Terrestrial–Aquatic Transitions Freshwater Biology 2020 Accepted

Total Page:16

File Type:pdf, Size:1020Kb

Terrestrial–Aquatic Transitions Freshwater Biology 2020 Accepted Accepted version of MS published in Freshwater Biology 2020 DOI: 10.1111/fwb.13472 Terrestrial–aquatic transitions: local abundances and movements of mature female caddisflies are related to oviposition habits but not flight capability Jill Lancaster1, Barbara J. Downes1 and Georgia K. Dwyer1,2 1 School of Geography, University of Melbourne, 221 Bouverie Street, Parkville, Victoria 3010, Australia 2 Centre for Regional and Rural Futures, Deakin University, Locked Bag 20000, Geelong, Victoria 3220, Australia Corresponding author: Jill Lancaster, School of Geography, University of Melbourne, 221 Bouverie Street, Parkville, Victoria 3010, Australia Email: [email protected] RUNNINGHEAD: Terrestrial-aquatic transitions KEYWORDS: aquatic insect, dispersal, flight, Trichoptera, wing morphology Summary 1. Movement behaviours of adult aquatic insects can produce distinct spatial distribution patterns. Studies of adult abundance with distance away from water bodies are common and may invoke flight capability to explain species differences. In contrast, distribution patterns along river channels are poorly described, but are no less important for understanding population dynamics. Longitudinal patterns in adult abundance along short river lengths may differ between sexes and at different life stage transitions between aquatic and terrestrial environments, i.e. at emergence and oviposition. Flight capability is unlikely to influence longitudinal patterns created at emergence, but may influence local abundances of mature females seeking to lay eggs. We tested hypotheses about how local abundances of mature females might differ according to oviposition habits and flight capability. 2. We surveyed abundances of mature female caddisflies at adjacent riffle–pool pairs along short river lengths with homogenous riparian cover. Our survey included nine species in three families (Hydrobiosidae, Leptoceridae, Hydropsychidae), which encompassed multiple different oviposition habits and a range of wing sizes and shapes. Several of the species oviposit preferentially in riffles. Accordingly, we tested for differences in female abundance between channel units (adjacent riffle–pool pairs). We also tested whether females attained higher abundances in some places along channels than others (i.e. over larger spatial scales and regardless of channel unit) which imply movements along the 1 channel and aggregation in some locations. Wing morphology was used as a proxy measure of flight capability and included measures on wing span, area, aspect ratio and the second moment of wing area. 3. Three distinctly different distribution patterns of mature female caddisflies were identified. The abundance of three species varied over larger scales only (multiple channel units). Six species that oviposit preferentially in riffles had higher female abundances at riffles than pools, but for only one did abundances also vary over larger scales. There was no association between these different patterns and measures of wing morphology, after removing metrics that were correlated and that differed systematically between taxonomic families. However, we could not reject the hypothesis that some aspect of flight behaviour may have contributed to observed patterns. 4. The diverse but distinct distributions of mature female caddisflies we observed along short channel lengths are novel and suggest that species differ in their propensity for movement along streams, which could have consequences for local densities of eggs and juveniles in the aquatic environment. The degree to which population sizes are coupled across the terrestrial-to-aquatic transition is rarely investigated in aquatic insects and may provide fresh insight into sources of spatial variation within populations. Similarly, a more nuanced approach to research on the flight of aquatic insects, including age- and sex- specific phenomena, may provide greater insight into the diverse ecological functions and consequences of movement. 