BIP, an INTESTINAL METABOLIC HORMONE a Thesis Submitted To

Total Page:16

File Type:pdf, Size:1020Kb

BIP, an INTESTINAL METABOLIC HORMONE a Thesis Submitted To BIP, AN INTESTINAL METABOLIC HORMONE A Thesis submitted to the University of Surrey for a Degree of DOCTOR OF PHILOSOPHY by PIOTR KWASOWSKI August 1986 Division of Clinical Biochemistry Department of Biochemistry University of Surrey BuiIdford BU2 5XH UK I W ' ProQuest Number: 27600360 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 27600360 Published by ProQuest LLO (2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLO. ProQuest LLO. 789 East Eisenhower Parkway P.Q. Box 1346 Ann Arbor, Ml 48106- 1346 SUMMARY Using an established radioimmunoassay for Immunoreactlve gastric inhibitory polypeptide (IR-GIP) the metabolic actions of gastric inhibitory polypeptide (GIP) were investigated. It was found that there was no circadian rhythm in basal plasma TR-GIP and immunoreactlve insulin (IRI) concentrations in normal human volunteers, but that there was in stimulated IR-GIP and IRI plasma concentrations following a mixed meal. It was shown that short-term adaptation of both humans and rats, with high-fat diets, could cause moderate insulin resistance as demonstrated by the removal of the feed-back inhibition of exogenous insulin on fat-stimulated IR-GIP release. It was shown that GIP via its role in the enteroinsular axis, might play a part in the development of the hyperinsulinaemia and obesity of the genetically obese hyperglycaemic (ob/ob) mouse. It was demonstrated that the pre-requisite for fat- stimulated IR-GIP release in the ob/ob mouse is the absorption of fatty acids and glycerides capable of being esterified into triglyceride. Any physical, chemical or metabolic interference with this process resulted in a decrease of the amount of IR-GIP released. It was further shown, using a combination of both exogenous and endogenous lipid and GIP, that GIP has a role in the removal of chylomicron triglyceride from the circulation of the rat. It was not possible to confirm this in humans using exogenous lipid and endogenous glucose-stimulated IR-GIP release. It was shown in the insulinoma bearing NEDH rat that exogenous porcine GIP was able to augment the insulin stimulating ability of glucose when co-administered intravenously with glucose, thus providing strong evidence for GIP's role as an incretin. II A.M.D.G, III ACKNOWLEDGEMENTS I should like to express my thanks to the following people for their help over the last few years. Firstly I must thank Profesor Vincent Marks for his constant help and encouragement in the execution and (0 completion of this thesis. I must also express my djepest gratitude to Dr Linda Morgan, who in the early days taught me all I knew about GIP, who advised and encouraged me through the initial experimental work and who, more recently, proof read the first drafts of this thesis. I must also thank Dr Shelagh Hampton for her immeasurable help and advice on radioimmunoassays. I would also like to thank Drs Peter Flatt and Clifford Bailey for their help with the ob/ob mice. Dr Kim Tan for his help with the insulinoma bearing rats, and Drs John Wright, Bob Cramb, Mike Dunne and John Wong for their help with the humans. Finally, I would like to thank my parents for encouraging me and making it possible for me to start, and my wife Christine, without whose proof reading and constant and untiring encouragement and help I would certainly not have finished. IV CONTENTS PAGE SUMMARY I DEDICATION III ACKNOWLEDGEMENTS IV CHAPTER ONE