Planning a Sequence of Base Positions for a Mobile Manipulator

Total Page:16

File Type:pdf, Size:1020Kb

Planning a Sequence of Base Positions for a Mobile Manipulator IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING. SUBMISSION FOR REVIEW, 2020 1 Planning a Sequence of Base Positions for a Mobile Manipulator to Perform Multiple Pick-and-Place Tasks Jingren Xu, Student Member, IEEE, Yukiyasu Domae, Member, IEEE, Toshio Ueshiba, Member, IEEE, Weiwei Wan, Member, IEEE, and Kensuke Harada, Senior Member, IEEE Abstract—In this paper, we present a planner that plans a sequence of base positions for a mobile manipulator to effi- ciently and robustly collect objects stored in distinct trays. We achieve high efficiency by exploring the common areas where a mobile manipulator can grasp objects stored in multiple trays simultaneously and move the mobile manipulator to the common areas to reduce the time needed for moving the mobile base. We ensure robustness by optimizing the base position with the best clearance to positioning uncertainty so that a mobile manipulator can complete the task even if there is a certain deviation from the planned base positions. Besides, considering different styles of object placement in the tray, we analyze feasible schemes for dynamically updating the base positions based on either the remaining objects or the target objects to be picked in one round Fig. 1: A schematic diagram of the storage area in an assembly of the tasks. In the experiment part, we examine our planner factory, a mobile manipulator is used to replace human workers on various scenarios, including different object placement: (1) to pick up objects from multiple places and then transport to the Regularly placed toy objects; (2) Randomly placed industrial assembly line for further assembly. parts; and different schemes for online execution: (1) Apply globally static base positions; (2) Dynamically update the base positions. The experiment results demonstrate the efficiency, base and a manipulator, is able to navigate and manipulate robustness and feasibility of the proposed method. in human environment. Therefore, mobile manipulators are Note to Practitioners—The presented project uses mobile ma- promising for serving human environment and performing a nipulators to fetch and supply parts in an automotive assembly variety of tasks in a large work space. Especially, the mobile factory. Mechanical parts at these sites are usually regularly or manipulator is suitable for picking up objects and transporting randomly placed in supply trays. The project develops methods to explore robust mobile base positions where the objects with them to the desired position. One example of such multiple different placement styles and from different trays can be reached pick-and-place tasks is the part-supply task in manufacturing by a mobile manipulator. The mobile manipulators could perform environment, such as in an automotive assembly factory, where efficient and high-quality pick-and-place operations by navigating a huge amount of assembly components of an automobile are to the explored positions. The developed methods also discuss scattered in a large storage area (Fig. 1). Currently human the dynamic updates the base positions following picking process to further increase system robustness. The presented project is workers are still highly engaged in the part-supply task and expected to shed light on the deployment of mobile manipulators they have to go back and forth to fetch required assembly arXiv:2010.00779v1 [cs.RO] 1 Oct 2020 to collect parts at large manufacturing factories. components from trays in different locations, and then carry Index Terms—Mobile manipulation; Multiple pick-and-place the collected components to the assembly area. It is promising tasks; Manufacturing automation. to apply mobile manipulators to replace human workers and automate this part-supply process, owning to their ability of moving and picking. I. INTRODUCTION In order to assemble a product P, which is comprised of HERE is an increasing demand on robots which are several types of parts Pa, Pb and Pc, stored in different trays able to flexibly assist human in daily work and indus- T tray1, tray2 and tray4, respectively, the mobile manipulator trial production. A mobile manipulator, combining a mobile may have to move to a sequence of positions to gradually pick J. Xu, W. Wan and K. Harada are with Graduate School of En- up the required assembly parts from different trays. The base gineering Science, Osaka University, Osaka 560-8531, Japan. J. Xu sequence are comprised of a series of base positions, in which and K. Harada are also with Artificial Intelligence Research Cen- the mobile manipulator is able to grasp the required assembly ter, National Institute of Advanced Industrial Science and Technology (AIST), Japan (e-mail: [email protected]; [email protected] parts from the trays without self-collision and the collision u.ac.jp; [email protected]). with the environment. To collect the required parts from the Y. Domae and T. Ueshiba are with Artificial Intelligence Research Center, target trays, we can simply move the mobile manipulator to National Institute of