das Rotationsmuster des ionisierten Gases ver¨andert, welches mit der Rotationskurve der stellaren Komponente ¨ubereinstimmt. Die Ionisation des Schweifes wird durch turbulente Schocks angetrieben sowie durch die Photoionisation durch junge, massereiche Sterne: Im abgeschweiften Gas findet man tats¨achlich eine signifikante Sternentstehung. Die Quantifizierung der Galaxienumgebung in gr¨oßeren und tieferen Galaxiendatens¨at- zen aus erdgest¨utzen und Weltraumbeobachtungen wird in naher Zukunft wichtige Beitr¨age zum Verst¨andnis des Einflusses der Galaxienumgebung leisten (¨uber einen großen Bereich von stellarer und Halo-Masse und Rotverschiebung). Diese Datens¨atze werden zusammen mit detallierten Untersuchungen kleinerer Datens¨atze erm¨oglichen, die zugrundeliegende Physik und das Zusammenwirken der Prozesse in der Galaxienumgebung besser zu verste- hen. viii Abstract Abstract The availability of photometric and spectroscopic data for large samples of galaxies in the last decades has led to significant progress towards understanding the evolution of galaxies across cosmic epochs. Both observations and simulations consistently reveal that the fate of galaxies is determined by two main classes of process: i) the evolution driven by internal processes that are tightly correlated to the gravitational potential of the galaxy (Kauffmann et al., 2003; Smith et al., 2009; Lang et al., 2014); and ii) environment-driven evolution in the form of external interactions within groups of galaxies (Balogh et al., 2000; Boselli & Gavazzi, 2006). The nature and relative importance of internal versus external processes across cosmic time and galaxy mass, however, remains one of the open questions of modern astronomy.
Recommended publications
  • GALAXY CLUSTERS in the SWIFT /BAT ERA. II. 10 MORE CLUSTERS DETECTED ABOVE 15 Kev
    GALAXY CLUSTERS IN THE SWIFT /BAT ERA. II. 10 MORE CLUSTERS DETECTED ABOVE 15 keV The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Ajello, M., P. Rebusco, N. Cappelluti, O. Reimer, H. Böhringer, V. La Parola, and G. Cusumano. “ GALAXY CLUSTERS IN THE SWIFT / BAT ERA. II. 10 MORE CLUSTERS DETECTED ABOVE 15 keV .” The Astrophysical Journal 725, no. 2 (December 1, 2010): 1688–1706. © 2010 American Astronomical Society. As Published http://dx.doi.org/10.1088/0004-637x/725/2/1688 Publisher Institute of Physics/American Astronomical Society Version Final published version Citable link http://hdl.handle.net/1721.1/95996 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The Astrophysical Journal, 725:1688–1706, 2010 December 20 doi:10.1088/0004-637X/725/2/1688 C 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A. GALAXY CLUSTERS IN THE SWIFT/BAT ERA. II. 10 MORE CLUSTERS DETECTED ABOVE 15 keV M. Ajello1, P. Rebusco2, N. Cappelluti3,4,O.Reimer1,5,H.Bohringer¨ 3, V. La Parola6, and G. Cusumano6 1 SLAC National Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road, Menlo Park, CA 94025, USA; [email protected] 2 Kavli Institute for Astrophysics and Space Research, MIT, Cambridge, MA 02139, USA 3 Max Planck Institut fur¨ Extraterrestrische Physik, P.O.