GENERAL INTRODUCTION 1.1.0 General Background 2 1.1.1 Historical 2 1.1.2 Special Aspects 3 1.1.3 General Concepts 5 1.1.4 Recent Developments 8 1.2.0 Enterogastrone Concept 15 1.2.1 Endogenous Lines of Research 15 1.2.2 Exogenous Lines of Research 16 1.3.0 Incretin Concept 19 1.3.1 Endogenous Aspects 19 1.3.2 Incretin Candidates 21 1.4.0 Gastric Inhibitory Polypeptide (GIP) 24 1.4.1 Discovery of GIP 24 1.4.2 Isolation and Purification 26 1.4.4 Localisation 27 1.4.5 Physiological Actions of Exogenous GIP 28 1.4.6 Metabolic Effects of GIP 31 V 1.4.7 stimulation of Immunoreactive BIP (IR-GIP) release 36 1.4.8 Inhibition of IR-GIP Release 42 1.5.0 Motilin 46 1.5.1 Historical Background and Discovery of Motilin 46 1.5.2 Structure of Motilin 46 1.5.3 Cellular Localisation of Motilin 47 1.5.4 Physiological Actions of Motilin 47 1.5.5 Modulation of Circulating IRM 49 1.6.0 Summary of Introduction and Aims 52 CHAPTER TWO 53 METHODS 2.1.0 The Gastric Inhibitory Polypeptide (GIP) Assay 54 lodination 54 Standards 56 Charcoal Stripped Serum 56 Assay 57 Antibody 57 2.2.0 The Motilin Assay 64 lodination 64 Antibody 65 Assay 65 2.3.0 Plasma Triglyceride Assay 73 VI 2.4.0 Plasma Glucose Assay 74 CHAPTER THREE 75 TWENTY-FOUR HOUR RHYTHMS IN THE ENTEROINSULAR AXIS 3.0.0 Introduction 76 3.1.0 GEP Hormones During a Twenty-four Hour Fast 77 3.1.1 Methods 77 3.1.2 Results 78 3.1.3 Discussion 79 3.2.0 Function of the Enteroinsular Axis at 1100 h and 0200 h 87 3.2.1 Methods 87 3.2.2 Results 88 3.2.3 Discussion 88 3.3.0 Investigation of the Insulinaemic Responses Following Intravenous Glucose at 1000 h and 0200 h 95 3.3.1 Methods 95 3.3.2 Results 96 3.3.3 Discussion 96 3.4.0 Function of the Enteroinsular Axis Throughout the Day 107 3.4.1 Methods 107 3.4.2 Results 108 3.4.3 Discussion 108 VII Summary of Results - Chapter Three 117 CHAPTER FOUR 119 EFFECT OF DIETARY FAT ON THE ENTEROINSULAR AXIS 4.0.0 Introduction 120 4.1.0 Effect of a Short-term High Fat Diet on the Enteroinsular Axis in Rats 123 4.1.1 Methods 123 4.1.2 Results 125 4.1.3 Discussion 131 4.2.0 Effect of Both High and Low Fat Diets on the Enteroinsular Axis in Man 134 4.2.1 Methods 134 4.2.2 Results 137 4.2.3 Discussion 147 Summary of Results - Chapter Four 151 CHAPTER FIVE 152 EFFECT OF GIP ON THE RAT ADIPOCYTE 5.0.0 Introduction 153 5.1.0 Role of i.p. GIP in the Clearance of i.p. Intralipid from the Plasma of the Rat 157 5.1.1 Methods 157 5.1.2 Results 158 5.1.3 Discussion 163 VIII 5.2.0 Role of Exogenous GIP in the Clearance of i.v. Intralipid in the Rat 165 5.2.1 Methods 166 5.2.2 Results 167 5.2.3 Discussion 171 5.3.0 Effect of Anti-GIP Antibodies on the Clearance of Plasma Triglyceride Following Oral Triolein in Rats 174 5.3.1 Methods 174 5.3.2 Results 175 5.3.3 Discussion 180 Summary of Results - Chapter Five 182 CHAPTER SIX THE ROLE OF GIP IN THE DIFFERENTIAL INSULIN RESPONSES TO ORAL AND INTRAVENOUS GLUCOSE IN THE TRANSPLANTABLE RAT INSULINOMA 183 6.1.0 Introduction 184 6.1.1 Methods 185 6.1.2 Results 187 6.1.3 Discussion 194 Summary of Results - Chapter Six 196 CHAPTER SEVEN 197 THE ROLE OF ENDOGENOUS CARBOHYDRATE-STIMULATED IR-GIP IN THE REMOVAL OF EXOGENOUS TRIGLYCERIDE IN MAN 7.1.0 Introduction 198 IX 7.1.1 Methods 200 7.1.2 Results 201 7.1.3 Discussion 210 Summary of Ressults — Chapter Seven 212 CHAPTER EIGHT 213 IMMUNOREACTIVE GASTRIC INHIBITORY POLYPEPTIDE (IR-GIP) IN OBESE (ob/ob) MICE 8.0.0 Introduction 214 8.1.0 Immunoreactlve Gastric Inhibitory Polypeptide (IR-GIP) in the Plasma and Small Intestine of the Obese Hyperglycaemic Mouse 216 8.1.1 Methods 216 8.1.2 