Diabetes Mellitus Is Defined As Condition That Occurs Due To
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Leading Article the Molecular and Genetic Base of Congenital Transport
Gut 2000;46:585–587 585 Gut: first published as 10.1136/gut.46.5.585 on 1 May 2000. Downloaded from Leading article The molecular and genetic base of congenital transport defects In the past 10 years, several monogenetic abnormalities Given the size of SGLT1 mRNA (2.3 kb), the gene is large, have been identified in families with congenital intestinal with 15 exons, and the introns range between 3 and 2.2 kb. transport defects. Wright and colleagues12 described the A single base change was identified in the entire coding first, which concerns congenital glucose and galactose region of one child, a finding that was confirmed in the malabsorption. Subsequently, altered genes were identified other aZicted sister. This was a homozygous guanine to in partial or total loss of nutrient absorption, including adenine base change at position 92. The patient’s parents cystinuria, lysinuric protein intolerance, Menkes’ disease were heterozygotes for this mutation. In addition, it was (copper malabsorption), bile salt malabsorption, certain found that the 92 mutation was associated with inhibition forms of lipid malabsorption, and congenital chloride diar- of sugar transport by the protein. Since the first familial rhoea. Altered genes may also result in decreased secretion study, genomic DNA has been screened in 31 symptomatic (for chloride in cystic fibrosis) or increased absorption (for GGM patients in 27 kindred from diVerent parts of the sodium in Liddle’s syndrome or copper in Wilson’s world. In all 33 cases the mutation produced truncated or disease)—for general review see Scriver and colleagues,3 mutant proteins. -
Inherited Renal Tubulopathies—Challenges and Controversies
G C A T T A C G G C A T genes Review Inherited Renal Tubulopathies—Challenges and Controversies Daniela Iancu 1,* and Emma Ashton 2 1 UCL-Centre for Nephrology, Royal Free Campus, University College London, Rowland Hill Street, London NW3 2PF, UK 2 Rare & Inherited Disease Laboratory, London North Genomic Laboratory Hub, Great Ormond Street Hospital for Children National Health Service Foundation Trust, Levels 4-6 Barclay House 37, Queen Square, London WC1N 3BH, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-2381204172; Fax: +44-020-74726476 Received: 11 February 2020; Accepted: 29 February 2020; Published: 5 March 2020 Abstract: Electrolyte homeostasis is maintained by the kidney through a complex transport function mostly performed by specialized proteins distributed along the renal tubules. Pathogenic variants in the genes encoding these proteins impair this function and have consequences on the whole organism. Establishing a genetic diagnosis in patients with renal tubular dysfunction is a challenging task given the genetic and phenotypic heterogeneity, functional characteristics of the genes involved and the number of yet unknown causes. Part of these difficulties can be overcome by gathering large patient cohorts and applying high-throughput sequencing techniques combined with experimental work to prove functional impact. This approach has led to the identification of a number of genes but also generated controversies about proper interpretation of variants. In this article, we will highlight these challenges and controversies. Keywords: inherited tubulopathies; next generation sequencing; genetic heterogeneity; variant classification. 1. Introduction Mutations in genes that encode transporter proteins in the renal tubule alter kidney capacity to maintain homeostasis and cause diseases recognized under the generic name of inherited tubulopathies. -
Distribution of Glucose Transporters in Renal Diseases Leszek Szablewski
