Relating Coral Skeletal Structures at Different Length Scales to Growth, Light Availability to Symbiodinium, and Thermal Bleaching
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Acclimation of Symbiotic Reef-Building Corals to Extremely Low Light
Symbiosis, 33 (2002) 125-143 125 Balaban, Philadelphia/Rehovot Acclimation of Symbiotic Reef-Building Corals to Extremely Low Light E.A. TITLYANOVl,2*, T.V. TITLYANOVA2, and K. YAMAZATOl 1Tropical Biosphere Research Center, University of the Ryukyus, Sesoko Island, Okinawa 905, Japan; 2Jnstitute of Marine Biology, Far East Branch of Russian Academy of Sciences, Vladivostok 690041, Russia, Tel. +7-423-2310931, Fax. +7-423-2310900, Email. [email protected] Received March 13, 2002; Accepted August 2, 2002 Abstract This study investigated the photo-acclimation capacity of seven species of hermatypic corals subjected to 2%, 0.8% and 0.1% of incident surface photosynthetic active radiation (PARo) . Stylophora pistillata, Porites attenuata and Echinopora lamellosa photoacclimated to 2%, 0.8% and 0.1% PARO, Pocillopora damicornis only to 2% and 0.8% PARo, Seriatopora caliendrum, S. hystrix only to 2% PARo and the colonial hydroid Millepora intricata could not adapt to light intensity of 2% and lower. Physiological changes associated with photo• acclimation to extremely low light (i.e., 2%, 0.8% and 0.1% PARo) were a decline in zooxanthellae population densities, in zooxanthellae sizes, in cell division and degradation. Shade-intolerant species rapidly lost their zooxanthellae in extremely low light treatments and died, whereas shade-tolerant species maintained low zooxanthellae population densities in their tissue during 4 months and more. If the corals E. lamellosa and P. attenuata, acclimated to extremely low light, were transferred to dim light (30% PARo) , they regained their initial population densities within 90 days. We assume that specific distinction of corals under acclimation to extremely low light depends mainly on the composition of morphophysiologically and genetically different types of zooxanthellae living in a given colony of certain species. -
The Reproduction of the Red Sea Coral Stylophora Pistillata
MARINE ECOLOGY PROGRESS SERIES Vol. 1, 133-144, 1979 - Published September 30 Mar. Ecol. Prog. Ser. The Reproduction of the Red Sea Coral Stylophora pistillata. I. Gonads and Planulae B. Rinkevich and Y.Loya Department of Zoology. The George S. Wise Center for Life Sciences, Tel Aviv University. Tel Aviv. Israel ABSTRACT: The reproduction of Stylophora pistillata, one of the most abundant coral species in the Gulf of Eilat, Red Sea, was studied over more than two years. Gonads were regularly examined using histological sections and the planula-larvae were collected in situ with plankton nets. S. pistillata is an hermaphroditic species. Ovaries and testes are situated in the same polyp, scattered between and beneath the septa and attached to them by stalks. Egg development starts in July preceding the spermaria, which start to develop only in October. A description is given on the male and female gonads, their structure and developmental processes. During oogenesis most of the oocytes are absorbed and usually only one oocyte remains in each gonad. S. pistillata broods its eggs to the planula stage. Planulae are shed after sunset and during the night. After spawning, the planula swims actively and changes its shape frequently. A mature planula larva of S. pistillata has 6 pairs of complete mesenteries (Halcampoides stage). However, a wide variability in developmental stages exists in newly shed planulae. The oral pole of the planula shows green fluorescence. Unique organs ('filaments' and 'nodules') are found on the surface of the planula; -
Volume 2. Animals
AC20 Doc. 8.5 Annex (English only/Seulement en anglais/Únicamente en inglés) REVIEW OF SIGNIFICANT TRADE ANALYSIS OF TRADE TRENDS WITH NOTES ON THE CONSERVATION STATUS OF SELECTED SPECIES Volume 2. Animals Prepared for the CITES Animals Committee, CITES Secretariat by the United Nations Environment Programme World Conservation Monitoring Centre JANUARY 2004 AC20 Doc. 8.5 – p. 3 Prepared and produced by: UNEP World Conservation Monitoring Centre, Cambridge, UK UNEP WORLD CONSERVATION MONITORING CENTRE (UNEP-WCMC) www.unep-wcmc.org The UNEP World Conservation Monitoring Centre is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organisation. UNEP-WCMC aims to help decision-makers recognise the value of biodiversity to people everywhere, and to apply this knowledge to all that they do. The Centre’s challenge is to transform complex data into policy-relevant information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action. UNEP-WCMC provides objective, scientifically rigorous products and services that include ecosystem assessments, support for implementation of environmental agreements, regional and global biodiversity information, research on threats and impacts, and development of future scenarios for the living world. Prepared for: The CITES Secretariat, Geneva A contribution to UNEP - The United Nations Environment Programme Printed by: UNEP World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge CB3 0DL, UK © Copyright: UNEP World Conservation Monitoring Centre/CITES Secretariat The contents of this report do not necessarily reflect the views or policies of UNEP or contributory organisations. -
Hermatypic Coral Fauna of Subtropical Southeast Africa: a Checklist!