Advanced Industrial Science and Technology (AIST), Japan (e-mail: [email protected]). the position in front of every target tray, alternatively, we can Manuscript received Month 00, 0000. move the mobile manipulator to the position where the mobile IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING. SUBMISSION FOR REVIEW, 2020 2 manipulator can reach the parts stored in multiple trays, and II. RELATED WORK then the mobile manipulator carries the collected assembly parts to the designated area for further assembly. Early work in mobile manipulation proposed rich theoretical analysis and concepts, which are extensively used as the evalu- However, with increased base sequence size, the overall op- ation metrics in later work. They were mainly concerned with eration time increases significantly for the following reasons: the kinematics and dynamics modeling of mobile manipulator (1) The mobile manipulator decelerates and then accelerates [1], [2], resolution of the kinematic redundancy caused by the at every base position of the base sequence, which lowers mobile base [3], [4], coordinated control of mobile base and the overall base velocity and increases the total operation manipulator arm [5], and the manipulability analysis of the time. (2) Every time the mobile manipulator experiences a mobile manipulator [6], [7]. ”stop and manipulation”, there is risk that the arrived position More recently, there have been numerous work on motion significantly deviates from the desired position, then the mo- planning of mobile manipulator [8], [9], [10] and optimal base bile manipulator has to perform time-consuming repositioning position planning for achieving certain design criteria, such process, and the risk accumulates with expanding base se- as manipulability, end effector poses and velocity [11], and quence. Therefore, it is crucial to prune out unnecessary base reaching/grasping a set of targets [12], [13]. Du et al. [14] movements to improve the overall efficiency. used the manipulability index to determine a suitable base To simplify the base sequence for the general multiple placement. Ren et al. [11] optimized the base positions for a pick-and-place tasks, it is preferable to move the mobile mobile manipulator to reach a set of positions with required manipulator to the position, in which the mobile manipulator orientations and keep a stable velocity in local painting tasks. is able to pick up the assembly parts from multiple trays. As Berenson et al. [8] obtained the base placement and grasp for a shown in Fig. 1, the mobile manipulator moves to the first mobile manipulator to move an object from one configuration base position and is able to grasp the assembly parts in both to another, by optimizing a scoring function which combines tray1 and tray2, thus reduces the base sequence size by one. the grasp quality, manipulability and distance to obstacle. To obtain such positions, we first calculate the base region for OpenRAVE [15] provides an inverse reachability module, every target tray in the given assembly task, the base region is which clusters the reachability space for a base-placement a set of base positions where the mobile manipulator can grasp sampling distribution that can be used to find out where the the target assembly parts from that tray without collision. robot should stand in order to perform a manipulation task. Then the intersections of these base regions are given high Stulp et al. [16] proposed Action-Related Place to associate priority in the base sequence planning. Moreover, the base a base location with a probability of successfully performing positioning uncertainty is considered in the base sequence a manipulation task, capability map was used to determine planning by restricting the size of the applicable intersections, if an object was theoretically reachable. Burget et al. [12] the intersections smaller than the base positioning uncertainty employed the inverse reachability map to select statically are discarded, otherwise the mobile manipulator is likely to stable, collision-free stance configurations for a humanoid move out the intersection due to the unavoidable positioning robot to reach a given grasping target. Zacharias et al. [17] error. With the calculated base regions and robust intersections, took advantage of the reachability map to position a mobile we plan the shortest path that visit all the target trays with manipulator to perform a linear trajectory in the workspace. minimal number of base movements. Following the planned Vahrenkamp [18] conducted a series of research on reachabil- base sequence, the mobile manipulator can perform efficient ity analysis and its application, the base positions with high and robust part-supply tasks in real world applications. probability of reaching a target pose can be efficiently found The base sequence planning can be implemented in multiple from the inverse reachability distribution. The reachability forms, depending on the definition of the ”target” objects. indicates the probability of finding an IK solution, while there Firstly, if the target objects are all the objects which fill up is no guarantee on the completeness of obtained base positions.
