Population Biology Stephen J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nordmann's Greenshank Population Analysis, at Pantai Cemara Jambi
Final Report Nordmann’s Greenshank Population Analysis, at Pantai Cemara Jambi Cipto Dwi Handono1, Ragil Siti Rihadini1, Iwan Febrianto1 and Ahmad Zulfikar Abdullah1 1Yayasan Ekologi Satwa Alam Liar Indonesia (Yayasan EKSAI/EKSAI Foundation) Surabaya, Indonesia Background Many shorebirds species have declined along East Asian-Australasian Flyway which support the highest diversity of shorebirds in the world, including the globally endangered species, Nordmann’s Greenshank. Nordmann’s Greenshank listed as endangered in the IUCN Red list of Threatened Species because of its small and declining population (BirdLife International, 2016). It’s one of the world’s most threatened shorebirds, is confined to the East Asian–Australasian Flyway (Bamford et al. 2008, BirdLife International 2001, 2012). Its global population is estimated at 500–1,000, with an estimated 100 in Malaysia, 100–200 in Thailand, 100 in Myanmar, plus unknown but low numbers in NE India, Bangladesh and Sumatra (Wetlands International 2006). The population is suspected to be rapidly decreasing due to coastal wetland development throughout Asia for industry, infrastructure and aquaculture, and the degradation of its breeding habitat in Russia by grazing Reindeer Rangifer tarandus (BirdLife International 2012). Mostly Nordmann’s Greenshanks have been recorded in very small numbers throughout Southeast Asia, and there are few places where it has been reported regularly. In Myanmar, for example, it was rediscovered after a gap of almost 129 years. The total count recorded by the Asian Waterbird Census (AWC) in 2006 for Myanmar was 28 birds with 14 being the largest number at a single locality (Naing 2007). In 2011–2012, Nordmann’s Greenshank was found three times in Sumatera Utara province, N Sumatra. -
Aquatic Birds at the Taiamã Ecological Station: Seasonal Variation of Community Structure and the Importance of Protected Areas in the Pantanal
24 Aquatic Birds at the Taiamã Ecological Station: Seasonal Variation of Community Structure and the Importance of Protected Areas in the Pantanal Daniel Luis Zanella Kantek1, Roselaine Carvalho de Melo2, Selma Samiko Miyazaki1, Welvis Felipe Fernandes Castilheiro2 & Manoel dos Santos Filho2 Recebido em 30/03/2020 – Aceito em 20/06/2020 1 Instituto Chico Mendes de Conservação da Biodiversidade, Estação Ecológica deTaiamã, Cáceres/MT, Brasil. <[email protected], [email protected]>. 2 Departamento de Ciências Biológicas, Programa de Pós-Graduação em Ciências Ambientais, Universidade do Estado de Mato Grosso, Cáceres/MT, Brasil. <[email protected], [email protected], [email protected]>. ABSTRACT – As the largest floodplain in the world, the Pantanal plays an important role in maintaining biological diversity. Taiamã Ecological Station (TES) is a protected area located in the north Pantanal; it is considered a relevant area for bird conservation. The species composition of these areas must be studied and known for the development of specific management plans. Besides, waterfowl are important in assessing quality and are highly sensitive to environmental changes. Thus, we investigated the aquatic bird composition at the TES and surrounding area and evaluated the richness and abundance levels among sites and the river level during one year of sampling. We performed a total sample effort of six campaigns, with four sites sampled: two at the TES and two in the surroundings. We identified a total of 45 aquatic bird species, divided into nine orders, 20 families and 36 genera. The large number of individuals observed in February 2012 can be related to a natural phenomenon that occurs in Pantanal, called ‘dequada’, which is associated with the processes of decomposition of submerged plant biomass at the beginning of the flood. -
Cravens Peak Scientific Study Report