Pacific Science (1996), vol. 50, no. 4: 404-414 © 1996 by University of Hawai'i Press. All rights reserved Hermatypic Coral Fauna of Subtropical Southeast Africa: A Checklist! 2 BERNHARD RrnGL ABSTRACT: The South African hermatypic coral fauna consists of 96 species in 42 scleractinian genera, one stoloniferous octocoral genus (Tubipora), and one hermatypic hydrocoral genus (Millepora). There are more species in southern Mozambique, with 151 species in 49 scleractinian genera, one stolo niferous octocoral (Tubipora musica L.), and one hydrocoral (Millepora exaesa [Forskal)). The eastern African coral faunas of Somalia, Kenya, Tanzania, Mozambique, and South Africa are compared and Southeast Africa dis tinguished as a biogeographic subregion, with six endemic species. Patterns of attenuation and species composition are described and compared with those on the eastern boundaries of the Indo-Pacific in the Pacific Ocean. KNOWLEDGE OF CORAL BIODIVERSITY in the Mason 1990) or taxonomically inaccurate Indo-Pacific has increased greatly during (Boshoff 1981) lists of the corals of the high the past decade (Sheppard 1987, Rosen 1988, latitude reefs of Southeast Africa. Sheppard and Sheppard 1991 , Wallace and In this paper, a checklist ofthe hermatypic Pandolfi 1991, 1993, Veron 1993), but gaps coral fauna of subtropical Southeast Africa, in the record remain. In particular, tropical which includes the southernmost corals of and subtropical subsaharan Africa, with a Maputaland and northern Natal Province, is rich and diverse coral fauna (Hamilton and evaluated and compared with a checklist of Brakel 1984, Sheppard 1987, Lemmens 1993, the coral faunas of southern Mozambique Carbone et al. 1994) is inadequately docu (Boshoff 1981). -
Degradation of Zooxanthellae and Regulation of Their Density in Hermatypic Corals
MARINE ECOLOGY PROGRESS SERIES Publislled August 29 Mar Ecol Proq Ser 1 Degradation of zooxanthellae and regulation of their density in hermatypic corals E. A. Titlyanovlr*,T. V. Titlyanoval, V. A. ~eletkin',J. Tsukahara2, R. van Woesik3, K. Yamazato4 'Institute of Marine Biology, Far East Branch of Russian A~ademyof Sciences, Vladivostok, 690041, Russia 2Department of Biology, Faculty of Science, Kagoshima University, Kagoshima 80, Japan 3Department of Marine Sciences, University of the Ryukyus, Senbary 1. Nishihara, Okinawa 903-01. Japan 'Departnlenl of Biology andTropica1 Biosphere Research Centre, Unil-ersity of the Ryukyus. Nishihara-cho, Okinawa 903-01, Japan ABSTRACT. This study investigated the process of zooxanthellae degradation in hermatypic corals. The number of degraded zooxanthellae in corals taken fmm rllfferent light conditions amounted to 1 to 6% a day, which was similar to the number of dividing amxanthellae. Zooxanthellae degradation takes place only at night in the connecting sheet and tentacle but both at night and during the day in the gastroderm of the mesenteries. Zooxanthellae degradation continues for about 6 h. DNA staining with DAPI (4'6-diamidino-2-phenylindole) and light, UV and electron microscopic examinations showed that zooxanthellae under degradation lost DNA, protein of pyrenoids and lipid drops. The degraded zooxanthellae particles contained 'accumulat~onbodies', unpacked thylakoids, starch grains and a pyrenoid starch envelope. Under starvation experirnenls the number of degraded zooxanthellae in Stylophora pistillata increased in the tissue, as did thefi ~elease.It is concluded that hermatypic corals are capable of regulating their zooxanthellae populatia by digestion and extrusion of zooxanthellae remnants. KEY WORDS: Hermatyplc corals . -
Conservation of Reef Corals in the South China Sea Based on Species and Evolutionary Diversity
Biodivers Conserv DOI 10.1007/s10531-016-1052-7 ORIGINAL PAPER Conservation of reef corals in the South China Sea based on species and evolutionary diversity 1 2 3 Danwei Huang • Bert W. Hoeksema • Yang Amri Affendi • 4 5,6 7,8 Put O. Ang • Chaolun A. Chen • Hui Huang • 9 10 David J. W. Lane • Wilfredo Y. Licuanan • 11 12 13 Ouk Vibol • Si Tuan Vo • Thamasak Yeemin • Loke Ming Chou1 Received: 7 August 2015 / Revised: 18 January 2016 / Accepted: 21 January 2016 Ó Springer Science+Business Media Dordrecht 2016 Abstract The South China Sea in the Central Indo-Pacific is a large semi-enclosed marine region that supports an extraordinary diversity of coral reef organisms (including stony corals), which varies spatially across the region. While one-third of the world’s reef corals are known to face heightened extinction risk from global climate and local impacts, prospects for the coral fauna in the South China Sea region amidst these threats remain poorly understood. In this study, we analyse coral species richness, rarity, and phylogenetic Communicated by Dirk Sven Schmeller. Electronic supplementary material The online version of this article (doi:10.1007/s10531-016-1052-7) contains supplementary material, which is available to authorized users. & Danwei Huang [email protected] 1 Department of Biological Sciences and Tropical Marine Science Institute, National University of Singapore, Singapore 117543, Singapore 2 Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, The Netherlands 3 Institute of Biological Sciences, Faculty of -