Recommended publications
  • Modeling and Control of Underwater Robotic Systems
    Modeling and Control of Underwater Robotic Systems Dr.ing. thesis Ingrid Schj0lberg Department of Engineering Cybernetics Norwegian University of Science and Technology March 1996 Report 96-21-W Department of Engineering Cybernetics Norwegian University of Science and Technology N-7034 Trondheim, Norway OBmetmoN of im doombst b mwia DISCLAI R Portions of tins document may be Illegible in electronic image products. Images are produced from the best available original document Preface This thesis is submitted for the Doktor ingenipr degree at the Norwegian University of Science and Technology (NTNU). The research was carried out at the Norwegian Institute of Technology (NTH), Department of Engi ­ neering Cybernetics, in the period from January 1991 to March 1996. The work was funded by The Research Council of Norway (NFR) through the MOBATEL project. Professor Dr.ing. Olav Egeland was my supervisor. During the academic year 1992-1993 I worked at the European Organization for Nuclear Research (CERN). This stay was funded by TOTAL Norge. The work performed during this stay has not been included in this thesis. I am indebted to Professor Egeland for giving me the opportunity to take this study. I am also grateful for advice and comments during the writing of scientific articles and for the introduction to the fields of force control and vibration damping. I am thankful to the administrator of the MOBATEL project, Professor Jens G. Balchen, for letting me take part in this project. I am grateful to Professor Dr.ing. Thor I. Fossen for useful discussions on hydrodynamics. I want to express my gratitude to Dr.ing.
    [Show full text]
  • Robotic Manipulators Mechanical Project for the Domestic Robot HERA
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/333931156 Robotic Manipulators Mechanical Project For The Domestic Robot HERA Conference Paper · April 2019 CITATIONS READS 0 197 3 authors: Marina Gonbata Fabrizio Leonardi University Center of FEI University Center of FEI 3 PUBLICATIONS 0 CITATIONS 97 PUBLICATIONS 86 CITATIONS SEE PROFILE SEE PROFILE Plinio Thomaz Aquino Junior University Center of FEI 58 PUBLICATIONS 237 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Vehicle Coordination View project HERA: Home Environment Robot Assistant View project All content following this page was uploaded by Plinio Thomaz Aquino Junior on 21 June 2019. The user has requested enhancement of the downloaded file. BRAHUR-BRASERO 2019 II Brazilian Humanoid Robot Workshop and III Brazilian Workshop on Service Robotics Robotic Manipulators Mechanical Project For The Domestic Robot HERA Marina Yukari Gonbata1, Fabrizio Leonardi1 and Plinio Thomaz Aquino Junior1 Abstract— Robotics can ease peoples life, in the industrial that can ”read” the environment where it acts), ability to act and home environment. When talking about homes, robot may actuators and motors capable of producing actions, such as assist people in some domestic and tasks, done in repeat. To the displacement of the robot in the environment), robustness accomplish those tasks, a robot must have a robotic arm, so it can interact with the environment physically, therefore, a robot and intelligence (ability to handle the most diverse situations, must use its arm to do the tasks that are required by its user. in order to solve and perform tasks as complex as they are) [2].