Results 217 8.1.3 Discussion 220 8.2.0 Involvement of GIP and the Enteroinsular Axis in the Metabolic Abnormlities of the Obese Hyperglycaemic (ob/ob) Mouse 221 8.2.1 Methods 222 8.2.2 Results 225 8.2.3 Discussion 236 8.3.0 Effect of Chain-length and S^uration in Fatty Acid Stimulated IR-GIP Release in the Obese Hyperglycaemic (ob/bo) Mouse 239 8.3.1 Methods 239 8.3.2 Results 241 8.3.3 Discussion 246 Summary of Results - Chapter Eight 249 CHAPTER NINE 250 FINAL DISCUSSION AND FUTURE WORK 9.1.1 The Enteroinsular Axis 251 9.1.2 The Release of IR-GIP 256 9.1.3 The Enteroadipose Axis 257 9.1.4 Other Future Lines of Research 258 REFERENCES 263 PUBLICATIONS 280 XI CHAPTER ONE GENERAL INTRODUCTION paqe 1 1.1.0 General Background 1.1.1 Historical The physiology, origin, chemistry, pharmacology and clinical aspects of gastrointestinal hormones, or gut hormones as they have been more succinctly labelled, has become one of the most rapidly expanding and interesting fields in contemporary endocrinology and gastroendocrinology. One of the more eloquent pictures of the ever growing field of gut hormones was painted by G.B.J. Glass. "Tbis territory is reminiscent of a subtropical forest full of proud and established trees, jungle-like bushes inter-woven with each other, beautiful flowers not yet classified in the Linnaen code, and also frail and weak growths struggling for survival.
Recommended publications
  • Amylase Release from Rat Parotid Gland Slices C.L
    Br. J. P!harmnic. (1981) 73, 517-523 THE EFFECTS OF SUBSTANCE P AND RELATED PEPTIDES ON a- AMYLASE RELEASE FROM RAT PAROTID GLAND SLICES C.L. BROWN & M.R. HANLEY MRC Neurochemical Pharmacology Unit, Medical Research Council Centre, Medical School, Hills Road, Cambridge CB2 2QH 1 The effects of substance P and related peptides on amylase release from rat parotid gland slices have been investigated. 2 Supramaximal concentrations (1 F.M) of substance P caused enhancement of amylase release over the basal level within 1 min; this lasted for at least 40 min at 30°C. 3 Substance P-stimulated amylase release was partially dependent on extracellular calcium and could be inhibited by 50% upon removal of extracellular calcium. 4 Substance P stimulated amylase release in a dose-dependent manner with an ED50 of 18 nm. 5 All C-terminal fragments of substance P were less potent than substance P in stimulating amylase release. The C-terminal hexapeptide of substance P was the minimum structure for potent activity in this system, having 1/3 to 1/8 the potency of substance P. There was a dramatic drop in potency for the C-terminal pentapeptide of substance P or substance P free acid. Physalaemin was more potent than substance P (ED50 = 7 nM), eledoisin was about equipotent with substance P (ED5o = 17 nM), and kassinin less potent than substance P (ED50 = 150 nM). 6 The structure-activity profile observed is very similar to that for stimulation of salivation in vivo, indicating that the same receptors are involved in mediating these responses.
    [Show full text]
  • V·M·I University Microfilms International a Bell & Howell Information Company 300 North Zeeb Road, Ann Arbor
    Characterization of the cloned neurokinin A receptor transfected in murine fibroblasts Item Type text; Dissertation-Reproduction (electronic) Authors Henderson, Alden Keith. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 27/09/2021 18:29:56 Link to Item http://hdl.handle.net/10150/185828 1/. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note. will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy.