Geography Monograph Series No. 13 Cravens Peak Scientific Study Report The Royal Geographical Society of Queensland Inc. Brisbane, 2009 The Royal Geographical Society of Queensland Inc. is a non-profit organization that promotes the study of Geography within educational, scientific, professional, commercial and broader general communities. Since its establishment in 1885, the Society has taken the lead in geo- graphical education, exploration and research in Queensland. Published by: The Royal Geographical Society of Queensland Inc. 237 Milton Road, Milton QLD 4064, Australia Phone: (07) 3368 2066; Fax: (07) 33671011 Email: [email protected] Website: www.rgsq.org.au ISBN 978 0 949286 16 8 ISSN 1037 7158 © 2009 Desktop Publishing: Kevin Long, Page People Pty Ltd (www.pagepeople.com.au) Printing: Snap Printing Milton (www.milton.snapprinting.com.au) Cover: Pemberton Design (www.pembertondesign.com.au) Cover photo: Cravens Peak. Photographer: Nick Rains 2007 State map and Topographic Map provided by: Richard MacNeill, Spatial Information Coordinator, Bush Heritage Australia (www.bushheritage.org.au) Other Titles in the Geography Monograph Series: No 1. Technology Education and Geography in Australia Higher Education No 2. Geography in Society: a Case for Geography in Australian Society No 3. Cape York Peninsula Scientific Study Report No 4. Musselbrook Reserve Scientific Study Report No 5. A Continent for a Nation; and, Dividing Societies No 6. Herald Cays Scientific Study Report No 7. Braving the Bull of Heaven; and, Societal Benefits from Seasonal Climate Forecasting No 8. Antarctica: a Conducted Tour from Ancient to Modern; and, Undara: the Longest Known Young Lava Flow No 9. White Mountains Scientific Study Report No 10. -
The Wrybill <I>Anarhynchus Frontalis</I>: a Brief Review of Status, Threats and Work in Progress
The Wrybill Anarhynchus frontalis: a brief review of status, threats and work in progress ADRIAN C. RIEGEN '1 & JOHN E. DOWDING 2 •231 ForestHill Road, Waiatarua, Auckland 8, NewZealand, e-maih riegen @xtra.co. nz; 2p.o. BOX36-274, Merivale, Christchurch 8030, New Zealand, e-maih [email protected]. nz Riegen,A.C. & Dowding, J.E. 2003. The Wrybill Anarhynchusfrontalis:a brief review of status,threats and work in progress.Wader Study Group Bull. 100: 20-24. The Wrybill is a threatenedplover endemic to New Zealandand unique in havinga bill curvedto the right.It is specializedfor breedingon bareshingle in thebraided riverbeds of Canterburyand Otago in the SouthIsland. After breeding,almost the entirepopulation migrates north and wintersin the harboursaround Auckland. The speciesis classifiedas Vulnerable. Based on countsof winteringflocks, the population currently appears to number4,500-5,000 individuals.However, countingproblems mean that trendsare difficult to determine. The mainthreats to theWrybill arebelieved to be predationon thebreeding grounds, degradation of breeding habitat,and floodingof nests.In a recentstudy in the MackenzieBasin, predation by introducedmammals (mainly stoats,cats and possibly ferrets) had a substantialimpact on Wrybill survivaland productivity. Prey- switchingby predatorsfollowing the introductionof rabbithaemorrhagic disease in 1997 probablyincreased predationrates on breedingwaders. A recentstudy of stoatsin the TasmanRiver showedthat 11% of stoat densexamined contained Wrybill remains.Breeding habitat is beinglost in somerivers and degraded in oth- ers,mainly by waterabstraction and flow manipulation,invasion of weeds,and human recreational use. Flood- ing causessome loss of nestsbut is alsobeneficial, keeping nesting areas weed-free. The breedingrange of the speciesappears to be contractingand fragmenting, with the bulk of the popula- tion now breedingin three large catchments. -
Population Analysis and Community Workshop for Far Eastern Curlew Conservation Action in Pantai Cemara, Desa Sungai Cemara – Jambi
POPULATION ANALYSIS AND COMMUNITY WORKSHOP FOR FAR EASTERN CURLEW CONSERVATION ACTION IN PANTAI CEMARA, DESA SUNGAI CEMARA – JAMBI Final Report Small Grant Fund of the EAAFP Far Eastern Curlew Task Force Iwan Febrianto, Cipto Dwi Handono & Ragil S. Rihadini Jambi, Indonesia 2019 The aim of this project are to Identify the condition of Far Eastern Curlew Population and the remaining potential sites for Far Eastern Curlew stopover in Sumatera, Indonesia and protect the remaining stopover sites for Far Eastern Curlew by educating the government, local people and community around the sites as the effort of reducing the threat of habitat degradation, habitat loss and human disturbance at stopover area. INTRODUCTION The Far Eastern Curlew (Numenius madagascariencis) is the largest shorebird in the world and is endemic to East Asian – Australian Flyway. It is one of the Endangered migratory shorebird with