Sanganeb Atoll, Sudan a Marine National Park with Scientific Criteria for Ecologically Significant Marine Areas Abstract
Sanganeb Atoll, Sudan A Marine National Park with Scientific Criteria for Ecologically Significant Marine Areas Abstract Sanganeb Marine National Park (SMNP) is one of the most unique reef structures in the Sudanese Red Sea whose steep slopes rise from a sea floor more than 800 m deep. It is located at approximately 30km north-east of Port Sudan city at 19° 42 N, 37° 26 E. The Atoll is characterized by steep slopes on all sides. The dominated coral reef ecosystem harbors significant populations of fauna and flora in a stable equilibrium with numerous endemic and endangered species. The reefs are distinctive of their high number of species, diverse number of habitats, and high endemism. The atoll has a diverse coral fauna with a total of 86 coral species being recorded. The total number of species of algae, polychaetes, fish, and Cnidaria has been confirmed as occurring at Sanganeb Atoll. Research activities are currently being conducted; yet several legislative decisions are needed at the national level in addition to monitoring. Introduction (To include: feature type(s) presented, geographic description, depth range, oceanography, general information data reported, availability of models) Sanganeb Atoll was declared a marine nation park in 1990. Sanganeb Marine National Park (SMNP) is one of the most unique reef structures in the Sudanese Red Sea whose steep slopes rise from a sea floor more than 800 m deep (Krupp, 1990). With the exception of the man-made structures built on the reef flat in the south, there is no dry land at SMNP (Figure 1). The Atoll is characterized by steep slopes on all sides with terraces in their upper parts and occasional spurs and pillars (Sheppard and Wells, 1988). -
A Molecularly Based Phylogeny Reconstruction of Mushroom Corals
Contributions to Zoology, 80 (2) 107-132 (2011) A molecularly based phylogeny reconstruction of mushroom corals (Scleractinia: Fungiidae) with taxonomic consequences and evolutionary implications for life history traits Arjan Gittenberger1, 2, Bastian T. Reijnen1, Bert W. Hoeksema1, 3 1 Department of Marine Zoology, Netherlands Centre for Biodiversity Naturalis, PO Box 9517, 2300 RA Leiden, The Netherlands 2 Institute for Environmental Sciences and Institute for Biology, Leiden University, PO Box 9516, 2300 RA Leiden, The Netherlands 3 E-mail: [email protected] Key words: COI, evolutionary history, ITS 1 & 2, maximum coral size, polystomatism, reproduction strategy Abstract Sequence alignment and phylogenetic analyses ............. 112 Evolution of life history traits ............................................. 113 The phylogenetic relationships of the Fungiidae, a family of pre- Results ............................................................................................. 113 dominantly free-living, zooxanthellate, reef corals, were studied Molecular phylogeny reconstructions .............................. 113 by sequencing a part of the mitochondrial Cytochrome Oxidase Evolutionary trends in morphology and life I (COI) and the complete ribosomal Internal Transcribed Spacers history traits ............................................................................. 114 (ITS) I & II of specimens from various locations in the Indo- Discussion ..................................................................................... -
Milleporidae, Stylasteridae, Scleractinia) in the National Museum of Natural History, Smithsonian Institution
Catalog of the Type Specimens of Stony Corals (Milleporidae, Stylasteridae, Scleractinia) in the National Museum of Natural History, Smithsonian Institution STEPHEN D. CAIRNS W9\ I SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 514 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Folklife Studies Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world of science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review. -
A Marine Rapid Assessment of the Raja Ampat Islands, Papua Province, Indonesia
