Acrylamide Concentration Determines the Direction and Magnitude of Helical Membrane Protein Gel Shifts

Total Page:16

File Type:pdf, Size:1020Kb

Acrylamide Concentration Determines the Direction and Magnitude of Helical Membrane Protein Gel Shifts Acrylamide concentration determines the direction and magnitude of helical membrane protein gel shifts Arianna Ratha, Fiona Cunninghama,b,1, and Charles M. Debera,b,2 aDivision of Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8; and bDepartment of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8 Edited by David A. Weitz, Harvard University, Cambridge, MA, and approved August 16, 2013 (received for review June 13, 2013) SDS/PAGE is universally used in biochemistry, cell biology, and (5)]. Larger particles become trapped within the gel meshwork immunology to resolve minute protein amounts readily from and migrate slower than smaller species. Low-percentage gels tissue and cell extracts. Although molecular weights of water- are therefore typically used to resolve larger proteins, and vice soluble proteins are reliably determined from their SDS/PAGE versa. Acrylamide concentrations compatible with routine use mobility, most helical membrane proteins, which comprise 20–30% are usually from 4–20% T due to practical considerations, of the human genome and the majority of drug targets, migrate to because gels outside of this range are too fragile or too brittle, positions that have for decades been unpredictably slower or respectively, to withstand the physical manipulation(s) required faster than their actual formula weight, often confounding their for protein visualization and/or immunoblotting. identification. Using de novo designed transmembrane-mimetic Most globular, water-soluble proteins are reliably identified by polypeptides that match the composition of helical membrane- their SDS/PAGE mobility relative to corresponding reference spanning sequences, we quantitate anomalous SDS/PAGE frac- proteins typically used to estimate molecular weight. However, tionation of helical membrane proteins by comparing the relative this group of well-behaved polypeptides does not include helical mobilities of these polypeptides with typical water-soluble refer- transmembrane (TM) proteins, macromolecules that comprise fi ence proteins on Laemmli gels. We nd that both the net charge 20–30% of the human genome (6), comprise the majority of drug and effective molecular size of the migrating particles of trans- targets (7), and are the focus of major pharmaceutical discovery membrane-mimetic species exceed those of the corresponding ref- efforts (8). For example, the first true G protein-coupled re- erence proteins and that gel acrylamide concentration dictates the ceptor to be determined to high resolution, 39-kDa bovine impact of these two factors on the direction and magnitude of rhodopsin (9), migrates on SDS/PAGE to positions consistent anomalous migration. Algorithms we derived from these data with sizes as low as 30 kDa (10). In fact, we have previously compensate for this differential effect of acrylamide concentration shown that the gel mobility of helical TM proteins seldom cor- on the SDS/PAGE mobility of a variety of natural membrane pro- responds to formula molecular weight (11). This phenomenon of teins. Our results provide a unique means to predict anomalous “anomalous migration” can arise as a consequence of the high migration of membrane proteins, thereby facilitating straightfor- hydrophobicity and concomitant binding of DS by TM proteins ward determination of their molecular weights via SDS/PAGE. at levels that exceed those of water-soluble polypeptides (12). fi However, quantitation of DS binding stoichiometry is not rou- gel mobility | protein migration | protein identi cation | apparent size | fi immunoblotting tine and consumes milligram amounts of puri ed samples. Thus, the impact of enhanced DS binding on the direction and mag- ’ nitude of anomalous migration has remained unpredictable for aemmli s system for polyacrylamide gel protein electropho- decades, with helical TM proteins variously exhibiting gel mo- Lresis in the presence of the detergent SDS (SDS/PAGE) is bility reduced, equivalent, or increased relative to reference one of the most cited methodological papers in life sciences (1). proteins (11–13). Such differences are generally disregarded when The facility with which SDS/PAGE resolves minute amounts of proteins revolutionized the analysis of tissue and cell extracts, Significance resulting in “overnight” adoption of the technique in biochemistry, cell biology, immunology, and virology (2). Considered “the single most useful analytical tool to study protein molecules” (3), SDS/ SDS/PAGE is a protein analysis technique universally used in PAGE is routinely used for simultaneous determination of protein biochemistry, cell biology, immunology, and virology, where heterogeneity and molecular weight in applications ranging from proteins are separated by size on a gel matrix of poly- acrylamide. However, most