    [Show full text]
  • Spiral Galaxies in the GA Region Results from Parkes ZOA HI Surveys: ZOA + NE + GB
    The Latest on the GA Renée C. Kraan-Korteweg Dept. of Astronomy, Centre for Astrophysics Cosmology and Gravity, UCT I. Current Status of the Unveiling of the Great Attractor History of Discovery of GA Results from optical, NIR, FIR, X-ray, radio HI ZOA surveys, and some MIR (Spitzer) results II. Who is pulling the hardest : the GA-Shapley controversy Recent and Future Surveys NIR (JHK from IRSF) TF analysis of the GA in the ZOA NIR (JHK from IRSF) deep imaging survey of the GA Wall Future SKA Pathfinder HI surveys (ASKAP, MeerKAT) Observatoire de Paris-Meudon, 2 March 2011 Discovery of the Great Attractor (Lynden-Bell 1988): 16 a prominent mass overdensity (5 x 10 Msun) in the nearby Universe The distribution of mass in the local Universe: - determined from the systematic flow field of ~ 3000 galaxies (peculiar velocities Vpec = VHubble -Vobs over the uniformly expanding Universe) Dekel et al. 1994 (Kolatt et al 1995) • centered at 4500 km/s right from the LG The centre of the Great Attractor lies • it is the only structure without a counterpart in right behind the disk of our Galaxy the distribution of galaxies (l=320o, b=0o) The distribution of catalogued galaxies with D ≥ 1.3´ The GA, a region of ~40° x 40 ° centered at l ~320 °, b ~ 0 °, v ~ 4500km/s is largely hidden by the Milky Way Kraan-Korteweg & Lahav 2000, A&ARv GA The Effects of dust and stars in the Galaxy on external galaxies → smaller and fainter and redder Based on near-infrared (J,H,K) observations made with the IRSF at the 1.4m Japanese telescope at SAAO (where
    [Show full text]
  • Astronomy Astrophysics
    A&A 620, A164 (2018) Astronomy https://doi.org/10.1051/0004-6361/201833914 & c ESO 2018 Astrophysics A Virgo Environmental Survey Tracing Ionised Gas Emission (VESTIGE) IV. A tail of ionised gas in the merger remnant NGC 4424 A. Boselli1,⋆, M. Fossati2,3, G. Consolandi4, P. Amram1, C. Ge5, M. Sun5, J. P. Anderson6, S. Boissier1, M. Boquien7, V. Buat1, D. Burgarella1, L. Cortese8,9, P. Côté10, J. C. Cuillandre11, P. Durrell12, B. Epinat1, L. Ferrarese10, M. Fumagalli3, L. Galbany13, G. Gavazzi4, J. A. Gómez-López1, S. Gwyn10, G. Hensler14, H. Kuncarayakti15,16, M. Marcelin1, C. Mendes de Oliveira17, B. C. Quint18, J. Roediger10, Y. Roehlly19, S. F. Sanchez20, R. Sanchez-Janssen21, E. Toloba22,23, G. Trinchieri24, and B. Vollmer25 (Affiliations can be found after the references) Received 20 July 2018 / Accepted 22 October 2018 ABSTRACT We observed the late-type peculiar galaxy NGC 4424 during the Virgo Environmental Survey Tracing Galaxy Evolution (VESTIGE), a blind narrow-band Hα+[NII] imaging survey of the Virgo cluster carried out with MegaCam at the Canada-French-Hawaii Telescope (CFHT). The presence of a ∼110 kpc (in projected distance) HI tail in the southern direction indicates that this galaxy is undergoing a ram pressure stripping event. The deep narrow-band image revealed a low surface brightness (Σ(Hα) ≃ 4 × 10−18 erg s−1 cm−2 arcsec−2) ionised gas tail ∼10 kpc in length extending from the centre of the galaxy to the north-west, thus in the direction opposite to the HI tail. Chandra and XMM X-rays data do not show a compact source in the nucleus or an extended tail of hot gas, while IFU spectroscopy (MUSE) indicates that the gas is photo-ionised in the inner regions and shock-ionised in the outer parts.