estimated global population at 38.000 individual, although a more recent update now estimates the population at 32.000 (Wetland International, 2015 in BirdLife International, 2017). An analysis of monitoring data collected from around Australia and New Zealand (Studds et al. in prep. In BirdLife International, 2017) suggests that the species has declined much more rapidly than was previously thought; with an annual rate of decline of 0.058 equating to a loss of 81.7% over three generations. Habitat loss occuring as a result of development is the most significant threat currently affecting migratory shorebird along the EAAF (Melville et al. 2016 in EAAFP 2017). Loss of habitat at critical stopover sites in the Yellow Sea is suspected to be the key threat to this species and given that it is restricted to East Asian - Australasian Flyway, the declines in the non-breeding are to be representative of the global population. -
Appendix M Migratory Bird Species Recorded in the Bing Bong - Mcarthur River Area
APPENDIX M MIGRATORY BIRD SPECIES RECORDED IN THE BING BONG - MCARTHUR RIVER AREA COMMON NAME SCIENTIFIC NAME RECORDED RECORDED EPBC ACT NORTHERN GROUP FEEDING AREA RECORDED FEEDING IN (Blakers IN (Chatto PROTECTED HEMISPHERE FOODS (Lane METHOD et al 1985) 2000,2001,20 MATTERS MIGRANTS 1987) 03) White-breasted Sea-Eagle Haliaeetus leucogaster x x x bird of prey open water Osprey Pandion haliaetus x bird of prey open water Little Tern Sterna albifrons x x seabird open water dive Bridled Tern Sterna anaethetus x seabird open water dive Lesser Crested Tern ^ Sterna bengalensis seabird open water dive Common Tern ^ Sterna hirundo x seabird open water dive Black-naped Tern Sterna sumatrana x x seabird open water dive Masked Booby ^ Sula dactylatra seabird open water dive Brown Booby * Sula leucogaster seabird open water dive Common Noddy * Anous stolidus seabird open water dive Least Frigatebird * Fregata ariel seabird open water Great Frigatebird * Fregata minor seabird open water Caspian Tern Hydroprogne caspia x x seabird open water dive Streaked Shearwater Puffinus leucomelas x seabird dive Little Curlew ^ Numenius minutus x x shorebird dry grassland insects, vegetable matter Greater Sand-Plover Charadrius leschenaultii x x shorebird intertidal mudflats crabs, marine visual, run worms, insects and peck Lesser Sand-Plover Charadrius mongolus x x shorebird intertidal mudflats crabs, molluscs, crustacea, worms Whimbrel Numenius phaeopus x x x shorebird intertidal mudflats crabs probe Grey Plover Pluvialis squatarola x x shorebird intertidal -
Some Aspects of Feeding Ecology of the Lesser Sand Plover Charadrius Mongolus in Three Different Zones in the Kadalundy Estuary, Kerala, South India
Feeding ecology of Lesser Sand Plover in Kerala, S India – K.M. Aarif Some Aspects of Feeding Ecology of the Lesser Sand Plover Charadrius mongolus in Three Different Zones in the Kadalundy Estuary, Kerala, South India K.M. AARIF Department of Zoology, Mananthavady Campus, Kannur University, Waynad District, Kerala, South INDIA. Email: [email protected] Received 24 October 2009; accepted 12 December 2009 Abstract: The study on feeding ecology of the Lesser Sand Plover (LSP) at Kadalundy estuary from July 2007 to December 2008, revealed that there were 13 species of crustaceans and 16 species of polychaete worms identified in the study area of which all identified small crab species(4 species) and polychaete worms (4 species) were consumed by LSPs. The highest number of crustacean species was found in mangroves (11 species). In contrast the highest species number of polychaete worms (13 species) was seen in the mudflats while no polychaete worm was identified in the sandy beds. Of the Crustaceans, Sesarma quadrata and Ocypoda sp. occurred in all the habitats. Sampling polychaete worms undertaken once a month showed that the number peaked at 39 in December 2008 in mudflats. Using direct observations once a week, the number of feeding birds was at its highest in December and January. Pearson correlation test showed significant relationship between the number of polychaete worms and feeding LSPs both at mudflats and mangroves ( p<0.05) and the Scheffe univariate test (ANOVA) showed significant differences between the three habitat zones ( p<0.01). The highest number of average total pecks at prey was seen at mudflats (82.1 in the morning and 128.0 in the afternoon). -