1. INTRODUCTION Key life history events for adult aquatic insects include emerging from the aquatic to terrestrial environments, mating, potentially dispersing between populations and, for females, depositing eggs or neonates back into the aquatic environment. These events are poorly understood for the vast majority of species. Even quite basic information about local distribution patterns of adults is scarce, in sharp contrast to a plethora of studies on the distribution of larvae within water bodies. The local distributions of terrestrial adults and aquatic juveniles may be correlated in some circumstances (Downes & Lancaster, 2018), and such associations may have consequences for population dynamics in both terrestrial and aquatic environments. At the transition from aquatic juveniles to terrestrial adults, for example, variations in benthic densities of larvae and pupae may correspond to local variations in the abundance of emerging adults, and the abundance of their terrestrial predators (Gray, 1993; Iwata, 2007). Similarly, at the transition from terrestrial to aquatic habitats, adults may aggregate at places where eggs are laid and produce local aggregation of juveniles, with potential consequences for spatial heterogeneity in consumer-resource dynamics for aquatic juveniles (Harrison & Hildrew, 2001). Thus, understanding sex- and age-specific distribution patterns of adults and how they arise, especially when life-cycle and habitat transitions are concurrent, may provide insights into how life history events affect population size (Hildrew et al., 2004; Encalada & Peckarsky, 2012; Lancaster & Downes, 2014). 2 Local distribution patterns of adults are likely to differ between the two aquatic–terrestrial habitat transitions (i.e. at emergence and oviposition) because adults of most species move away from water during maturation. Indeed, the final instar larvae of some stoneflies may travel long distances terrestrially before metamorphosing into adults (Kuusela & Huusko, 1996). Adult movements may range from short-distance movements within the immediate surroundings (Southwood, 1962), e.g. to avoid predators or locate resting sites, food and mates, to long-distance dispersal or migration (Anderson, 2009; Buden, 2010). The total distance travelled between emergence and oviposition will vary between species; some will travel multiple kilometres (Baldwin, West & Gomery, 1975; Masters et al., 2007) and even short-lived adults can move 10s to 100s of metres (e.g. Maciel-De-Freitas, Codeco & Lourenco-De-Oliveira, 2007). For many species, most individuals may spend their adult life within 50 m riparian corridors (Svensson, 1974; Petersen et al., 2004; Bogan & Boersma, 2012) but collective, short distance movements are sufficient to reduce the likelihood that an individual will emerge from and oviposit in the same location. Regardless of where adult aquatic insects go or how far they fly, at some point females must locate water and find an oviposition site. Water bodies may be located via the polarization of light reflected off water surfaces (Kriska, Horváth & Andrikovics, 1998; Horváth & Varjú, 2004), whereas the suitability of a particular water body may depend on water-borne chemicals indicating the presence of predators or competitors (Resetarits Jr., 2001; Brodin, Johansson & Bergsten, 2006). Locating an oviposition site within a water body may be straightforward for species that broadcast eggs, but complex for those with specialized oviposition behaviours. Oviposition site selection can involve a hierarchy of decisions at multiple spatial scales (Hoffmann & Resh, 2003; Lancaster, Downes & Reich, 2003; Reich & Downes, 2003b) and this may involve a lot of flying. Thus, female distribution patterns may vary with oviposition habits, as well as their flight capability and behaviour. Many stream-dwelling insects, for example, oviposit primarily in particular channel units, e.g. riffles or pools (examples below), and thus must be capable and willing to fly along channels to locate a suitable riffle