    [Show full text]
  • A 0.70% E 0.80% Is 0.90%
    US 20080317666A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2008/0317666 A1 Fattal et al. (43) Pub. Date: Dec. 25, 2008 (54) COLONIC DELIVERY OF ACTIVE AGENTS Publication Classification (51) Int. Cl. (76) Inventors: Elias Fattal, Paris (FR); Antoine A6IR 9/00 (2006.01) Andremont, Malakoff (FR); A61R 49/00 (2006.01) Patrick Couvreur, A6II 5L/12 (2006.01) Villebon-sur-Yvette (FR); Sandrine A6IPI/00 (2006.01) Bourgeois, Lyon (FR) (52) U.S. Cl. .......................... 424/1.11; 424/423; 424/9.1 (57) ABSTRACT Correspondence Address: Drug delivery devices that are orally administered, and that David S. Bradlin release active ingredients in the colon, are disclosed. In one Womble Carlyle Sandridge & Rice embodiment, the active ingredients are those that inactivate P.O.BOX 7037 antibiotics, such as macrollides, quinolones and beta-lactam Atlanta, GA 30359-0037 (US) containing antibiotics. One example of a Suitable active agent is an enzyme Such as beta-lactamases. In another embodi ment, the active agents are those that specifically treat colonic (21) Appl. No.: 11/628,832 disorders, such as Chrohn's Disease, irritable bowel syn drome, ulcerative colitis, colorectal cancer or constipation. (22) PCT Filed: Feb. 9, 2006 The drug delivery devices are in the form of beads of pectin, crosslinked with calcium and reticulated with polyethylene imine. The high crosslink density of the polyethyleneimine is (86). PCT No.: PCT/GBO6/OO448 believed to stabilize the pectin beads for a sufficient amount of time such that a Substantial amount of the active ingredi S371 (c)(1), ents can be administered directly to the colon.
    [Show full text]
  • 251-Bolton-Hunter- Labeled Substance P Binding Sites in Rat Spinal Cord’
    0270.6474/65/0505-1293$02.00/O The Journal of Neuroscience Copyright 0 Society for Neuroscience Vol. 5, No. 5, pp. 1293-1299 Printed in U.S.A. May 1985 Characterization and Segmental Distribution of ‘251-Bolton-Hunter- labeled Substance P Binding Sites in Rat Spinal Cord’ CLIVEL G. CHARLTON’ AND CINDA J. HELKE Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814 Abstract al., 1982) are two sources for SP in the ventral horn. The nucleus interfascicularis hypoglossi also supplies SP-containing nerve termi- Substance P (SP) is widely distributed in the spinal cord nals to the IML cells of origin for autonomic preganglion fibers (Helke and has been implicated as a neurotransmitter in several et al., 1982). spinal cord neuronal systems. To investigate SP receptors in Functional studies support the concept of a neurotransmOitter role the spinal cord, 1251-Bolton-Hunter-SP (‘*‘I-BH-SP) was used for SP in the spinal cord. Nociception (Piercey et al., 1981; Akerman to identify and characterize spinal cord binding sites for the et al., 1982; Fasmer and Post, 1983) motor control (Otsuka and peptide. The binding of ‘*%BH-SP had the following charac- Konishi, 1977; Yanagisawa et al., 1982) and certain autonomic teristics: high affinity; time, temperature, and membrane con- functions (Loewy and Sawyer, 1982; Keeler and Helke, 1984) are centration dependent; reversible; and saturable. The KS0 of modulated by spinal cord SP. In addition, SP receptors in the spinal SP in whole spinal cord was 0.46 nM as compared with 0.95, cord have been demonstrated by iontophoretic studies in which SP 60, and 150 nM for physalaemin, eledoisin, and kassinin.
    [Show full text]
  • The Significance of NK1 Receptor Ligands and Their Application In
    pharmaceutics Review The Significance of NK1 Receptor Ligands and Their Application in Targeted Radionuclide Tumour Therapy Agnieszka Majkowska-Pilip * , Paweł Krzysztof Halik and Ewa Gniazdowska Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland * Correspondence: [email protected]; Tel.: +48-22-504-10-11 Received: 7 June 2019; Accepted: 16 August 2019; Published: 1 September 2019 Abstract: To date, our understanding of the Substance P (SP) and neurokinin 1 receptor (NK1R) system shows intricate relations between human physiology and disease occurrence or progression. Within the oncological field, overexpression of NK1R and this SP/NK1R system have been implicated in cancer cell progression and poor overall prognosis. This review focuses on providing an update on the current state of knowledge around the wide spectrum of NK1R ligands and applications of radioligands as radiopharmaceuticals. In this review, data concerning both the chemical and biological aspects of peptide and nonpeptide ligands as agonists or antagonists in classical and nuclear medicine, are presented and discussed. However, the research presented here is primarily focused on NK1R nonpeptide antagonistic ligands and the potential application of SP/NK1R system in targeted radionuclide tumour therapy. Keywords: neurokinin 1 receptor; Substance P; SP analogues; NK1R antagonists; targeted therapy; radioligands; tumour therapy; PET imaging 1. Introduction Neurokinin 1 receptor (NK1R), also known as tachykinin receptor 1 (TACR1), belongs to the tachykinin receptor subfamily of G protein-coupled receptors (GPCRs), also called seven-transmembrane domain receptors (Figure1)[ 1–3]. The human NK1 receptor structure [4] is available in Protein Data Bank (6E59).