Rapid Assessment Program 22 RAP Bulletin of Biological Assessment Center for Applied Biodiversity A Marine Rapid Assessment Science (CABS) of the Raja Ampat Islands, Conservation International (CI) Papua Province, Indonesia University of Cenderawasih Indonesian Institute ofSciences (LIPI) Sheila A. McKenna, Gerald R. Allen, Australian Institute of Marine and Suer Suryadi, Editors Science Western Australian Museum RAP Bulletin on Biological Assessment twenty-two April 2002 1 RAP Working Papers are published by: Conservation International Center for Applied Biodiversity Science Department of Conservation Biology 1919 M Street NW, Suite 600 Washington, DC 20036 USA 202-912-1000 telephone 202-912-9773 fax www.conservation.org www.biodiversityscience.org Editors: Sheila A. McKenna, Gerald R. Allen, and Suer Suryadi Design/Production: Glenda P. Fábregas Production Assistant: Fabian Painemilla Maps: Conservation Mapping Program, GIS and Mapping Laboratory, Center for Applied Biodiversity Science at Conservation International Cover photograph: R. Steene Translations: Suer Suryadi Conservation International is a private, non-profit organization exempt from federal income tax under section 501 c(3) of the Internal Revenue Code. ISBN 1-881173-60-7 © 2002 by Conservation International. All rights reserved. Library of Congress Card Catalog Number 2001098383 The designations of geographical entities in this publication, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of Conservation International or its supporting organizations concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Any opinions expressed in the RAP Bulletin of Biological Assessment are those of the writers and do not necessarily reflect those of CI. -
Coral Seriatopora Hystrix and Its Associated Symbiodinium
Genetic Divergence across Habitats in the Widespread Coral Seriatopora hystrix and Its Associated Symbiodinium Pim Bongaerts1,2,3*, Cynthia Riginos4, Tyrone Ridgway2,5, Eugenia M. Sampayo2,3,6, Madeleine J. H. van Oppen7,8, Norbert Englebert2, Francisca Vermeulen2,9, Ove Hoegh-Guldberg1,3 1 Global Change Institute, The University of Queensland, St Lucia, Queensland, Australia, 2 Centre for Marine Studies, The University of Queensland, St Lucia, Queensland, Australia, 3 ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland, Australia, 4 School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia, 5 Climate Change Group, Great Barrier Reef Marine Park Authority, Townsville, Queensland, Australia, 6 Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America, 7 Australian Institute of Marine Science, Townsville, Queensland, Australia, 8 ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia, 9 School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand Abstract Background: Coral reefs are hotspots of biodiversity, yet processes of diversification in these ecosystems are poorly understood. The environmental heterogeneity of coral reef environments could be an important contributor to diversification, however, evidence supporting ecological speciation in corals is sparse. Here, we present data from a widespread coral species that reveals a strong association of host and symbiont lineages with specific habitats, consistent with distinct, sympatric gene pools that are maintained through ecologically-based selection. Methodology/Principal Findings: Populations of a common brooding coral, Seriatopora hystrix, were sampled from three adjacent reef habitats (spanning a ,30 m depth range) at three locations on the Great Barrier Reef (n = 336). -
Download From
Information Sheet on Ramsar Wetlands (RIS) – 2006-2008 version Available for download from http://www.ramsar.org/ris/key_ris_index.htm. Categories approved by Recommendation 4.7 (1990), as amended by Resolution VIII.13 of the 8 th Conference of the Contracting Parties (2002) and Resolutions IX.1 Annex B, IX.6, IX.21 and IX. 22 of the 9 th Conference of the Contracting Parties (2005). Notes for compilers: 1. The RIS should be completed in accordance with the attached Explanatory Notes and Guidelines for completing the Information Sheet on Ramsar Wetlands. Compilers are strongly advised to read this guidance before filling in the RIS. 2. Further information and guidance in support of Ramsar site designations are provided in the Strategic Framework and guidelines for the future development of the List of Wetlands of International Importance (Ramsar Wise Use Handbook 7, 2 nd edition, as amended by COP9 Resolution IX.1 Annex B). A 3 rd edition of the Handbook, incorporating these amendments, is in preparation and will be available in 2006. 3. Once completed, the RIS (and accompanying map(s)) should be submitted to the Ramsar Secretariat. Compilers should provide an electronic (MS Word) copy of the RIS and, where possible, digital copies of all maps. 1. Name and address of the compiler of this form: FOR OFFICE USE ONLY . DD MM YY Angelique M. Songco Tubbataha Management Office (TMO) 41 Abad Santos Street, Puerto Princesa City 5300, Palawan, Philippines Designation date Site Reference Number [email protected] 2. Date this sheet was completed/updated: 28 July 2010 3.