Szablewski Journal of Biomedical Science (2017) 24:64 DOI 10.1186/s12929-017-0371-7 REVIEW Open Access Distribution of glucose transporters in renal diseases Leszek Szablewski Abstract Kidneys play an important role in glucose homeostasis. Renal gluconeogenesis prevents hypoglycemia by releasing glucose into the blood stream. Glucose homeostasis is also due, in part, to reabsorption and excretion of hexose in the kidney. Lipid bilayer of plasma membrane is impermeable for glucose, which is hydrophilic and soluble in water. Therefore, transport of glucose across the plasma membrane depends on carrier proteins expressed in the plasma membrane. In humans, there are three families of glucose transporters: GLUT proteins, sodium-dependent glucose transporters (SGLTs) and SWEET. In kidney, only GLUTs and SGLTs protein are expressed. Mutations within genes that code these proteins lead to different renal disorders and diseases. However, diseases, not only renal, such as diabetes, may damage expression and function of renal glucose transporters. Keywords: Kidney, GLUT proteins, SGLT proteins, Diabetes, Familial renal glucosuria, Fanconi-Bickel syndrome, Renal cancers Background Because glucose is hydrophilic and soluble in water, lipid Maintenance of glucose homeostasis prevents pathological bilayer of plasma membrane is impermeable for it. There- consequences due to prolonged hyperglycemia or fore, transport of glucose into cells depends on carrier pro- hypoglycemia. Hyperglycemia leads to a high risk of vascu- teins that are present in the plasma membrane. In humans, lar complications, nephropathy, neuropathy and retinop- there are three families of glucose transporters: GLUT pro- athy. Hypoglycemia may damage the central nervous teins, encoded by SLC2 genes; sodium-dependent glucose system and lead to a higher risk of death. -
Fructose in Medicine Jussi K. HUTTUNEN
Postgrad Med J: first published as 10.1136/pgmj.47.552.654 on 1 October 1971. Downloaded from Poitgraduate Medical Journal (October 1971) 47, 654-659. CURRENT SURVEY Fructose in medicine A review with particular reference to diabetes mellitus Jussi K. HUTTUNEN M.D. Third Department of Medicine, University of Helsinki, Finland Summary and in experimental animals. Earlier suggestions con- A review is given of the metabolism of fructose in the cerned with the atherogenic properties of fructose mammalian organism, and its significance in medicine. have recently been challenged. The apparent increase Emphasis is laid upon the absorption and assimilation in the incidence of coronary disease among sucrose of fructose through pathways not identical with those users seems to be a statistical artefact, caused by the of glucose. The metabolism of fructose is largely increased ingestion of coffee and soft drinks by insulin-independent, although the ultimate fate of cigarette smokers. fructose carbons is determined by the presence or the absence of insulin. Introduction Clinical and experimental work has suggested that The metabolism of fructose has engaged the atten- fructose may exert beneficial effects as a component tion of clinicians since 1874, when Kulz suggestedProtected by copyright. of the diet for patients with mild and well-balanced that diabetic patients can assimilate fructose better diabetes. Fructose is absorbed slowly from the gut, than glucose. These observations have been con- and does not induce drastic changes in blood sugar firmed in a number of experimental and clinical levels. Secondly, fructose is metabolized by insulin- studies (Minkowski, 1893; Naunyn, 1906; Joslin, independent pathways in the liver, intestinal wall, 1923), it being further shown that in some patients kidney and adipose tissue. -
Fructose and Mannose in Inborn Errors of Metabolism and Cancer
H OH metabolites OH Review Fructose and Mannose in Inborn Errors of Metabolism and Cancer Elizabeth L. Lieu †, Neil Kelekar †, Pratibha Bhalla † and Jiyeon Kim * Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL 60607, USA; [email protected] (E.L.L.); [email protected] (N.K.); [email protected] (P.B.) * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: History suggests that tasteful properties of sugar have been domesticated as far back as 8000 BCE. With origins in New Guinea, the cultivation of sugar quickly spread over centuries of conquest and trade. The product, which quickly integrated into common foods and onto kitchen tables, is sucrose, which is made up