    [Show full text]
  • Targeting the Vasopressin Type 2 Receptor for Renal Cell Carcinoma Therapy
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Oncogene Manuscript Author . Author manuscript; Manuscript Author available in PMC 2020 April 15. Published in final edited form as: Oncogene. 2020 February ; 39(6): 1231–1245. doi:10.1038/s41388-019-1059-0. Targeting the Vasopressin Type 2 Receptor for Renal Cell Carcinoma Therapy Sonali Sinhaa,b, Nidhi Dwivedia,b, Shixin Taoa,b, Abeda Jamadara,b, Vijayakumar R Kakadea,b, Maura O’Neilc, Robert H Weissd,e, Jonathan Endersf, James P Calveta,h,i, Sufi M Thomasg,i, Reena Raoa,b,i aThe Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City,KS. bDepartment of Internal Medicine, University of Kansas Medical Center, Kansas City, KS. cDepartment of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS. dDivision of Nephrology and Comprehensive Cancer Center, University of California, Davis, CA. eMedical Service, VA Northern California Health Care System, Sacramento, CA. fDepartment of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS. gDepartment of Otolaryngology, University of Kansas Medical Center, Kansas City, KS. hDepartment of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS. iDepartment of Cancer Biology, University of Kansas Medical Center, Kansas City, KS. Abstract Arginine vasopressin (AVP) and its type-2 receptor (V2R) play an essential role in the regulation of salt and water homeostasis by the kidneys. V2R activation also stimulates proliferation of renal cell carcinoma (RCC) cell lines in vitro. The current studies investigated V2R expression and activity in human RCC tumors, and its role in RCC tumor growth.
    [Show full text]
  • Occurrence of Bombesin and Alytesin in Extracts of the Skin of Three
    Br. J. Pharmac. (1972), 45, 333-348. Occurrence of bombesin and alytesin in extracts of the skin of three European discoglossid frogs and pharmacological actions of bombesin on extravascular smooth muscle V. ERSPAMER, G. FALCONIERI ERSPAMER, M. INSELVINI AND L. NEGRI Institute of Medical Pharmacology I, University of Rome, Rome, Italy Summary 1. Methanol extracts of the skin of Bombina bombina and Bombina variegata variegata, two European discoglossid frogs, contain an active tetradecapeptide, bombesin. Alytesin, a tetradecapeptide strictly related to bombesin is present in extracts of the skin of Alytes obstetricans, another European discoglossid frog. The American frog Rana pipiens, contains in its skin ranatensin, an endecapeptide related to bombesin and alytesin. 2. Passage of crude skin extracts of Bombina through a column of alumina yields eluates which may be considered free of other peptide contaminants and are suitable for the isolation of bombesin in a pure form. 3. Bombesin has a stimulant action on several preparations of intestinal, uterine and urinary tract smooth muscle. Sometimes the effect is easily repeatable and shows a fair proportionality to the dose, but at other times a prompt and intense tachyphylaxis is observed. Other smooth muscle prepara- tions are poorly sensitive or insensitive to bombesin. The rat uterus, the kitten small intestine, the guinea-pig colon and the rat urinary bladder may be used for the quantitative bioassay of bombesin. 4. Bombesin-like peptides may easily be distinguished from all other naturally occurring peptides by parallel assay. They constitute a new group of active peptides possessing a peculiar spectrum of activity. Introduction Methanol extracts of the skin of the two European discoglossid frogs Bombina bombina and Bombina variegata variegata contain a principle which displays a number of pharmacological actions on vascular and extravascular smooth muscle and on gastric secretion (Erspamer, Falconieri Erspamer & Inselvini, 1970; Melchiorri, Sopranzi & Erspamer, 1971).