    [Show full text]
  • A Virgo Environmental Survey Tracing Ionised Gas Emission (VESTIGE) IV
    A&A 620, A164 (2018) Astronomy https://doi.org/10.1051/0004-6361/201833914 & c ESO 2018 Astrophysics A Virgo Environmental Survey Tracing Ionised Gas Emission (VESTIGE) IV. A tail of ionised gas in the merger remnant NGC 4424 A. Boselli1,?, M. Fossati2,3, G. Consolandi4, P. Amram1, C. Ge5, M. Sun5, J. P. Anderson6, S. Boissier1, M. Boquien7, V. Buat1, D. Burgarella1, L. Cortese8,9, P. Côté10, J. C. Cuillandre11, P. Durrell12, B. Epinat1, L. Ferrarese10, M. Fumagalli3, L. Galbany13, G. Gavazzi4, J. A. Gómez-López1, S. Gwyn10, G. Hensler14, H. Kuncarayakti15,16, M. Marcelin1, C. Mendes de Oliveira17, B. C. Quint18, J. Roediger10, Y. Roehlly19, S. F. Sanchez20, R. Sanchez-Janssen21, E. Toloba22,23, G. Trinchieri24, and B. Vollmer25 (Affiliations can be found after the references) Received 20 July 2018 / Accepted 22 October 2018 ABSTRACT We observed the late-type peculiar galaxy NGC 4424 during the Virgo Environmental Survey Tracing Galaxy Evolution (VESTIGE), a blind narrow-band Hα+[NII] imaging survey of the Virgo cluster carried out with MegaCam at the Canada-French-Hawaii Telescope (CFHT). The presence of a ∼110 kpc (in projected distance) HI tail in the southern direction indicates that this galaxy is undergoing a ram pressure stripping event. The deep narrow-band image revealed a low surface brightness (Σ(Hα) ' 4 × 10−18 erg s−1 cm−2 arcsec−2) ionised gas tail ∼10 kpc in length extending from the centre of the galaxy to the north-west, thus in the direction opposite to the HI tail. Chandra and XMM X-rays data do not show a compact source in the nucleus or an extended tail of hot gas, while IFU spectroscopy (MUSE) indicates that the gas is photo-ionised in the inner regions and shock-ionised in the outer parts.
    [Show full text]
  • Arxiv:1306.0091V4 [Astro-Ph.CO] 13 Jun 2013
    Draft version June 14, 2013 A Preprint typeset using LTEX style emulateapj v. 5/2/11 COSMOGRAPHY OF THE LOCAL UNIVERSE Hel´ ene` M. Courtois1,2 1University of Lyon; UCB Lyon 1/CNRS/IN2P3; IPN Lyon, France and 2Institute for Astronomy (IFA), University of Hawaii, 2680 Woodlawn Drive, HI 96822, USA Daniel Pomarede` 3 3CEA/IRFU, Saclay, 91191 Gif-sur-Yvette, France R. Brent Tully2 1Institute for Astronomy (IFA), University of Hawaii, 2680 Woodlawn Drive, HI 96822, USA Yehuda Hoffman4 4Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel and Denis Courtois5 Lyc´ee international, 38300 Nivolas-vermelle, France Draft version June 14, 2013 ABSTRACT The large scale structure of the universe is a complex web of clusters, filaments, and voids. Its properties are informed by galaxy redshift surveys and measurements of peculiar velocities. Wiener Filter reconstructions recover three-dimensional velocity and total density fields. The richness of the elements of our neighborhood are revealed with sophisticated visualization tools. A key component of this paper is an accompanying movie. The ability to translate and zoom helps the viewer fol- low structures in three dimensions and grasp the relationships between features on different scales while retaining a sense of orientation. The ability to dissolve between scenes provides a technique for comparing different information, for example, the observed distribution of galaxies, smoothed repre- sentations of the distribution accounting for selection effects, observed peculiar velocities, smoothed and modeled representations of those velocities, and inferred underlying density fields. The agreement between the large scale structure seen in redshift surveys and that inferred from reconstructions based on the radial peculiar velocities of galaxies strongly supports the standard model of cosmology where structure forms from gravitational instabilities and galaxies form at the bottom of potential wells.