helical membrane proteins, which diagnosis of hereditary red cell membrane disorders to evaluation – of recombinant protein expression and purification procedures. are biomolecules that comprise 20 30% of genomes and the Protein analysis by SDS/PAGE is relatively simple, affordable, and majority of drug targets, migrate to positions on SDS/PAGE that have for decades been unpredictably larger or smaller rapid (4): A buffer containing a tracking dye and SDS is added to than their actual size. We have found that the magnitude and the sample of interest, the mixture is applied to a polyacrylamide direction of migration among membrane protein mimetics are gel, and a potential difference is used to drive the dye and the controlled by the acrylamide concentration in the gel. Our resulting anionic particle composed of protein and dodecyl sulfate results facilitate straightforward SDS/PAGE analysis of these (DS) through the gel. The distance traveled by the protein/DS important biomolecules. particle from the top of the gel is then divided by that of the dye to obtain relative migration (Rf), and molecular weight [as Author contributions: A.R. and C.M.D. designed research; A.R. and F.C. performed re- relative molecular mass (Mr)] determined by comparison of this search; A.R. contributed new reagents/analytic tools; A.R. and C.M.D. analyzed data; and A.R. and C.M.D. wrote the paper. value with a logarithmic plot derived from the RfsandMrsof reference proteins. The authors declare no conflict of interest. Fractionation on SDS/PAGE is controlled by the molecular This article is a PNAS Direct Submission. size and shape of the protein/DS particle, its net charge, and the 1Present address: Mitacs, York University, Toronto, ON, Canada M3J 1P3. accessible spaces among the acrylamide fibers that comprise 2To whom correspondence should be addressed. E-mail: [email protected]. the gel matrix as determined by the total concentration of acryl- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. amide and bis-acrylamide cross-linker [T; Materials and Methods 1073/pnas.1311305110/-/DCSupplemental. 15668–15673 | PNAS | September 24, 2013 | vol. 110 | no. 39 www.pnas.org/cgi/doi/10.1073/pnas.1311305110 Downloaded by guest on September 28, 2021 protein identity is known or can be confirmed in orthogonal the Tris-glycine system) were selected for the present work molecular weight determination procedures but, in many in- because they are used in the majority of determinations of pro- stances, raise questions of protein folding, oligomeric organiza- tein complexity and molecular weight (16), and are used most tion, proteolytic processing, posttranslational modification(s), often among reported systems in our database of helical TM alternative splicing, antibody cross-reaction, and/or degradation. protein SDS/PAGE mobilities (11) (SI Materials and Methods). These issues become acute in SDS/PAGE analyses of tissue or Gels using these buffers at >10% T resolve reference proteins in cell extracts, where reasonable molecular weight estimates re- the range of ≥14–200 kDa, whereas those with ≥14% T frac- main crucial for protein identification. tionate species ≥3.5 kDa (Mark12 Unstained Standard on Life Here, we quantitate anomalous SDS/PAGE fractionation of Technologies Novex Tris-Glycine Gel SDS/PAGE Migration helical membrane proteins by comparing the relative mobilities Charts, www.invitrogen.com). Given that our TM-mimetics en- of de novo designed TM-mimetic peptide polymers with typical compass the range from 3.5–41 kDa (13), we accordingly chose water-soluble reference proteins on Laemmli gels ranging from to analyze SDS/PAGE migration behavior on gels of 11–18% T, 11–18% T. We find that net charge and effective molecular size in 1% T intervals. among the migrating TM-mimetic species exceed those of the corresponding reference proteins and that gel acrylamide con- Gel Mobility of TM-Mimetics Relative to Reference Proteins Changes centration dictates the impact of these two factors on the direction with Acrylamide Concentration. The set of TM protein mimetics and magnitude of anomalous migration. Algorithms derived from we designed and prepared are polymers of a peptide with the “ ” these data compensate for the differential effect of acrylamide core sequence NH2-SKSKS-Leu20-SKSKS-NH2, termed pL20 concentration on the SDS/PAGE mobility of a variety of natural (13). The average length, high hydrophobicity, and abundance of membrane proteins. Our results provide a straightforward means Leu in natural membrane-spanning regions are recapitulated in to predict anomalous migration of membrane proteins relative to the 20-Leu segment of pL20,
Recommended publications
  • Acrylamide in Nutrition Ayşegül Çebi* Health Sciences and Food Engineering Deparment, Giresun University, Turkey