or pool. There is ample evidence that many aquatic insects fly along channels (Winterbourn et al., 2007; Graham, Storey & Smith, 2017), but how far individuals actually fly is largely unknown. Prolonged flight is risky, e.g. aerial predation can be significant (Nakano & Murakami, 2001; Fukui et al., 2006), so the odds of survival may be correlated with flight capability and behaviour, and related to species-specific movement patterns (Svensson, 1974). The general aims of this study were to test hypotheses about the spatial distribution patterns of mature female caddisflies along short lengths of stream channels to elucidate how their local abundance patterns might be influenced by oviposition habits, flight capability and behaviour. Typically, newly emerged female caddisflies move away from water, mate and remain away from water during maturation (generally several weeks), before returning to water to oviposit (Svensson, 1972; Svensson, 1974). We know that some caddisfly species oviposit preferentially in particular channel units. For example, some species lay eggs on submerged rocks in pools (Deutsch, 1984; Lancaster, Downes & Arnold, 2010b), whereas others oviposit in 3 riffles and primarily on rocks that protrude above the water surface, i.e. emergent rocks (Hoffmann & Resh, 2003; Reich & Downes, 2003a; Lancaster, Downes & Arnold, 2010b; Lancaster & Glaister, 2019). However, numbers of such emergent rocks vary between riffles and there is often a correlation of oviposition site densities
Recommended publications
  • Inside This Edition
    Inside this Edition The Presidents Report Pages 2-3 Calendar – Coming Events Page 4 Committee – Officers and Delegates 2015 – 2016 Page 5 Notice of AGM / 2016 Next Wave Page 6 Beginners Day at Buxton in Pictures Page 7 Eucumbene River Report Pages 8-9 Noojee Area Report Pages 10-11 CVFFC Update / VRFish Update Page 12 Fin Clippers at Snobs Creek Pages 13-14 Daylesford Partners & Family Fishing / Exploring Weekend Notice Page 15 Flies / Fly Tying / Wednesday Afternoon Social / Club Caps & Badges Page 16 Casting Page 17 General Meeting Minutes Pages 18-20 Accommodation Offers Page 21 Membership Nomination Form Page 22 Member Contact Details Page 23 Volume 49 June 2016 No 5 The Presidents Report Scott Dargan It looks and feels like winter has arrived which means that we are now heading into closed season and focussing on keeping warm. That is unless you are an avid lake fisherman who does not mind stalking fish in the wide range of lakes that we have available to us across Victoria. Winter is also a good time to start thinking about non fishing activities such as refining your casting technique, checking all your gear and tying a few flies. Remember that Paul Harris runs a casual fly tying session on the third Thursday of each month at the clubrooms from 7.30pm. Also stay tuned for details about our Winter Fly Tying Course that will commence in early August. We once again had great attendance at both our May Members night and General Meeting with our guest speaker Travis Dowling (Director of Fisheries Victoria) drawing a strong crowd.
    [Show full text]
  • ( ) Hydropsychidae (Insecta: Trichoptera) As Bio-Indicators Of
    ว.วิทย. มข. 40(3) 654-666 (2555) KKU Sci. J. 40(3) 654-666 (2012) แมลงน้ําวงศ!ไฮดรอบไซคิดี้ (อันดับไทรคอบเทอร-า) เพื่อเป2นตัวบ-งชี้ทางชีวภาพของคุณภาพน้ํา Hydropsychidae (Insecta: Trichoptera) as Bio-indicators of Water QuaLity แตงออน พรหมมิ1 บทคัดยอ การประเมินคุณภาพน้ําในแมน้ําและลําธารควรที่จะมีการใชปจจัยทางกายภาพ เคมีและชีวภาพควบคูกัน ไป ปจจัยทางชีวภาพที่มีศักยภาพในการประเมินคุณภาพน้ําในแหลงน้ําคือกลุมสัตว+ไมมีกระดูกสันหลังขนาดใหญที่ อาศัยอยูตามพื้นทองน้ํา โดยเฉพาะแมลงน้ําอันดับไทรคอบเทอรา ซึ่งเป3นกลุมสัตว+ที่มีความหลากหลายมากกลุม หนึ่งในแหลงน้ํา ระยะตัวออนของแมลงกลุมนี้ทุกชนิดอาศัยอยูในแหลงน้ํา เป3นองค+ประกอบหลักในแหลงน้ําและ เป3นตัวหมุนเวียนสารอาหารในแหลงน้ํา ระยะตัวออนของแมลงน้ํากลุมนี้จะตอบสนองตอปจจัยของสภาพแวดลอม ในแหลงน้ําทุกรูปแบบ ระยะตัวเต็มวัยอาศัยอยูบนบกบริเวณตนไมซึ่งไมไกลจากแหลงน้ํามากนัก หากินเวลา กลางคืน ความรูทางดานอนุกรมวิธานและชีววิทยาไมวาจะเป3นระยะตัวออนหรือตัวเต็มวัยของแมลงน้ําอันดับไทร คอบเทอราในประเทศแถบยุโรปตะวันตกและอเมริกาเหนือสามารถวินิจฉัยไดถึงระดับชนิด โดยเฉพาะแมลงน้ํา วงศ+ไฮดรอบไซคิดี้ มีการประยุกต+ใชในการติดตามตรวจสอบทางชีวภาพของคุณภาพน้ํา เนื่องจากชนิดของตัวออน แมลงน้ําวงศ+นี้มีความทนทานตอมลพิษในชวงกวางมากกวาแมลงน้ําชนิดอื่น ๆ 1สายวิชาวิทยาศาสตร+ คณะศิลปศาสตร+และวิทยาศาสตร+ มหาวิทยาลัยเกษตรศาสตร+ วิทยาเขตกําแพงแสน จ.