    [Show full text]
  • Arxiv:Astro-Ph/0411436V2 7 Dec 2004 Esi Eo) Ttsiin Nteohrhn R Oeconc More Are Hand Other the on (Ab Statisticians Motions Peculiar Below)
    Nearby Large-Scale Structures and the Zone of Avoidance ASP Conference Series, Vol. ***, 2005 A.P. Fairall and P.A. Woudt Nearby Large-Scale structures and the Zone of Avoidance: A Conference Summary and Assessment A.P. Fairall Department of Astronomy, University of Cape Town, Private Bag, Rondebosch 7700, South Africa Ofer Lahav Department of Physics and Astronomy , University College London, Gower Street, London WC1E 6BT, UK Abstract. This conference has brought together many of the world’s ‘cosmo- graphers’, particularly those focussed on the mapping nearby large-scale struc- tures. Not surprisingly, numerous portrayals of the Local Cosmic Web and its characteristics have been presented, with some reconciliation to the structures found by the much deeper 2dF Galaxy Redshift Survey and the Sloan Digital Sky Survey. In recent years, Near-infrared and H I surveys have greatly nar- rowed the ‘Zone of Avoidance’ caused by the foreground obscuration of the Milky Way. There has been emphasis towards southern large-scale structures, with the particular need to identify the mass overdensities responsible for the dipole in the Cosmic Microwave Background. While the general consensus is that the Shapley Concentration is a greater overdensity than the Great Attractor, its far greater distance makes it unclear as to whether its gravitational effect on the Local Group could be larger. Furthermore, worries about residual bulk motion remain. 1. Introduction - the big picture This written report of the conference summary is based on the framework pre- arXiv:astro-ph/0411436v2 7 Dec 2004 sented orally by one of us (Lahav) at the conclusion of the proceedings.
    [Show full text]
  • An ALMA View of Molecular Gas in Brightest Cluster Galaxies
    An ALMA View of Molecular Gas in Brightest Cluster Galaxies by Adrian Vantyghem A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Physics & Astronomy Waterloo, Ontario, Canada, 2018 c Adrian Vantyghem 2018 Examining Committee Membership The following served on the Examining Committee for this thesis. The decision of the Examining Committee is by majority vote. External Examiner: Christine Wilson Professor, Dept. of Physics and Astronomy, McMaster University Supervisor: Brian McNamara Professor, Dept. of Physics and Astronomy, University of Waterloo Internal Member: Avery Broderick Professor, Dept. of Physics and Astronomy, University of Waterloo Internal Member: Niayesh Afshordi Professor, Dept. of Physics and Astronomy, University of Waterloo Internal-External Member: Pierre-Nicholas Roy Professor, Dept. of Chemistry, University of Waterloo ii I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. iii Statement of Contributions Chapters 2, 3, 4, and 5 of this thesis contain original research written by myself, Adrian Vantyghem. Chapters 2, 3, and 4 have been published in the peer-reviewed journal The Astrophysical Journal (ApJ). The paper references are: Vantyghem, A. N.; McNamara, B. R.; Russell, H. R.; Hogan, M. T.; Edge, A. C.; Nulsen, P. E. J.; Fabian, A. C.; Combes, F.; Salom´e,P.; Baum, S. A.; Donahue, M.; Main, R. A.; Murray, N. W.; O'Connell, R. W.; O'Dea, C.
    [Show full text]
  • 2020 Annual Report
    ANNUAL REPORT 2020 ARC CENTRE OF EXCELLENCE FOR ALL SKY ASTROPHYSICS IN 3D ASTRO 3D ANNUAL REPORT 2020 ARC CENTRE OF EXCELLENCE FOR ALL SKY ASTROPHYSICS IN 3D OUR COLLABORATING UNIVERSITIES OUR PARTNER INSTITUTIONS ACKNOWLEDGEMENT ASTRO 3D acknowledges the support of the Australian Research Council and all of the collaborating and partner institutions in the Centre. OWNERSHIP OF INTELLECTUAL PROPERTY RIGHTS Unless otherwise noted, copyright (and any other intellectual property rights, if any) in this publication is owned by ASTRO 3D through the relevant collaborating institution. EDITORIAL BOARD Lilian Garratt-Smithson (UWA) - Genesis Kathryn Grasha (ANU) - Galaxy