    ition & F tr oo u d N f S o c Çebi, J Nutr Food Sci 2018, 8:2 l i e a n n r c DOI: 10.4172/2155-9600.1000e141 e u s o J Journal of Nutrition & Food Sciences ISSN: 2155-9600 Editorial Open Access Acrylamide in Nutrition Ayşegül Çebi* Health Sciences and Food Engineering Deparment, Giresun University, Turkey Introduction Acrylamide was classified as probable carcinogen (2A group) by International Agency for Research on Cancer [6]. Experimental animal Acrylamide is formed in certain types of food during the thermal studies showed that acrylamide has neurotoxic effects [7]. Acrylamide process by the Maillard reaction which asparagine, a non-essential could be toxic chemical for human body when it has been taken at the amino acid for human, reacts with reducing sugar at temperatures high levels [8]. It is converted to glycidamid which is reactive by CYP2E ° above 120 C [1]. Swedish scientists have carried out extensive studies to in human metabolism. The average acrylamide intake was estimated to elucidate the acrylamide formation machanism in some foods cooked be 0.3-0.8 μg/kg body-weight/day for human [9]. at high temperatures in 2002 [1,2]. Later, numerous scientific studies References continued to elucidate the mechanisms of acrylamide formation. Some cooking methods such as baking, frying and overcooking etc. 1. Stadler RH, Blank I, Varga N, Robert F, Hau J, et al. (2002) Acrylamide from Maillard reaction products. Nature 419: 449-450. produce acrylamide in foods. However, boiling is not a way to produce acrylamide in food.
    [Show full text]
  • ITER Peer Review on Acrolein, Acrylamide, & Acrylonitrile Meeting
    ITER Peer Review on Acrolein, Acrylamide, & Acrylonitrile Meeting Summary November 16 and 17, 1998 University of Cincinnati, College of Medicine Cincinnati, Ohio USA An independent panel of expert scientists and risk assessors met on November 16 and 17 to review risk assessment documents on acrolein, acrylamide, and acrylonitrile. This meeting was conducted by Toxicology Excellence for Risk Assessment (TERA); a non- profit organization dedicated to the best use of toxicity data in risk assessment. Expert peer reviewers donated their time and talents to provide an independent review of the assessments. A comprehensive overall review of the materials was provided by the combined experience of all the reviewers. TERA developed the acrylamide document that was reviewed at this meeting. In addition, TERA has written an inhalation cancer assessment on acrylonitrile, which was approved by an ITER panel and is now available on the ITER database. Therefore, to avoid conflict of interest, TERA staff did not select the reviewers for this meeting. Ms. Jennifer Orme- Zavaleta, a TERA Trustee, selected reviewers to provide appropriate expertise and a balance of organizational affiliation. Ms. Orme-Zavaleta chaired the acrylonitrile session and Ms. Bette Meek of Health Canada chaired the acrylamide session. At the beginning of each chemical’s discussion, the panel considered conflict of interest. Prior to the meeting, each reviewer either identified the potential for conflicts, or certified that he or she did not have a real or apparent conflict of interest associated with the chemical under review or the sponsor. ITER staff discussed possible conflicts with the reviewers and Ms. Orme-Zavaleta to determine if measures were needed to manage a potential conflict or appearance of conflict.
    [Show full text]
  • Evaluation of Asparagine Concentration As an Indicator of the Acrylamide Formation in Cereals Grown Under Organic Farming Conditions
    agronomy Article Evaluation of Asparagine Concentration as an Indicator of the Acrylamide Formation in Cereals Grown under Organic Farming Conditions Falko Stockmann 1,* , Ernst Albrecht Weber 1, Benjamin Mast 1, Pat Schreiter 2, Nikolaus Merkt 1, Wilhelm Claupein 1 and Simone Graeff-Hönninger 1 1 Institute of crop science, University of Hohenheim, D-70599 Stuttgart, Germany; [email protected] (E.A.W.); [email protected] (B.M.); [email protected] (N.M.); [email protected] (W.C.); [email protected] (S.G.-H.) 2 Chemisches und Veterinäruntersuchungsamt Stuttgart, Schaflandstraße 3/2, D-70736 Fellbach, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-942-080-10239 Received: 22 October 2018; Accepted: 4 December 2018; Published: 6 December 2018 Abstract: This study investigated the impact of organically grown cereals on the level of free asparagine (Asn) with simultaneous consideration of grain yields and flour qualities over three growing seasons in Germany. Additionally, the relation of free Asn and acrylamide (AA) was investigated. By including free Asn results of a second trial site, heritability of the trait free Asn was calculated. Free Asn was significantly influenced by species and within species by cultivars. Rye showed the highest free Asn amount, followed by einkorn, emmer, wheat, and spelt. Replacing rye with spelt would reduce free Asn by 85%. Cultivars differed in free Asn by up to 67% (wheat), 55% (spelt), and 33% (rye). Year significantly influenced free Asn levels. Heritability was high for wheat and spelt concerning locations, but regarding years, heritability was low for wheat but high for spelt and rye.