    [Show full text]
  • Design and Evaluation of Modular Robots for Maintenance in Large Scientific Facilities
    UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES DESIGN AND EVALUATION OF MODULAR ROBOTS FOR MAINTENANCE IN LARGE SCIENTIFIC FACILITIES PRITHVI SEKHAR PAGALA, MSC 2014 DEPARTAMENTO DE AUTOMÁTICA, INGENIERÍA ELECTRÓNICA E INFORMÁTICA INDUSTRIAL ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES DESIGN AND EVALUATION OF MODULAR ROBOTS FOR MAINTENANCE IN LARGE SCIENTIFIC FACILITIES PhD Thesis Author: Prithvi Sekhar Pagala, MSC Advisors: Manuel Ferre Perez, PhD Manuel Armada, PhD 2014 DESIGN AND EVALUATION OF MODULAR ROBOTS FOR MAINTENANCE IN LARGE SCIENTIFIC FACILITIES Author: Prithvi Sekhar Pagala, MSC Tribunal: Presidente: Dr. Fernando Matía Espada Secretario: Dr. Claudio Rossi Vocal A: Dr. Antonio Giménez Fernández Vocal B: Dr. Juan Antonio Escalera Piña Vocal C: Dr. Concepción Alicia Monje Micharet Suplente A: Dr. Mohamed Abderrahim Fichouche Suplente B: Dr. José Maráa Azorín Proveda Acuerdan otorgar la calificación de: Madrid, de de 2014 Acknowledgements The duration of the thesis development lead to inspiring conversations, exchange of ideas and expanding knowledge with amazing individuals. I would like to thank my advisers Manuel Ferre and Manuel Armada for their constant men- torship, support and motivation to pursue different research ideas and collaborations during the course of entire thesis. The team at the lab has not only enriched my professionally life but also in Spanish ways. Thank you all the members of the ROMIN, Francisco, Alex, Jose, Jordi, Ignacio, Javi, Chema, Luis .... This research project has been supported by a Marie Curie Early Stage Initial Training Network Fellowship of the European Community’s Seventh Framework Program "PURESAFE". I wish to thank the supervisors and fellow research members of the project for the amazing support, fruitful interactions and training events.
    [Show full text]
  • History of Robotics: Timeline
    History of Robotics: Timeline This history of robotics is intertwined with the histories of technology, science and the basic principle of progress. Technology used in computing, electricity, even pneumatics and hydraulics can all be considered a part of the history of robotics. The timeline presented is therefore far from complete. Robotics currently represents one of mankind’s greatest accomplishments and is the single greatest attempt of mankind to produce an artificial, sentient being. It is only in recent years that manufacturers are making robotics increasingly available and attainable to the general public. The focus of this timeline is to provide the reader with a general overview of robotics (with a focus more on mobile robots) and to give an appreciation for the inventors and innovators in this field who have helped robotics to become what it is today. RobotShop Distribution Inc., 2008 www.robotshop.ca www.robotshop.us Greek Times Some historians affirm that Talos, a giant creature written about in ancient greek literature, was a creature (either a man or a bull) made of bronze, given by Zeus to Europa. [6] According to one version of the myths he was created in Sardinia by Hephaestus on Zeus' command, who gave him to the Cretan king Minos. In another version Talos came to Crete with Zeus to watch over his love Europa, and Minos received him as a gift from her. There are suppositions that his name Talos in the old Cretan language meant the "Sun" and that Zeus was known in Crete by the similar name of Zeus Tallaios.
    [Show full text]
  • Special Feature on Advanced Mobile Robotics
    applied sciences Editorial Special Feature on Advanced Mobile Robotics DaeEun Kim School of Electrical and Electronic Engineering, Yonsei University, Shinchon, Seoul 03722, Korea; [email protected] Received: 29 October 2019; Accepted: 31 October 2019; Published: 4 November 2019 1. Introduction Mobile robots and their applications are involved with many research fields including electrical engineering, mechanical engineering, computer science, artificial intelligence and cognitive science. Mobile robots are widely used for transportation, surveillance, inspection, interaction with human, medical system and entertainment. This Special Issue handles recent development of mobile robots and their research, and it will help find or enhance the principle of robotics and practical applications in real world. The Special Issue is intended to be a collection of multidisciplinary work in the field of mobile robotics. Various approaches and integrative contributions are introduced through this Special Issue. Motion control of mobile robots, aerial robots/vehicles, robot navigation, localization and mapping, robot vision and 3D sensing, networked robots, swarm robotics, biologically-inspired robotics, learning and adaptation in robotics, human-robot interaction and control systems for industrial robots are covered. 2. Advanced Mobile Robotics This Special Issue includes a variety of research fields related to mobile robotics. Initially, multi-agent robots or multi-robots are introduced. It covers cooperation of multi-agent robots or formation control. Trajectory planning methods and applications are listed. Robot navigations have been studied as classical robot application. Autonomous navigation examples are demonstrated. Then services robots are introduced as human-robot interaction. Furthermore, unmanned aerial vehicles (UAVs) or autonomous underwater vehicles (AUVs) are shown for autonomous navigation or map building.