Evolution Lisa Kewley (Director) Ingrid McCarthy (Central) Ben McKinley (Curtin) - MWA Thomas Nordlander (ANU) - First Stars Nic Scott (Sydney) - SAMI/Hector Tristan Reynolds (UWA) - ASKAP Manodeep Sinha (Swinburne) - DIA and First Galaxies ASTRO 3D ANNUAL REPORT 2020 ARC CENTRE OF EXCELLENCE FOR ALL SKY ASTROPHYSICS IN 3D 1 ACRONYMS AND ABBREVIATIONS AAO Australian Astronomical Observatory DES Dark Energy Survey KIAA Kavli Institute for Astronomy and SAM Semi-Analytic Model AAL Astronomy Australia Ltd DIAP Data Intensive Astronomy Program Astrophysics SCA Subsea Communications Australia AAT Anglo Australian Telescope DINGO Deep Investigation of Neutral Gas KiDS Kilo-Degree Survey SED Spectral Energy Distribution ACFR Australian Centre for Field Robotics Origins KMOS K-band Object Spectrograph SKA Square Kilometre Array ADACS Astronomy Data and Computing DLA Damped Lyman Alpha
    [Show full text]
  • Spatial Orientation of Galaxies in the Zone of Avoidance
    Bull. Astr. Soc. India (2012) 40, in press Spatial orientation of galaxies in the Zone of Avoidance B. Aryal,1,2∗ S. N. Yadav2 and W. Saurer1 1Institute of Astro- and Particle Physics, Innsbruck University, Technikerstrasse 25 A-6020 Innsbruck, Austria 2Central Department of Physics, Tribhuvan University, Kirtipur, Kathmandu, Nepal Received 2011 September 22; accepted 2012 February 28 Abstract. We present spatial orientation of spin vectors of galaxies found in the region 20◦ ≤ ℓ ≤ 80◦, –10◦ ≤ b ≤ –5◦ in the first Palomar Observatory Sky Survey. The inclination angle and intrinsic flatness of a galaxy are used to determine the spin vector and spin vector projections of the galaxy. We studied the preferred alignments of spin vectors of galaxies with respect to equatorial, Galactic and supergalactic coordinate systems. We have carried out Kolmogorov-Smirnov (K-S), Kuiper-V and Fourier tests in order to examine non-random effects. It is found that the spin vectors of galaxies tend to lie in the equatorial plane whereas these vectors tend to be oriented perpendicular the Local Supercluster plane. A random alignment of spin vectors of galaxies is noticed with respect to the Galactic plane. Possible explanation of the results are discussed. Keywords : catalogues – surveys – galaxies: evolution – galaxies: statistics 1. Introduction The Zone of Avoidance (ZOA, hereafter) is the region of the sky that is obscured by the Galactic plane of the Milky Way. The dust and gas in the Milky Way cause extinction at optical wavelengths, and foreground stars can be confused with background galaxies, obstructing our view of around 20% of the extragalactic sky at visible wavelengths.
    [Show full text]
  • Ranking Potential Locations of Single-Source Gravitational Wave Emission
    Haverford College Haverford Scholarship Faculty Publications Astronomy 2014 Gravitational Wave Hotspots: Ranking Potential Locations of Single-Source Gravitational Wave Emission Andrea Lommen Haverford College, [email protected] Joseph D. Simon Abigail Polin Ben Stappers Follow this and additional works at: https://scholarship.haverford.edu/astronomy_facpubs Repository Citation Lommen, A.; et al. (2014) "Gravitational Wave Hotspots: Ranking Potential Locations of Single-Source Gravitational Wave Emission."The Astrophysical Journal, 784(1):60. This Journal Article is brought to you for free and open access by the Astronomy at Haverford Scholarship. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Haverford Scholarship. For more information, please contact [email protected]. The Astrophysical Journal, 784:60 (8pp), 2014 March 20 doi:10.1088/0004-637X/784/1/60 C 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A. GRAVITATIONAL WAVE HOTSPOTS: RANKING POTENTIAL LOCATIONS OF SINGLE-SOURCE GRAVITATIONAL WAVE EMISSION Joseph Simon1,2, Abigail Polin1,3, Andrea Lommen1, Ben Stappers4, Lee Samuel Finn5,F.A.Jenet6, and B Christy1 1 Department of Physics and Astronomy, Franklin and Marshall College, Lancaster, PA 17609, USA 2 Center for Gravitation, Cosmology, and Astrophysics, University of Wisconsin Milwaukee, Milwaukee, WI 53211, USA 3 Department of Physics, University of California, Berkeley, CA 94720, USA 4 University of Manchester, Jodrell Bank Observatory, Macclesfield,