The Good, the Bad and the Ugly of COVID-19 Lockdown Effects on Wildlife Conservation Insights from the First European Locked Do
Biological Conservation 249 (2020) 108728 Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Perspective The good, the bad and the ugly of COVID-19 lockdown effects on wildlife conservation: Insights from the first European locked down country T ⁎ Raoul Manentia, , Emiliano Morib, Viola Di Canioa, Silvia Mercurioa, Marco Piconec, Mario Caffid, Mattia Brambillae,f, Gentile Francesco Ficetolaa,g, Diego Rubolinia a Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, via Celoria 26, I-20133 Milano, Italy b Consiglio Nazionale delle Ricerche, Istituto di Ricerca sugli Ecosistemi Terrestri, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy c Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari di Venezia, Via Torino 55, I-30172 Venezia, Italy d Osservatorio Ornitologico Pianura Bresciana ‘Padernello’, via Cavour 1, I-25022 Borgo San Giacomo, BS, Italy e Fondazione Lombardia per l'Ambiente, Settore biodiversità e aree protette, Largo 10 luglio 1976 1, I-20822 Seveso, MB, Italy f Museo delle Scienze, Sezione di Zoologia dei Vertebrati, Corso del Lavoro e della Scienza 3, I-38122 Trento, Italy g Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, LECA, Laboratoire d'Ecologie Alpine, Rue de la Piscine 2233, F-38000 Grenoble, France ARTICLE INFO ABSTRACT Keywords: The COVID-19 pandemic zoonosis has determined extensive lockdowns worldwide that provide an un- Coronavirus precedented opportunity to understand how large-scale shifts of human activities can impact wildlife. We ad- Conservation dressed the impacts of the COVID-19 lockdown on wildlife in Italy, the first European country that performed a Crisis countrywide lockdown, and identified potentially beneficial and negative consequences for wildlife conservation Pandemic and management. -
Practical Guide for Breeding Ecology of Kentish Plover
Practical guide for investigating breeding ecology of Kentish plover Charadrius alexandrinus Tamás Székely, András Kosztolányi & Clemens Küpper Department of Biology & Biochemistry, University of Bath, Bath BA2 7AY, UK [email protected] [email protected] [email protected] Version 3, 1 April 2008 Photos by T. Székely, A. Kosztolányi & C. Küpper Rationale The Kentish/snowy plover Charadrius alexandrinus is a small cosmopolitan shorebird (body mass about 40-44 g). In the last few years we have developed a suite of methods to investigate its behaviour and ecology in the field. We thought this practical guide may be useful for students and researchers with an interest in small plovers. Some aspects of these methods may be relevant for other shorebirds and ground-nesting birds in general. Our fundamental motivation in writing this guide is to show that the Kentish plover is an easy species to work with, if one is willing to pay attention to a few potential pitfalls. We hope that this guide will elicit further research. Please contact us if you have questions and comments, and let us know of any errors. Note that Kentish plovers have been studied in several countries and by a good range of researchers, and we don't claim that our methods work best. Many Kentish plover populations are now declining. You need to be sensible about fieldwork, and carefully evaluate the costs and benefits of using a particular method. The last thing you want is to put an extra burden on plover populations - they have a hard time anyway to cope with predators, floods and threats humans are imposing upon them. -
The First Record of Common Ringed Plover (Charadrius Hiaticula) in British Columbia
The First Record of Common Ringed Plover (Charadrius hiaticula) in British Columbia. By Rick Toochin. Submitted: April 15, 2019. Introduction and Distribution The Common Ringed Plover (Charadrius hiaticula) is a widespread Old World shorebird species that is found breeding in the Arctic and subarctic regions from Greenland, Europe, east to Siberia (O’Brien et al. 2006). In North America, this species breeds on Baffin Island, eastern Ellesmere Island (Godfrey 1986). The Common Ringed Plover winters primarily from Western Europe, the Mediterranean Basin, throughout Africa, including Madagascar, and the Middle East (Hayman et al. 1986, O’Brien et al. 2006, Brazil 2009). There are three recognized subspecies of the Common