    [Show full text]
  • Special Issue On
    FACTA UNIVERSITATIS Series: Mechanics, Automatic Control and Robotics Vol. 6, Special Issue, 2007, pp. I - VIII Special Issue on Advanced Controls And Signal Processing in Active And Robotic Systems Foreword by the Guest Editor For quite some time the idea about this special cross-disciplinary issue has been both puz- zling as well as troubling me until finally I came to a positive conclusion. To my joy, Prof. Dr. Katica R. (Stevanović) Hedrih, Madam Editor-in-Chief of Facta Universitaties Series on Mechanics, Automatics Control and Robotics, embraced this idea frankly and not only devoted her efforts and time but also her passionate co-operation in all respects. Furthermore, to even greater joy of mine, a number of distinguished colleagues as well as young researchers have embraced the idea too. They all co-operated with me on this special issue with patience, for which I remain indebted to them for life. Here it is now this special issue before the competent research communities for final evaluation. For indeed their words are the final ones. This special issue begins with the article "Nanorobots for Microfactories to Operations in the Human Body and Robots Propelled by Bacteria" by Professor Sylvain Martel form Ottawa, Can- ada. This article is focused on the exploitation of the properties at the nanoscale that enables novel nanorobotic-based instrumented platforms and techniques. Some unique interdisciplinary examples from his research laboratory are described thus providing certain insights about the possibilities and the huge potentials of nanorobotics with main application areas in medicine and bioengineering. These also include supporting the new robotic platforms for micro- and nano- manufacturing and high-throughput automatic operations at the nanoscale.
    [Show full text]
  • Robot Control and Programming: Class Notes Dr
    NAVARRA UNIVERSITY UPPER ENGINEERING SCHOOL San Sebastian´ Robot Control and Programming: Class notes Dr. Emilio Jose´ Sanchez´ Tapia August, 2010 Servicio de Publicaciones de la Universidad de Navarra 987‐84‐8081‐293‐1 ii Viaje a ’Agra de Cimientos’ Era yo todav´ıa un estudiante de doctorado cuando cayo´ en mis manos una tesis de la cual me llamo´ especialmente la atencion´ su cap´ıtulo de agradecimientos. Bueno, realmente la tesis no contaba con un cap´ıtulo de ’agradecimientos’ sino mas´ bien con un cap´ıtulo alternativo titulado ’viaje a Agra de Cimientos’. En dicho capitulo, el ahora ya doctor redacto´ un pequeno˜ cuento epico´ inventado por el´ mismo. Esta pequena˜ historia relataba las aventuras de un caballero, al mas´ puro estilo ’Tolkiano’, que cabalgaba en busca de un pueblo recondito.´ Ya os podeis´ imaginar que dicho caballero, no era otro sino el´ mismo, y que su viaje era mas´ bien una odisea en la cual tuvo que superar mil y una pruebas hasta conseguir su objetivo, llegar a Agra de Cimientos (terminar su tesis). Solo´ deciros que para cada una de esas pruebas tuvo la suerte de encontrar a una mano amiga que le ayudara. En mi caso, no voy a presentarte una tesis, sino los apuntes de la asignatura ”Robot Control and Programming´´ que se imparte en ingles.´ Aunque yo no tengo tanta imaginacion´ como la de aquel doctorando para poder contaros una historia, s´ı que he tenido la suerte de encontrar a muchas personas que me han ayudado en mi viaje hacia ’Agra de Cimientos’. Y eso es, amigo lector, al abrir estas notas de clase vas a ser testigo del final de un viaje que he realizado de la mano de mucha gente que de alguna forma u otra han contribuido en su mejora.