นครปฐม 73140 E-mail: [email protected] บทความ วารสารวิทยาศาสตร+ มข. ปQที่ 40 ฉบับที่ 3 655 ABSTRACT Assessment on rivers and streams water quality should incorporate aspects of chemical, physical, and biological. Of all the potential groups of freshwater organisms that have been considered for
    [Show full text]
  • Diversity of Trichoptera Fauna and Its Correlation with Water Quality Parameters at Pasak Cholasit Reservoir, Central Thailand
    Environment and Natural Resources J. Vol 12, No.2, December 2014:35-41 35 Diversity of Trichoptera Fauna and its Correlation with Water Quality Parameters at Pasak Cholasit reservoir, Central Thailand Taeng-On Prommi 1* and Isara Thani 2 1Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Thailand 2Department of Biology, Faculty of Science, Mahasarakham University, Thailand Abstract The objectives of this study were to study the diversity of the Trichoptera fauna and the physicochemical parameters of water quality, as well as the correlation between physicochemical parameters and biodiversity of Trichoptera fauna for monitoring of water quality. The specimens were sampled monthly using portable black light traps from January to December 2010 at the inflow and outflow of Pasak Cholasit reservoir. A total of 20,380 adult caddis flies representing 7 families and 27 species were collected from the sampling sites in the present study. The family Hydropsychidae contained the greatest number of species (29%, 8 species), followed by Leptoceridae (26%, 7 species), Ecnomidae (19%, 5 species), Psychomyiidae (11%, 3 species), Philopotamidae (7%, 2 species), and Dipseudopsidae and Xiphocentronidae (4%, 1 species). Results of CCA ordination showed that eleven selected physicochemical water quality parameters (i.e., air and water temperature, pH of water, dissolved oxygen, total dissolved solids, electrical conductivity, ammonia-nitrogen, nitrate-nitrogen, orthophosphate, sulfate and turbidity of water) were the important
    [Show full text]
  • Lazare Botosaneanu ‘Naturalist’ 61 Doi: 10.3897/Subtbiol.10.4760
    Subterranean Biology 10: 61-73, 2012 (2013) Lazare Botosaneanu ‘Naturalist’ 61 doi: 10.3897/subtbiol.10.4760 Lazare Botosaneanu ‘Naturalist’ 1927 – 2012 demic training shortly after the Second World War at the Faculty of Biology of the University of Bucharest, the same city where he was born and raised. At a young age he had already showed interest in Zoology. He wrote his first publication –about a new caddisfly species– at the age of 20. As Botosaneanu himself wanted to remark, the prominent Romanian zoologist and man of culture Constantin Motaş had great influence on him. A small portrait of Motaş was one of the few objects adorning his ascetic office in the Amsterdam Museum. Later on, the geneticist and evolutionary biologist Theodosius Dobzhansky and the evolutionary biologist Ernst Mayr greatly influenced his thinking. In 1956, he was appoint- ed as a senior researcher at the Institute of Speleology belonging to the Rumanian Academy of Sciences. Lazare Botosaneanu began his career as an entomologist, and in particular he studied Trichoptera. Until the end of his life he would remain studying this group of insects and most of his publications are dedicated to the Trichoptera and their environment. His colleague and friend Prof. Mar- cos Gonzalez, of University of Santiago de Compostella (Spain) recently described his contribution to Entomolo- gy in an obituary published in the Trichoptera newsletter2 Lazare Botosaneanu’s first contribution to the study of Subterranean Biology took place in 1954, when he co-authored with the Romanian carcinologist Adriana Damian-Georgescu a paper on animals discovered in the drinking water conduits of the city of Bucharest.