Ringed Plover (Thies et al. 2018). Distinction between the subspecies is based on moult; with features changing clinally North to South, rather than East to West, making it impossible to draw a dividing line in Northwestern Europe (del Hoyo et al. 1996, Snow and Perrins 1998). The nominate subspecies of Common Ringed Plover is (C. h. hiaticula ) which breeds from southern Scandinavia to Great Britain, and northwestern France (Wiersma et al. 2019). This subspecies winters from Great Britain, south into Africa (del Hoyo et al. 1996, Snow and Perrins 1998). The second subspecies of the Common Ringed Plover is (C. h. tundrae) which is found breeding from northern Scandinavia, and northern Russia east to the Chukotskiy Peninsula, and is a casual breeder also in the northern Bering Sea region of Alaska on St Lawrence Island (Wiersma et al. 2019). This subspecies winters in the Caspian Sea region, and from Southwest Asia, south and east to South Africa (Wiersma et al. -
Iucn Red Data List Information on Species Listed On, and Covered by Cms Appendices
UNEP/CMS/ScC-SC4/Doc.8/Rev.1/Annex 1 ANNEX 1 IUCN RED DATA LIST INFORMATION ON SPECIES LISTED ON, AND COVERED BY CMS APPENDICES Content General Information ................................................................................................................................................................................................................................ 2 Species in Appendix I ............................................................................................................................................................................................................................... 3 Mammalia ............................................................................................................................................................................................................................................ 4 Aves ...................................................................................................................................................................................................................................................... 7 Reptilia ............................................................................................................................................................................................................................................... 12 Pisces ................................................................................................................................................................................................................................................. -
Species Assessment for Mountain Plover (Charadrius Montanus)
SPECIES ASSESSMENT FOR MOUNTAIN PLOVER (CHARADRIUS MONTANUS ) IN WYOMING prepared by 1 2 HAMILTON SMITH AND DOUGLAS A. KEINATH 1 Wyoming Natural Diversity Database, University of Wyoming, 1000 E. University Ave, Dept. 3381, Laramie, Wyoming 82071; 307-766-3023 2 Zoology Program Manager, Wyoming Natural Diversity Database, University of Wyoming, 1000 E. University Ave, Dept. 3381, Laramie, Wyoming 82071; 307-766-3013; [email protected] drawing by Summers Scholl prepared for United States Department of the Interior Bureau of Land Management Wyoming State Office Cheyenne, Wyoming November 2004 Smith and Keinath – Charadrius montanus November 2004 Table of Contents INTRODUCTION ................................................................................................................................. 3 NATURAL HISTORY ........................................................................................................................... 4 Morphological Description ...................................................................................................... 4 Taxonomy and Distribution ..................................................................................................... 5 Habitat Requirements............................................................................................................. 6 General ............................................................................................................................................6 Breeding ..........................................................................................................................................7