    [Show full text]
  • Industrial Robot
    1 Introduction 25 1.2 Industrial robots - definition and classification 1.2.1 Definition (ISO 8373:2012) and delimitation The annual surveys carried out by IFR focus on the collection of yearly statistics on the production, imports, exports and domestic installations/shipments of industrial robots (at least three or more axes) as described in the ISO definition given below. Figures 1.1 shows examples of robot types which are covered by this definition and hence included in the surveys. A robot which has its own control system and is not controlled by the machine should be included in the statistics, although it may be dedicated for a special machine. Other dedicated industrial robots should not be included in the statistics. If countries declare that they included dedicated industrial robots, or are suspected of doing so, this will be clearly indicated in the statistical tables. It will imply that data for those countries is not directly comparable with those of countries that strictly adhere to the definition of multipurpose industrial robots. Wafer handlers have their own control system and should be included in the statistics of industrial robots. Wafers handlers can be articulated, cartesian, cylindrical or SCARA robots. Irrespective from the type of robots they are reported in the application “cleanroom for semiconductors”. Flat panel handlers also should be included. Mainly they are articulated robots. Irrespective from the type of robots they are reported in the application “cleanroom for FPD”. Examples of dedicated industrial robots that should not be included in the international survey are: Equipment dedicated for loading/unloading of machine tools (see figure 1.3).
    [Show full text]
  • Collaborative Mobile Industrial Manipulator : a Review of System Architecture and Applications
    This is a repository copy of Collaborative mobile industrial manipulator : a review of system architecture and applications. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/151956/ Version: Accepted Version Proceedings Paper: Yang, M., Yang, E. F., Zante, R. C. et al. (2 more authors) (2019) Collaborative mobile industrial manipulator : a review of system architecture and applications. In: Proceedings of the 25th International Conference on Automation & Computing, Newcastle University, Newcastle upon Tyne, UK. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Proceedings of the 25th International Conference on Automation & Computing, Newcastle University, Newcastle upon Tyne, UK, 6-7 September 2019 Collaborative mobile industrial manipulator: A review of system architecture and applications Manman Yang1, Erfu Yang1, Remi Christophe Zante1, Mark Post2, Xuefeng Liu3 1Design, Manufacture & Engineering Management University of Strathclyde, Glasgow G1 1XJ, UK Email: {manman.yang, erfu.yang, remi.zante}@strath.ac.uk 2Department of Electronic Engineering University of York, York, UK Email: [email protected] 3School of Electronic and Optical Engineering Nanjing University Of Science And Technology, Nanjing, China Email: [email protected] Abstract—This paper provides a comprehensive review of the carried out in future [2].