    [Show full text]
  • Acrylonitrile
    Acrylonitrile 107-13-1 Hazard Summary Exposure to acrylonitrile is primarily occupational: it is used in the manufacture of acrylic acid and modacrylic fibers. Acute (short-term) exposure of workers to acrylonitrile has been observed to cause mucous membrane irritation, headaches, dizziness, and nausea. No information is available on the reproductive or developmental effects of acrylonitrile in humans. Based on limited evidence in humans and evidence in rats, EPA has classified acrylonitrile as a probable human carcinogen (Group B1). Please Note: The main sources of information for this fact sheet are EPA's Integrated Risk Information System (IRIS) (4), which contains information on inhalation chronic toxicity of acrylonitrile and the RfC and the carcinogenic effects of acrylonitrile including the unit cancer risk for inhalation exposure, EPA's Health Effects Assessment for Acrylonitrile (6), and the Agency for Toxic Substances and Disease Registry's (ATSDR's) Toxicological Profile for Acrylonitrile (1). Uses Acrylonitrile is primarily used in the manufacture of acrylic and modacrylic fibers. It is also used as a raw material in the manufacture of plastics (acrylonitrile-butadiene-styrene and styrene-acrylonitrile resins), adiponitrile, acrylamide, and nitrile rubbers and barrier resins. (1,6) Sources and Potential Exposure Human exposure to acrylonitrile appears to be primarily occupational, via inhalation. (1) Acrylonitrile may be released to the ambient air during its manufacture and use. (1) Assessing Personal Exposure Acrylonitrile
    [Show full text]
  • Trade Guidelines on Reducing Acrylamide in Food
    f Purpose This set of guidelines provides recommendations to help the trade minimise the formation of acrylamide in food, especially potato and cereal based products, and stir-fried vegetables, with reference to the Codex Code of Practice for the Reduction of Acrylamide in Foods (CAC/RCP 67-2009) and the findings of the First Hong Kong Total Diet Study. The Guidelines is applicable to all manufacturers and caterers, in particular those producing high temperature processed potato and/or cereal based products and serving stir-fried vegetables. Background Acrylamide is an industrial chemical used in the manufacture of polyacrylamides. In 2002, studies conducted in Sweden for the first time found that relatively high levels of acrylamide are present in a variety of fried and baked carbohydrate-rich foods. Following to the discovery of acrylamide in food, many food authorities including the Centre for Food Safety (CFS) have analysed the acrylamide level in different foods. The studies conducted by the CFS showed that relatively high level of acrylamide was present in some high temperature processed potato products such as potato chips, cereal products such as biscuits, as well as some stir-fried vegetables (Table 1). Moreover, the First Hong Kong Total Diet Study on acrylamide revealed that stir-fried vegetables were found to be the major sources of acrylamide exposure of the local population. Table 1: Acrylamide levels found in some local food Food items Acrylamide level range (μg/kg) Potato chips 160 – 3 000 Other crisps <3 – 480 French fries and waffle fries 74 – 890 Baked potatoes 15 – 160 Biscuits 32 – 2 100 Breakfast cereals 29 – 460 Stir-fried vegetables 1– 360 Toxicity of acrylamide The adverse effects of acrylamide on the nervous system in humans following high occupational and accidental exposures are well-documented.