    [Show full text]
  • And Substance P and Dumping SEIKI ITO, YOICHI IWASAKI, TAKESHI
    Tohoku J. exp. Med., 1981, 135, 11-21 Neurotensin and Substance P and Dumping Syndrome SEIKI ITO, YOICHI IWASAKI,TAKESHI MOMOTSU, KATSUMI TAKAI,AKIRA SHIBATA, YOICHI MATSUBARA* and TERUKAZU MUTO* The First Department of Internal Medicine and * the First Department of Surgery, Niigata University School of Medicine, Niigata 95.E ITO, S., IWASAKI, Y., MOMOTSU, T., TAKAI, K., SHIBATA, A., MATSUBARA, Y, and MUTO, T. Neurotensin and Substance P and Dumping Syndrome. Tohoku J. exp. Med., 1981, 135 (1), 11-21 To investigste the pathophysiologi- cal relation between releases of gut hormones and dumping syndrome, plasma radioimmunoassayable neurotesin, substance P, glucagon-like immunoreactivity (GLI), insulin and blood sugar were measured in both gastrectomized patients and control subjects after 50 g oral glucose tolerance tests. Remarkable rises of radioimmunoassayable neurotesin and GLI were found in all gastrectomized patients, but not in control subjects. In contrast, plasma radioimmunoassayable substance P responses were not detected in either gastrectomized patients or control subjects. There were three patients with symptoms of dumping syndrome in the early stage of the test. Plasma radioimmunoassayable neurotensin responses in two out of these three were higher than those in other patients, though the other patient with symptoms had the same degree of neurotensin elevation as patients with no symptoms. In view of the pharmacological effects of neurotensin, it could not be ruled out that a part of the early symptoms of dumping syndrome
    [Show full text]
  • Biologically Active Peptides from Australian Amphibians
    Biologically Active Peptides from Australian Amphibians _________________________________ A thesis submitted for the Degree of Doctor of Philosophy by Rebecca Jo Jackway B. Sc. (Biomed.) (Hons.) from the Department of Chemistry, The University of Adelaide August, 2008 Chapter 6 Amphibian Neuropeptides 6.1 Introduction 6.1.1 Amphibian Neuropeptides The identification and characterisation of neuropeptides in amphibians has provided invaluable understanding of not only amphibian ecology and physiology but also of mammalian physiology. In the 1960’s Erspamer demonstrated that a variety of the peptides isolated from amphibian skin secretions were homologous to mammalian neurotransmitters and hormones (reviewed in [10]). Erspamer postulated that every amphibian neuropeptide would have a mammalian counterpart and as a result several were subsequently identified. For example, the discovery of amphibian bombesins lead to their identification in the GI tract and brain of mammals [394]. Neuropeptides form an integral part of an animal’s defence and can assist in regulation of dermal physiology. Neuropeptides can be defined as peptidergic neurotransmitters that are produced by neurons, and can influence the immune response [395], display activities in the CNS and have various other endocrine functions [10]. Generally, neuropeptides exert their biological effects through interactions with G protein-coupled receptors distributed throughout the CNS and periphery and can affect varied activities depending on tissue type. As a result, these peptides have biological significance with possible application to medical sciences. Neuropeptides isolated from amphibians will be discussed in this chapter, with emphasis on the investigation into the biological activity of peptides isolated from several Litoria and Crinia species. Many neurotransmitters and hormones active in the CNS are ubiquitous among all vertebrates, however, active neuropeptides from amphibian skin have limited distributions and are unique to a restricted number of species.