    [Show full text]
  • Universidade Federal Do Ceará Centro De Ciências Departamento De Geologia Programa De Pós-Graduação Em Geologia Luís Carlo
    1 UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS DEPARTAMENTO DE GEOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM GEOLOGIA LUÍS CARLOS BASTOS FREITAS DESCRIÇÃO DE NOVOS TAXONS DE INSETOS FÓSSEIS DOS MEMBROS CRATO E ROMUALDO DA FORMAÇÃO SANTANA E COMENTÁRIOS SOBRE A GEODIVERSIDADE DO GEOPARK ARARIPE, BACIA SEDIMENTAR DO ARARIPE, NORDESTE DO BRASIL FORTALEZA 2019 2 LUÍS CARLOS BASTOS FREITAS DESCRIÇÃO DE NOVOS TAXONS DE INSETOS FÓSSEIS DOS MEMBROS CRATO E ROMUALDO DA FORMAÇÃO SANTANA E COMENTÁRIOS SOBRE A GEODIVERSIDADE DO GEOPARK ARARIPE, BACIA SEDIMENTAR DO ARARIPE, NORDESTE DO BRASIL Tese apresentada ao Programa de Pós- Graduação em Geologia da Universidade Federal do Ceará, como requisito parcial à obtenção do título de doutor em Geologia. Área de concentração: Geologia Sedimentar e Paleontologia. Orientador: Prof. Dr. Geraldo Jorge Barbosa de Moura. Coorientador: Prof. Dr. César Ulisses Vieira Veríssimo. FORTALEZA 2019 3 4 LUÍS CARLOS BASTOS FREITAS DESCRIÇÃO DE NOVOS TAXONS DE INSETOS FÓSSEIS DOS MEMBROS CRATO E ROMUALDO DA FORMAÇÃO SANTANA E COMENTÁRIOS SOBRE A GEODIVERSIDADE DO GEOPARK ARARIPE, BACIA SEDIMENTAR DO ARARIPE, NORDESTE DO BRASIL Tese apresentada ao Programa de Pós- Graduação em Geologia da Universidade Federal do Ceará, como requisito parcial à obtenção do título de doutor em Geologia. Área de concentração: Geologia Sedimentar e Paleontologia. Aprovada em: 18/01/2019. BANCA EXAMINADORA ________________________________________ Prof. Dr. Geraldo Jorge Barbosa de Moura (Orientador) Universidade Federal Rural de Pernambuco (UFRPE) _________________________________________ Prof. Dr. Marcio Mendes (Interno) Universidade Federal do Ceará (UFC) _________________________________________ Prof. Dr. Marcos Antônio Leite do Nascimento (Externo) Universidade Federal do Rio Grande do Norte (UFRN) _________________________________________ Prof. Dr Kleberson de Oliveira Porpino (Externo) Universidade do Estado do Rio Grande do Norte (UERN) ________________________________________ Dra Pâmela Moura (Externo) Universidade Federal do Ceará (UFC) 5 A Deus.
    [Show full text]
  • Trichoptera: Hydrobiosidae) from Sabah, East Malaysia
    New species of Apsilochorema (Trichoptera: Hydrobiosidae) from Sabah, East Malaysia J. Huisman Huisman, J. New species of Apsilochorema (Trichoptera: Hydrobiosidae) from Sabah, East Malaysia. Zool. Med. Leiden 66 (5), 31.vii.l992:127-137, figs. 1-6.— ISSN 0024-0672. Key words: Trichoptera; Hydrobiosidae; Apsilochorema; taxonomy; Sabah; East Malaysia. Four new species of the genus Apsilochorema are described from submontane to montane areas in Sabah (Borneo), East Malaysia. Jolanda Huisman, Department of Entomology, University of Minnesota, St Paul, MN 55108, U. S. A. Introduction The genera Hydrobiosis and Psilochorema were first described by Mac Lachlan (1868), who included them in the Hydropsychidae. Ulmer (1905) transferred them, along with Atopsyche Banks, to the new subfamily Hydrobiosinae of the Rhyaco- philidae. Schmid (1970) elevated the subfamily to family status and recently (Schmid 1989) argued that it may be more closely related to certain Hydropsychoidea than to Rhyacophiloidea. Schmid's monumental 1989 treatise should be consulted for a comprehensive review of the Hydrobiosidae, now represented by 50 extant genera found mainly in the southern hemisphere, excluding Africa. The majority of genera are endemic to New Zealand (10 genera), Australia and Tasmania (14 genera) in the Australasian Region or to southern Chile and Argentina (22 genera) in the Neotropical Region. Two additional genera are endemic to respectively New Caledonia and New Guinea. Only one genus, Atopsyche, is widely distributed in the New World, occurring throughout the mountainous areas of South and Central America, northward to the southwestern United States. Similarly, only Apsilochorema Ulmer, 1907 (type species Psilochorema indicum Ulmer, 1905: 38-40) occurs widely in the Oriental Region and adjacent areas of the Old World (Schmid, 1989, fig.