    [Show full text]
  • The Core of the Great Attractor (Kraan-Korteweg Et Al
    The Core of the Great Attractor Patrick A. Woudt European Southern Observatory, Karl-Schwarzschild-strasse 2, D-85748, Garching bei M¨unchen, Germany Ren´ee C. Kraan-Korteweg Departamento de Astronom´ıa, Universidad de Guanajuato, Apartado Postal 144, Guanajuato, Gto 36000, Mexico Anthony P. Fairall Department of Astronomy, University of Cape Town, Rondebosch 7700, South Africa Abstract. The nature and extent of the Great Attractor (GA) has been the subject of much debate in the past decade, partly due to the fact that a large fraction of the GA overdensity is hidden by the southern Milky Way. Based on our deep optical galaxy search behind the southern Milky Way and a subsequent redshift survey we discovered that the Norma cluster (ACO 3627) in the GA region is a very massive cluster of galaxies. The cluster is comparable in size, richness and mass to the Coma cluster. It is located at the intersection of two distinct large structures, the Centaurus Wall and the Norma Supercluster. The velocity flow fields in the GA region are most likely caused by the confluence of these two massive structures where the Norma cluster constitutes its previously unseen but predicted core. The possibility that another, heavily obscured and yet uncharted rich cluster might form part of the GA overdensity is also discussed. arXiv:astro-ph/9909094v1 5 Sep 1999 1. The Zone of Avoidance; the Milky Way as a natural barrier Optical galaxy catalogues become severely incomplete towards the Galactic Equator due to the absorbing dust in the plane of the Milky Way which in- creasingly reduces the magnitudes and isophotal diameters of external galaxies.
    [Show full text]
  • Mémoire Gary Allan MAMON Statistique Des Interactions Dans L
    Universite´ de Paris 6, Pierre & Marie Curie UFR 924: Applications de la Physique M´emoire pr´esent´een vue du diplˆome d’Habilitation `aDiriger des Recherches sp´ecialit´e: Astrophysique par Gary Allan MAMON Statistique des interactions dans l’Univers : des mol´ecules aux galaxies Soutenu le 3 juillet 2000 `al’Institut d’Astrophysique de Paris devant le jury compos´ede: Patrick BOISSE´ Professeur, Universit´ede Paris 6 Rapporteur Guy MATHEZ Directeur de Recherches, Observatoire Midi-Pyr´en´ees Rapporteur Joseph SILK Professor, University of Oxford Rapporteur Fran¸coise COMBES Astronome, Observatoire de Paris Examinateur Daniel GERBAL Directeur de Recherches, Institut d’Astrophysique Examinateur Eduard SALVADOR-SOLE´ Professor, Universitat de Barcelona Examinateur Simon D. M. WHITE Professor, Max Planck Institut f¨ur Astrophysik Examinateur Table des mati`eres Liste des figures v Remerciements ix 1 Introduction 3 1.1 Introductiong´en´erale . 3 1.2 Contexteglobal................................. 3 2 Chimie des environnements circumstellaires 7 2.1 Introduction................................... 7 2.2 Enveloppes circumstellaires carbon´ees . ... 9 2.3 Enveloppes circumstellaires oxyg´en´ees . .... 10 2.4 TransfertdanslesraiesdeCO......................... 10 2.5 Enveloppes circumstellaires autour d’´etoiles jeunes . ...... 11 2.6 Epilogue..................................... 12 3 Formation et ´evolution des galaxies 13 3.1 Formation de galaxies et le probl`eme du sur-refroidissement . ...... 13 3.2 Analyse semi-analytique et l’origine de la s´equence de Hubble . .. 15 3.3 Taux de coalescences et de collisions rapides de galaxies dans les groupes et amas....................................... 17 4 Groupes compacts de galaxies 25 4.1 Introduction................................... 25 4.2 Effetsdeprojectiondanslesgroupesetamas. ... 26 4.3 EmissiondiffuseXdesgroupescompacts . 28 4.4 La dispersion de vitesses minimale des syst`emes de galaxies .
    [Show full text]