    [Show full text]
  • Human Lung Small-Cell Carcinoma Contains Bombesin (Radioimmunoassay/Immunohistochemistry/Peptide Hormones/High-Performance Liquid Chromatography) MICHAEL D
    Proc. Nati Acad. Sci. USA Vol. 79, pp. 2379-2383, April 1982 Medical Sciences Human lung small-cell carcinoma contains bombesin (radioimmunoassay/immunohistochemistry/peptide hormones/high-performance liquid chromatography) MICHAEL D. ERISMAN*t, R. ILONA LINNOILA*t, OSCAR HERNANDEZ§, RICHARD P. DiAUGUSTINE*, AND LAWRENCE H. LAZARUS*¶ *Laboratory of Pulmonary Function and Toxicology, and §Laboratory of Environmental Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709 Communicated by George H. Hitchings, December 18, 1981 ABSTRACT The presence of immunoreactive bombesin in a tide in the tumor, (ii) its quantitation in extracts by radioim- human lung small-cell carcinoma grown in nude mice was estab- munoassay, and (iii) analysis by gel-filtration chromatography lished by several criteria: (i) Radioimmunoassay of tissue extracts and reverse-phase HPLC. for bombesin revealed approximately 6.5 pmol/g of tissue; (ii) bombesin was found in 12-14% of the tumor cells by immuno- histochemical localization; (iii) gel filtration ofsmall-cell carcinoma MATERIALS AND METHODS extract on Sephadex G-75 and Bio-Gel P-4 gave only a single peak Tumor. A SCC resected from a 51-year-old man with few ofimmunoreactivity, which occurred at the elution volume ofbom- apparent clinical endocrinopathies was propagated subcutane- besin; and (iv) reverse-phase HPLC of acid-solubilized extracts ously in athymic (nude) mice by Reid et al. (22) and generously separated the immunoreactive material into three discrete peaks, supplied by G. Sato (University of California, San Diego). Tu- one of which eluted with a retention time identical to that of syn- mors from two separate passages were analyzed separately.
    [Show full text]
  • Neurophaema.Cological Studies on the Interactions of Some Putative Peptide Transmitters with the Nigrostriatal and Mesolimbic Dopamine Systems
    NEUROPHAEMA.COLOGICAL STUDIES ON THE INTERACTIONS OF SOME PUTATIVE PEPTIDE TRANSMITTERS WITH THE NIGROSTRIATAL AND MESOLIMBIC DOPAMINE SYSTEMS by Robert Denham Pinnock B.Sc. A thesis submitted in support of the Degree of Doctor of Philosophy of the University of Southampton. September, 198O. INDEX ABSTRACT (iv) ACKNOWLEDGEMENTS (v) ABBREVIATIONS ( CHAPTER ONE. INTRODUCTION 1. Substance P 1 1.1. Isolation and structure 1 1.2. Distribution of substance P in the brain 1 1.3. Structure activity studies in peripheral preparations 1 1.4. Structure activity relationships in the CNS 2 1.5. Metabolism of substance P 3 1.6. Mechanism of action 4 1.7. Possible role of substance P in the CNS 5 2. Melanocyte stimulating hormone release inhibitory factor (MIF) 8 2.1. General pharmacology of MIF 8 2.2. Interactions of MSH and MIF with dopamine 8 3 Thyrotropin releasing hormone (TRH) 12 3.1. General pharmacology of TRH 12 3.2. TRH in the CNS 12 k. Opioid peptides I6 4.1. Opioid peptides in the CNS 16 U.2. Interactions between dopamine and opiates I6 5. Dopamine 19 5.1. Dopamine, distribution and pathways in the CNS 19 5.2. Biochemistry of dopamine release, receptor binding and postsynaptic actions I9 5.3. lontophoretic dopamine pharmacology in the caudate nucleus and nucleus accumbens 20 5.4. Effect of drugs on the cell bodies of the nigro striatal tract 21 5.5. Electrophysiology of tlie mesolimbic and nigrostriatal pathways " • . 22 1.5.6. Behavioural effects of dopamine 23 (i) CHAPTER TWO. METHODS 2.1. Electrophysiology 27 2.1.1.
    [Show full text]
  • Substance P Parameter Assay
    ParameterTM Substance P Assay Catalog Number KGE007 Catalog Number SKGE007 Catalog Number PKGE007 For the quantitative determination of Substance P in cell culture supernates, serum, plasma, saliva, and urine. This package insert must be read in its entirety before using this product. For research use only. Not for use in diagnostic procedures. TABLE OF CONTENTS SECTION PAGE INTRODUCTION ....................................................................................................................................................................1 PRINCIPLE OF THE ASSAY ..................................................................................................................................................2 LIMITATIONS OF THE PROCEDURE ................................................................................................................................2 TECHNICAL HINTS ................................................................................................................................................................3 PRECAUTIONS ........................................................................................................................................................................3 MATERIALS PROVIDED & STORAGE CONDITIONS ..................................................................................................4 PHARMPAK CONTENTS ......................................................................................................................................................5 OTHER
    [Show full text]