    [Show full text]
  • Synthesis, Characterization and Rheological Behavior of Ph Sensitive Poly(Acrylamide-Co-Acrylic Acid) Hydrogels
    Arabian Journal of Chemistry (2013) xxx, xxx–xxx King Saud University Arabian Journal of Chemistry www.ksu.edu.sa www.sciencedirect.com ORIGINAL ARTICLE Synthesis, characterization and rheological behavior of pH sensitive poly(acrylamide-co-acrylic acid) hydrogels Seddiki Nesrinne, Aliouche Djamel * Laboratory of Polymers Treatment and Forming, F.S.I., M’Hamed Bougara University, Boumerdes 35000, Algeria Received 23 November 2012; accepted 16 November 2013 KEYWORDS Abstract Poly(acrylamide-co-acrylic acid) poly(AAm-co-AAc) hydrogels were prepared by free Poly(acrylamide-co-acrylic radical polymerization initiated by redox initiators of ammonium peroxodisulphate (APS) and acid); N,N,N0,N0-tetramethyl ethylene diamine (TEMED); N,N0-methylene bisacrylamide (BIS) was pH sensitive hydrogel; employed as a crosslinking agent. The copolymers were characterized by infrared spectroscopy Glass temperature; (FT-IR), differential scanning calorimetry (DSC), dynamic rheology and swelling measurements. Rheological behavior; Results indicated that the strong interaction in the hydrogels resulted in the formation of a more Dynamic oscillation test; stable copolymer. The single glass transition temperature (Tg) in sample suggested that the two Swelling polymers into the hydrogel have a good miscibility. The elastic modulus (G0) and linear viscoelastic region increased with increase in PAAc concentration. The oscillation time sweep study of the hydrogels exhibited a flat G0 indicating a stable structure and good mechanical strength. In the swelling measurements, the gels exhibited appreciable water uptake and were highly sensitive to pH environment. So the poly(AAm-co-AAc) hydrogel will have promising application in pharma- ceutical use and in biomaterials. ª 2013 King Saud University. Production and hosting by Elsevier B.V.
    [Show full text]
  • Troubleshooting SDS-PAGE-0410
    TROUBLESHOOTING SODIUM DODECYL SULFATE- POLYACRYLAMIDE GEL ELECTROPHORESIS (SDS-PAGE) Troubleshooting This troubleshooting document gives the problem, possible cause and suggested solution for problems during the SDS-PAGE application: Problem: Weak of missing protein bands The protein/antigen quantity Increase the sample concentration. is below the detection level of Use a more sensitive stain. the stain The proteins are not fixed in Use a stain which will fix the proteins. the gel Use a gel fixing solution. Proteins have ran off the gel Use a SDS-PAGE gel with a higher % acrylamide. Proteins are degraded Make sure there is no protease contamination. Ensure the samples did not freeze-thaw. The small-peptides (<4 kDa) Fix the gel with 5% glutaraldehyde. did not fix in the gel Rinse the gel well with water before staining. Problem: Poor band resolution The concentration of the Decrease protein concentration. protein is too high Sample volume is too large Increase protein concentration. Gel concentration is not If the size of the protein is unknown, use a 4%-20% gradient gel. correct The gel is too old Order fresh precast gels or cast a fresh gel . There is excess micelle Do not exceed 200 µg SDS/30 µl sample. formation The run is too fast because Increase the buffer concentration. buffers are too diluted The run is too fast because Decrease the voltage by 25-50%. the current is too high The protein bands are not Insufficient electrophoresis has taken place, prolong the run. sufficiently resolved The gels pore size is not correct for the proteins that need to be separated.
    [Show full text]
  • Polycyclic Aromatic Hydrocarbons in Foods: Biological Effects, Legislation, Occurrence, Analytical Methods, and Strategies to Reduce Their Formation
    International Journal of Molecular Sciences Review Polycyclic Aromatic Hydrocarbons in Foods: Biological Effects, Legislation, Occurrence, Analytical Methods, and Strategies to Reduce Their Formation Geni Rodrigues Sampaio 1,* , Glória Maria Guizellini 1 , Simone Alves da Silva 1,2 , Adriana Palma de Almeida 2 , Ana Clara C. Pinaffi-Langley 1 , Marcelo Macedo Rogero 1 , Adriano Costa de Camargo 3,* and Elizabeth A. F. S. Torres 1 1 Department of Nutrition, School of Public Health, University of Sao Paulo, 715 Doutor Arnaldo Ave, Sao Paulo 01246-904, Brazil; [email protected] (G.M.G.); [email protected] (S.A.d.S.); napinaffi@gmail.com (A.C.C.P.-L.); [email protected] (M.M.R.); [email protected] (E.A.F.S.T.) 2 Organic Contaminant Core, Contaminant Centre, Adolfo Lutz Institute, 355 Doutor Arnaldo Ave, Sao Paulo 01246-000, Brazil; [email protected] 3 Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago 7830490, Chile * Correspondence: [email protected] (G.R.S.); [email protected] (A.C.d.C.) Abstract: Polycyclic aromatic hydrocarbons (PAHs) are chemical compounds comprised of carbon and hydrogen molecules in a cyclic arrangement. PAHs are associated with risks to human health, especially carcinogenesis. One form of exposure to these compounds is through ingestion of con- Citation: Sampaio, G.R.; Guizellini, taminated food, which can occur during preparation and processing involving high temperatures G.M.; da Silva, S.A.; de Almeida, A.P.; (e.g., grilling, smoking, toasting, roasting, and frying) as well as through PAHs present in the soil, Pinaffi-Langley, A.C.C.; Rogero, air, and water (i.e., environmental pollution).