    [Show full text]
  • National Recovery Plan for the Barred Galaxias Galaxias Fuscus
    National Recovery Plan for the Barred Galaxias Galaxias fuscus Tarmo A. Raadik, Peter S. Fairbrother and Stephen J. Smith Prepared by Tarmo A. Raadik, Peter S. Fairbrother and Stephen J. Smith (Department of Sustainability and Environment, Victoria). Published by the Victorian Government Department of Sustainability and Environment (DSE) Melbourne, October 2010. © State of Victoria Department of Sustainability and Environment 2010 This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968. Authorised by the Victorian Government, 8 Nicholson Street, East Melbourne. ISBN 978-1-74208-883-9 This is a Recovery Plan prepared under the Commonwealth Environment Protection and Biodiversity Conservation Act 1999, with the assistance of funding provided by the Australian Government. This Recovery Plan has been developed with the involvement and cooperation of a range of stakeholders, but individual stakeholders have not necessarily committed to undertaking specific actions. The attainment of objectives and the provision of funds may be subject to budgetary and other constraints affecting the parties involved. Proposed actions may be subject to modification over the life of the plan due to changes in knowledge. Disclaimer This publication may be of assistance to you but the State of Victoria and its employees do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequence that may arise from you relying on any information in this publication. An electronic version of this document is available on the Department of Sustainability, Environment, Water, Population and Communities website: www.environment.gov.au For more information contact the DSE Customer Service Centre telephone 136 186 Citation: Raadik, T.A., Fairbrother, P.S.
    [Show full text]
  • Diversity and Ecosystem Services of Trichoptera
    Review Diversity and Ecosystem Services of Trichoptera John C. Morse 1,*, Paul B. Frandsen 2,3, Wolfram Graf 4 and Jessica A. Thomas 5 1 Department of Plant & Environmental Sciences, Clemson University, E-143 Poole Agricultural Center, Clemson, SC 29634-0310, USA; [email protected] 2 Department of Plant & Wildlife Sciences, Brigham Young University, 701 E University Parkway Drive, Provo, UT 84602, USA; [email protected] 3 Data Science Lab, Smithsonian Institution, 600 Maryland Ave SW, Washington, D.C. 20024, USA 4 BOKU, Institute of Hydrobiology and Aquatic Ecology Management, University of Natural Resources and Life Sciences, Gregor Mendelstr. 33, A-1180 Vienna, Austria; [email protected] 5 Department of Biology, University of York, Wentworth Way, York Y010 5DD, UK; [email protected] * Correspondence: [email protected]; Tel.: +1-864-656-5049 Received: 2 February 2019; Accepted: 12 April 2019; Published: 1 May 2019 Abstract: The holometabolous insect order Trichoptera (caddisflies) includes more known species than all of the other primarily aquatic orders of insects combined. They are distributed unevenly; with the greatest number and density occurring in the Oriental Biogeographic Region and the smallest in the East Palearctic. Ecosystem services provided by Trichoptera are also very diverse and include their essential roles in food webs, in biological monitoring of water quality, as food for fish and other predators (many of which are of human concern), and as engineers that stabilize gravel bed sediment. They are especially important in capturing and using a wide variety of nutrients in many forms, transforming them for use by other organisms in freshwaters and surrounding riparian areas.