of glucose and fructose dimers. While sugar is commonly associated with flavor, there is a myriad of biochemical properties that explain how sugars as biological molecules function in physiological contexts. Substantial research and reviews have been done on the role of glucose in disease. This review aims to describe the role of its isomers, fructose and mannose, in the context of inborn errors of metabolism and other metabolic diseases, such as cancer. While structurally similar, fructose and mannose give rise to very differing biochemical properties and understanding these differences will guide the development of more effective therapies for metabolic disease. We will discuss pathophysiology linked to perturbations in fructose and mannose metabolism, diagnostic tools, and treatment options of the diseases. Keywords: fructose and mannose; inborn errors of metabolism; cancer Citation: Lieu, E.L.; Kelekar, N.; Bhalla, P.; Kim, J. Fructose and Mannose in Inborn Errors of Metabolism and Cancer. -
Cartilage-Hair Hypoplasia
University of Nebraska Medical Center DigitalCommons@UNMC MD Theses Special Collections 5-1-1969 Cartilage-hair hypoplasia Kenneth A. Vogel University of Nebraska Medical Center This manuscript is historical in nature and may not reflect current medical research and practice. Search PubMed for current research. Follow this and additional works at: https://digitalcommons.unmc.edu/mdtheses Part of the Medical Education Commons Recommended Citation Vogel, Kenneth A., "Cartilage-hair hypoplasia" (1969). MD Theses. 133. https://digitalcommons.unmc.edu/mdtheses/133 This Thesis is brought to you for free and open access by the Special Collections at DigitalCommons@UNMC. It has been accepted for inclusion in MD Theses by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. CARTILAGE-HAIR HYPOPLASIA By Kenneth Allen Vogele A THESIS Presented to the Faculty of The College of Medicine :in the University of Nebraska In Partial FUlfillment of Requirements For the Degree of I'bctor of Medicine Under the SUperviSion of Carol Angle, 14.D. <halla, Nebraska .April 18, 1969 _____"_U lii"~_"'7l(111W$_"""'---'---_________________________ TABLE OF CONTENTS mTRorocTIOl~ • • ••.•••••••••••••••••••••••••••••••••••••••••••••••••• 1 CI..INICAL FEA.'I'tJRES •••••••••••••••••••••• , ••••••••••••••••••••••••••• 1 The skeleton ••••••••••.•••••••••••••.•••••••••••••..•••••••••• 1 The hair •••••••••••••••••••••••••••••••••••••••••••••••••••••• :3 Motor development ••••••••••••••••••••••••••••••••••••••••••••• -
Genetic Disorder
Genetic disorder Single gene disorder Prevalence of some single gene disorders[citation needed] A single gene disorder is the result of a single mutated gene. Disorder Prevalence (approximate) There are estimated to be over 4000 human diseases caused Autosomal dominant by single gene defects. Single gene disorders can be passed Familial hypercholesterolemia 1 in 500 on to subsequent generations in several ways. Genomic Polycystic kidney disease 1 in 1250 imprinting and uniparental disomy, however, may affect Hereditary spherocytosis 1 in 5,000 inheritance patterns. The divisions between recessive [2] Marfan syndrome 1 in 4,000 and dominant types are not "hard and fast" although the [3] Huntington disease 1 in 15,000 divisions between autosomal and X-linked types are (since Autosomal recessive the latter types are distinguished purely based on 1 in 625 the chromosomal location of Sickle cell anemia the gene). For example, (African Americans) achondroplasia is typically 1 in 2,000 considered a dominant Cystic fibrosis disorder, but children with two (Caucasians) genes for achondroplasia have a severe skeletal disorder that 1 in 3,000 Tay-Sachs disease achondroplasics could be (American Jews) viewed as carriers of. Sickle- cell anemia is also considered a Phenylketonuria 1 in 12,000 recessive condition, but heterozygous carriers have Mucopolysaccharidoses 1 in 25,000 increased immunity to malaria in early childhood, which could Glycogen storage diseases 1 in 50,000 be described as a related [citation needed] dominant condition. Galactosemia -
The Genetic Mechanism of Galactosaemia*