    [Show full text]
  • Acknowledgements Acknowl
    2161 Acknowledgements Acknowl. B.21 Actuators for Soft Robotics F.58 Robotics in Hazardous Applications by Alin Albu-Schäffer, Antonio Bicchi by James Trevelyan, William Hamel, The authors of this chapter have used liberally of Sung-Chul Kang work done by a group of collaborators involved James Trevelyan acknowledges Surya Singh for de- in the EU projects PHRIENDS, VIACTORS, and tailed suggestions on the original draft, and would also SAPHARI. We want to particularly thank Etienne Bur- like to thank the many unnamed mine clearance experts det, Federico Carpi, Manuel Catalano, Manolo Gara- who have provided guidance and comments over many bini, Giorgio Grioli, Sami Haddadin, Dominic Lacatos, years, as well as Prof. S. Hirose, Scanjack, Way In- Can zparpucu, Florian Petit, Joshua Schultz, Nikos dustry, Japan Atomic Energy Agency, and Total Marine Tsagarakis, Bram Vanderborght, and Sebastian Wolf for Systems for providing photographs. their substantial contributions to this chapter and the William R. Hamel would like to acknowledge work behind it. the US Department of Energy’s Robotics Crosscut- ting Program and all of his colleagues at the na- C.29 Inertial Sensing, GPS and Odometry tional laboratories and universities for many years by Gregory Dudek, Michael Jenkin of dealing with remote hazardous operations, and all We would like to thank Sarah Jenkin for her help with of his collaborators at the Field Robotics Center at the figures. Carnegie Mellon University, particularly James Os- born, who were pivotal in developing ideas for future D.36 Motion for Manipulation Tasks telerobots. by James Kuffner, Jing Xiao Sungchul Kang acknowledges Changhyun Cho, We acknowledge the contribution that the authors of the Woosub Lee, Dongsuk Ryu at KIST (Korean Institute first edition made to this chapter revision, particularly for Science and Technology), Korea for their provid- Sect.
    [Show full text]
  • Coordinated Control of a Mobile Manipulator
    University of Pennsylvania ScholarlyCommons Technical Reports (CIS) Department of Computer & Information Science March 1994 Coordinated Control of a Mobile Manipulator Yoshio Yamamoto University of Pennsylvania Follow this and additional works at: https://repository.upenn.edu/cis_reports Recommended Citation Yoshio Yamamoto, "Coordinated Control of a Mobile Manipulator", . March 1994. University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-94-12. This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/240 For more information, please contact [email protected]. Coordinated Control of a Mobile Manipulator Abstract In this technical report, we investigate modeling, control, and coordination of mobile manipulators. A mobile manipulator in this study consists of a robotic manipulator and a mobile platform, with the manipulator being mounted atop the mobile platform. A mobile manipulator combines the dextrous manipulation capability offered by fixed-base manipulators and the mobility offered by mobile platforms. While mobile manipulators offer a tremendous potential for flexible material handling and other tasks, at the same time they bring about a number of challenging issues rather than simply increasing the structural complexity. First, combining a manipulator and a platform creates redundancy. Second, a wheeled mobile platform is subject to nonholonomic constraints. Third, there exists dynamic interaction between the manipulator and the mobile platform. Fourth,
    [Show full text]
  • Motion Planning for a Mobile Humanoid Manipulator Working in an Industrial Environment
    applied sciences Article Motion Planning for a Mobile Humanoid Manipulator Working in an Industrial Environment Iwona Pajak † and Grzegorz Pajak *,† Institute of Mechanical Engineering, University of Zielona Gora, 65-516 Zielona Gora, Poland; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: This paper presents the usage of holonomic mobile humanoid manipulators to carry out autonomous tasks in industrial environments, according to the smart factory concept and the Industry 4.0 philosophy. The problem of transporting lengthy objects, taking into account mechanical limitations, the conditions for avoiding collisions, as well as the dexterity of the manipulator arms was considered. The primary problem was divided into three phases, leading to three different types of robotic tasks. In the proposed approach, the pseudoinverse Jacobian method at the acceleration level to solve each of the tasks was used. The redundant degrees of freedom were used to satisfy secondary objectives such as robot kinetic energy, the maximization of the manipulability measure, and the fulfillment mechanical and collision-avoidance limitations. A computer example involving a mobile humanoid manipulator, operating in an industrial environment, illustrated the effectiveness of the proposed method. Keywords: humanoid manipulator; mobile robot; motion planning; transportation task Citation: Pajak, I.; Pajak, G. Motion Planning for a Mobile Humanoid Manipulator Working in an Industrial Environment. Appl. Sci. 2021, 11, 1. Introduction 6209. https://doi.org/10.3390/ The history of industrial robotics dates back to the 1950s. At that time, the first designs app11136209 of numerically controlled machine tools and programmable manipulators for industrial applications were created.
    [Show full text]