    [Show full text]
  • Aboriginal Acknowledgement
    Aboriginal acknowledgement The Victorian Government proudly acknowledges Victoria’s Aboriginal community and their rich culture and pays respect to their Elders past, present and emerging. We acknowledge Aboriginal people as Australia’s first peoples, and as the Traditional Owners and custodians of the land on which we work and live. We recognise the strength of Aboriginal people, Traditional Owners and their communities, and value the ongoing contribution of Aboriginal people to Victorian life, through their daily work, their application of Aboriginal knowledge and practice, and at key events; we recognise how this enriches us all. We recognise that Aboriginal cultures and communities are diverse and should be celebrated. We acknowledge that the land and water are of spiritual, cultural and economic importance to Aboriginal people. We embrace the spirit of reconciliation, guaranteeing equality of outcomes and ensuring an equal voice. We have distinct legislative obligations to Victorian Traditional Owner groups, related to cultural and natural heritage, that are paramount in our responsibilities in managing Victoria’s resources in partnership with Traditional Owners. Editors: Hui King Ho, John Douglas and Anthony Forster, Freshwater Fisheries Management, Victorian Fisheries Authority. Contact email: [email protected] Preferred way to cite this publication: ‘Ho, H.K., Douglas, J., & Forster, A., (eds) 2018, Vic Fish Stock 2018, Victorian Fisheries Authority’ Acknowledgements: The editors wish to thank the Victorian Fisheries Authority Communications team (Marc Ainsworth, Lauren Hall, Tillie French and Charley May), and Terry George and Matt Byrne for supplying the original text for inclusion. © The State of Victoria, Victorian Fisheries Authority, October 2018 This work is licenced under a Creative Commons Attribution 3.0 Australia licence.
    [Show full text]
  • Illustrations for Several Previously Un-Associated Arizona
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Braueria Jahr/Year: 2009 Band/Volume: 36 Autor(en)/Author(s): Ruiter Dave E., Blinn Dean W. Artikel/Article: Illustrations for several previously un-associated Arizona Trichoptera females 4-10 BRAUERIA (Lunz am See, Austria) 36:4-10 (2009) Calamoceratidae While BLINN & RUITER (2005) was in press, the Arizona Illustrations for several previously un-associated Phylloicus were treated as a single species (P. aeneus). Arizona Trichoptera females. PRATHER (2003) revised Phylloicus and clarified the distinction between P. aeneus and P. mexicanus resulting in two Phylloicus species in Arizona. PRATHER (2003) also David E. RUITER & Dean W. BLINN provided female illustrations. Arizona Phylloicus collections are from small cool streams at altitudes between 1200-1750 m with a mean channel embeddedness of 20%, Abstract. Genitalic illustrations are provided for 24 ±7.8 (BLINN & RUITER 2005,2006). Arizona Trichoptera females. Male figures are also provided for Clistoronia formosa, Clistoronia metadata Hydrobiosidae and Psychoglypha schnhi. SCHMID (1989) indicated the close similarity between Atopsyche females and that conclusion is supported by the Key Words: two Arizona species. Female A. sperryi (fig. 2) and A. Arizona, Trichoptera, females, illustrations. tripunctata (fig. 3) can be separated by the shape of the lateral invagination of the 8th tergite along with other minor genitalic variations. The invagination of A. sperryi is Recent investigations of Arizona Trichoptera resulted in a globular in dorsal view, while that of A. tripunctata is more preliminary list of 135 species reported from the state elongate and slightly bi-lobed.