    [Show full text]
  • Acrylamide Mammography Cohort, the Netherlands Study on Diet and Can- Cer, a Cohort of Swedish Men, the U.S
    Report on Carcinogens, Fourteenth Edition For Table of Contents, see home page: http://ntp.niehs.nih.gov/go/roc Acrylamide Mammography Cohort, the Netherlands Study on Diet and Can- cer, a cohort of Swedish men, the U.S. Nurses’ Health Study, and the CAS No. 79-06-1 Danish Diet, Cancer, and Health Study. In addition, several case- control studies (most of which used food-frequency questionnaires) Reasonably anticipated to be a human carcinogen assessed cancer and dietary exposure of Swedish, French, and U.S. First listed in the Sixth Annual Report on Carcinogens (1991) populations to acrylamide. The tissue site studied most frequently Also known as 2-propenamide was the breast. These studies found no overall association between breast cancer and dietary exposure to acrylamide; however, some, H C NH2 but not all, studies reported an association between acrylamide ex- H2C C posure and a specific type of breast cancer (sex-hormone-receptor- O positive cancer in post-menopausal women). The Danish study used Carcinogenicity acrylamide-hemoglobin adducts to assess exposure; however, these adducts are not source-specific, but reflect both dietary exposure Acrylamide is reasonably anticipated to be a human carcinogen based and exposure from other sources, such as smoking. Two of three pro- on sufficient evidence of carcinogenicity from studies in experimen- spective cohort studies reported increased risks of endometrial and tal animals. ovarian cancer, but a case-control study found no increased risk of ovarian cancer. Most of the studies evaluating prostate and colorectal Cancer Studies in Experimental Animals cancer did not find increased risks associated with dietary exposure Acrylamide caused tumors in two rodent species, at several different to acrylamide.
    [Show full text]
  • Acrylamide in Food Products
    cess Pro ing d & o o T F e c f h o n l Krishnakumar and Visvanathan, J Food Process Technol 2014, 5:7 o a l Journal of Food n o r g DOI: 10.4172/2157-7110.1000344 u y o J ISSN: 2157-7110 Processing & Technology Review Article Open Access Acrylamide in Food Products: A Review Krishnakumar T1* and Visvanathan R2 1Department of Food and Agricultural Process Engineering, Tamil Nadu Agricultural University, Coimbatore, India 2Post Harvest Technology Centre, Tamil Nadu Agricultural University, Coimbatore, India Abstract Acrylamide or 2-propenamide an industrial chemical formed in some foods particularly starchy foods during heating process such as baking, frying and roasting. Acrylamide is proven to be carcinogenic in animals and a probable human carcinogen mainly formed in foods by the reaction of asparagine (free amino acid) with reducing sugars (glucose and fructose) as part of the Maillard reaction during heating under high temperature and low moisture conditions. The main aim of this review is to summarize the results of academic and industrial research on occurrence, dietary exposure, formation mechanism and mitigation measures of acrylamide in bakery, cereal and potato food products. Keywords: Acrylamide; Asparagine; Maillard reaction; Bakery; intake have been made for populations in many countries consist of Cereal; Potato products different dietary records [21-33]. These studies found that the amount of acrylamide was extremely higher in fried potato products (such as Introduction French fries and potato chips) followed by cereals, crisp breads, biscuits and other bakery products. Concentration and dietary intake of food Acrylamide (C H NO; 2-propenamide), is a colourless, non-volatile 3 5 have significant variations, which depends upon cooking methods crystalline solid, soluble in water and has a molecular weight of 71.08 [21,34-42].
    [Show full text]
  • Electrophoretic Properties of Sodium Dodecyl Sulfate and Related Changes in Its Concentration in SDS-Polyacrylamide Gel Electrophoresis
    J. Biochem., 78, 349-354 (1975) Electrophoretic Properties of Sodium Dodecyl Sulfate and Related Changes in Its Concentration in SDS-polyacrylamide Gel Electrophoresis Kanenobu KUBO,* Toshizo ISEMURA,* and Toshio TAKAGI**,' *Faculty of Pharmacy , Kinki University, Higashiosaka, Osaka 577, and **Institute for Protein Research, Osaka University, Suita, Osaka 565 Received for publication, February 14, 1975 Sodium dodecyl sulfate (SDS) in a protein sample solution migrates in SDS-polyacryl amide gel electrophoresis as a band with a mobility higher than those of protein bands. Behind this band, which is mostly composed of SDS micelles, SDS concen tration is raised uniformly in a gel column as a result of the retardation effect of the gel matrix on SDS micelles. Electrophoretic patterns of SDS were obtained when SDS was omitted from various portions of the gel electrophoretic system. Sodium dodecyl sulfate (SDS) undoubtedly plays properties of SDS in polyacrylamide gel. a key role in SDS-polyacrylamide gel electro phoresis (1) which is now extensively used EXPERIMENTAL PROCEDURE for analytical and preparative purposes. Never Sodium dodecyl sulfate (SDS) was obtained as theless, the behavior of SDS in electrophoresis "sodium lauryl sulfate" (specially prepared re is not well understood. In a previous paper (2), an anionic aromatic surfactant was used agent) from Nakarai Chemicals, and used with in place of SDS in polyacrylamide gel electro out further purification. The critical micelle phoresis, and its distribution in a gel column concentration was determined to be 8.1 mm was examined by UV-scanning. It was found in water and 0.95 mM in 0.12 M sodium phos that micelles derived from excess surfactant phate buffer, pH 7.2, at 25? by the conductance in a sample solution migrate as a distinct and drop weight methods respectively.
    [Show full text]
  • Acrylonitrile
    ACRYLONITRILE This substance was considered by previous Working Groups, in February 1978 (IARC, 1979) and March 1987 (IARC, 1987a). Since that time, new data have become available, and these have been incorporated into the monograph and taken into consi- deration in the present evaluation. 1. Exposure Data 1.1 Chemical and physical data 1.1.1 Nomenclature Chem. Abstr. Serv. Reg. No.: 107-13-1 Chem. Abstr. Name: 2-Propenenitrile Synonyms: AN; cyanoethylene; propenenitrile; VCN; vinyl cyanide 1.1.2 Structural and molecular formulae and relative molecular mass H2 CCHCN C3H3N Relative molecular mass: 53.06 1.1.3 Chemical and physical properties of the pure substance (a) Description: Colourless liquid (Verschueren, 1996) (b) Boiling-point: 77.3°C (Lide, 1995) (c) Melting-point: –83.5°C (Lide, 1995) 20 (d) Density: d4 0.8060 (Lide, 1995) (e) Spectroscopy data: Infrared, nuclear magnetic resonance and mass spectral data have been reported (Sadtler Research Laboratories, 1980; Brazdil, 1991) (f) Solubility: Soluble in water (7.35 mL/100 mL at 20°C); very soluble in acetone, benzene, diethyl ether and ethanol (Lide, 1995; Budavari, 1996) (g) Volatility: Vapour pressure, 13.3 kPa at 23°C; relative vapour density (air = 1), 1.83 (Verschueren, 1996) (h) Stability: Flash-point (open cup), 0°C; flammable; polymerizes spontaneously, particularly in the absence of oxygen, on exposure to visible light and in contact with concentrated alkali (Budavari, 1996) (i) Explosive limits: Lower, 3.05%; upper, 17.0% (Budavari, 1996) (j) Octanol/water partition coefficient (P): log P, 0.25 (Hansch et al., 1995) –43– 44 IARC MONOGRAPHS VOLUME 71 (k) Conversion factor: mg/m3 = 2.17 × ppm1 1.1.4 Technical products and impurities Acrylonitrile of 99.5–99.7% purity is available commercially, with the following specifications (ppm by weight, maximum): acidity (as acetic acid), 10; acetone, 75; ace- tonitrile, 300; acrolein, 1; hydrogen cyanide, 5; total iron, 0.1; oxazole, 10; peroxides (as hydrogen peroxide), 0.2; water, 0.5%; and nonvolatile matter, 100.
    [Show full text]