    [Show full text]
  • Download Full Article 851.6KB .Pdf File
    https://doi.org/10.24199/j.mmv.1982.43.01 8 October 1982 A KEY TO THE VICTORIAN GENERA OF FREE-LIVING AND RETREAT-MAKING CADDIS-FLY LARVAE (INSECTA: TRICHOPTERA) By David l. Cartwright and John C. Dean Biology Laboratory, Melbourne and Metropolitan Board of Works, Melbourne. Summary A key is provided to Victorian genera of free-living and retreat-making Trichoptcra larvae of the families Philopotamidae, Polycentropodidae, Hydrobiosidae, Ecnomidae and Hydropsychidae. Twenty- eight genera are included, although some remain unidentified while the status of several others is uncer- tain. In addition larvae of four genera of Hydrobiosidae cannot be separated, and have been lumped in the key as the Taschorema complex. Introduction pleteness they are included in the key to families. With the great upsurge in environmental and The keys have been developed for the Vic- ecological studies over the last few years, there torian fauna, and should be used elsewhere has been an increase in the demand for taxo- with caution. Erroneous identifications could nomic information. For Australian freshwater result in regions where non-Victorian genera environments, however, taxonomic informa- occur. It is also possible that species from tion has in general been found completely in- elsewhere in Australia may exhibit characters adequate. Although the immature stages of which fall outside the range found to define a caddis-flies represent an important component genus in Victoria, so that when the fauna of the of many inland water communities, there are whole of Australia is considered new generic very few descriptions of Australian larvae in the criteria will be required.
    [Show full text]
  • Accessory Publication Taxa List – Part 1: Comparison of Rock-Scrub and Sürber Samples Taken from the Johanna River, South-Eastern Australia in Winter 2006
    10.1071/MF10048_AC © CSIRO 2010 Marine Freshwater Research 2010, 61(11), 1313–1317 Accessory publication Taxa List – Part 1: Comparison of rock-scrub and Sürber samples taken from the Johanna River, south-eastern Australia in winter 2006. Order Family Species Leaf Rock packs samples Diptera Chironomidae X X Diptera Simulidae X X Diptera Tipulidae sp X X Diptera Unidentified dipteran X X Coleoptera Elmidae (larvae) Sp1 X X Coleoptera Elmidae (larvae) Sp2 X Coleoptera Elmidae (adult) X Coleoptera Scirtidae sp X X Coleoptera Gyrinidae sp X X Coleoptera Psephenidae sp Ephemeroptera Leptophlebiidae Genus D sp X X Ephemeroptera Leptophlebiidae Ulmerophlebia sp X X Ephemeroptera Baetidae Genus 2 MVsp3 X X Ephemeroptera Oniscigastridae Tasmanophlebia sp X X Ephemeroptera Juvenile Plecoptera Eustheniidae Eusthenia nothofagi X X Plecoptera Notonemouridae Austrocercella christinae X X Plecoptera Gripopterygidae Leptoperla neboissi X X Plecoptera Gripopterygidae Dinotoperla arenaria X Plecoptera Gripopterygidae Dinotoperla christinae X Plecoptera Gripopterygidae Dinotoperla eucumbene X Plecoptera Gripopterygidae Riekoperla tuberculata X 10.1071/MF10048_AC © CSIRO 2010 Marine Freshwater Research 2010, 61(11), 1313–1317 Plecoptera Gripopterygidae Illiesoperla australis X Plecoptera Gripopterygidae Trinotoperla zwicki X Plecoptera Austroperlidae Acruroperla atra X X Plecoptera Juvenile X Trichoptera Helicopsychidae Helicopsyche sp Trichoptera Atriplectididae Atriplectides dubius X Trichoptera Philorheithridae Austrheithrus sp 1 Trichoptera Philorheithridae Austrheithrus sp 2 Trichoptera Philorheithridae Aphilorheithrus spAV3 X Trichoptera Leptoceridae Triplectides ciuskus ciuskus X X Trichoptera Leptoceridae Triplectides truncatus X X Trichoptera Leptoceridae Triplectidina nigricornis X Trichoptera Leptoceridae Oecetis sp. X Trichoptera Conoesucidae Tamasia sp1 AV1 X X Trichoptera Conoesucidae Costora ebenina Trichoptera Conoesucidae Costora sp. X X Trichoptera Conoesucidae sp. X Trichoptera Kokiriidae sp. 1 X Trichoptera Kokiriidae sp.
    [Show full text]