Arch Dis Child: first published as 10.1136/adc.35.184.521 on 1 December 1960. Downloaded from THE GENETIC MECHANISM OF GALACTOSAEMIA* BY KENNETH HUGH-JONES,t ALVAH L. NEWCOMB and DAVID YI-YUNG HSIA From the Genetic Clinic of The Children's Memorial Hospital, and the Department ofPaediatrics, Northwestern University Medical School (RECEIVED FOR PUBLICATION OCTOBER 8, 1959) Galactosaemia is a heredity disease of carbo- parents gave an abnormal result; Durand and hydrate metabolism characterized by a failure to Semach (1955) found an abnormal galactose toler- thrive, vomiting and jaundice in early infancy. ance test in one parent; Bray, Isaac and Watkins Babies with this condition usually present with these (1952); Bain, Bowden, Chute, Jackson, Sass- symptoms and they are found to have enlarged Kortsak and Walker (1957); Schreier, Acker and firm livers, which soon become cirrhotic; this has Henckel (1957); and Bennett (1958) failed to demon- been borne out by autopsy reports. They may be strate any abnormalities in the parents they tested. oedematous and have a tendency to bleed easily. Hsia, Huang and Driscoll (1958) have since shown Cataracts and mental retardation are common that a group of heterozygotes can be detected by complications. The diagnosis can be confirmed estimating the blood level of galactose-l-phosphate by a markedly elevated galactose tolerance test and uridyl transferase. This is discussed in more the finding of galactose in the urine. Schwarz, detail later. Golberg, Komrower and Holzel (1956) showed that The purpose of this paper is to present a complete copyright. galactose-1-phosphate accumulated in the erythro- family with galactosaemia and to give evidence cytes of galactosaemic children if they were given that the disease is transmitted by a Mendelian galactose or milk. -
Metabolism of Disaccharides: Fructose and Galactose
Metabolism of disaccharides: Fructose and Galactose BCH 340 lecture 10 Fructose metabolism • Diets containing large amounts of sucrose (a disaccharide of glucose and fructose) can utilize the fructose as a major source of energy. • Fructose is found in foods containing sucrose (fruits), high-fructose corn syrups, and honey. • The pathway to utilization of fructose differs in muscle and liver. • In liver, dietary fructose is converted to Fructose-1-P by fructokinase (also in kidney and intestine). • Then, by the action of Fructose-1-P adolase (aldolase B), Fructose-1-P is converted to DHAP and glyceraldehyde. The utilization of fructose by fructokinase then aldolase bypass the steps of glucokinase and PFK-1 which are activated by insulin Glyceraldehyde is conveted to glyceraldehyde-3-P by triose kinase which together with DHAP may undergo: 1. Combine together and converted into glucose (main pathway) 2. They may be oxidized in glycolysis This explains why fructose disappears from blood more rapidly than glucose in diabetic subjects Fructose metabolism • The aldolase B is the rate-limiting enzyme for fructose metabolism. • Muscle which contains only hexokinase can phosphorylate fructose to F6P which is a direct glycolytic intermediate • However, hexokinase has a very low affinity to fructose compared to glucose, So it is not a significant pathway for fructose metabolism. Unless it is present in very high concentration in blood. Fructose-6-P can be converted to glucosamine-6-P which is the precursor of all other amino sugars glutamine amidotransferase glutamate Galactose Metabolism • The major source of galactose is lactose (a disaccharide of glucose and galactose) obtained from milk and milk products • Galactose enters glycolysis by its conversion to glucose-1-phosphate (G1P). -
Hypoglycemia Charles Wolf
Henry Ford Hospital Medical Journal Volume 8 | Number 1 Article 9 3-1960 Hypoglycemia Charles Wolf Follow this and additional works at: https://scholarlycommons.henryford.com/hfhmedjournal Part of the Life Sciences Commons, Medical Specialties Commons, and the Public Health Commons Recommended Citation Wolf, Charles (1960) "Hypoglycemia," Henry Ford Hospital Medical Bulletin : Vol. 8 : No. 1 , 68-80. Available at: https://scholarlycommons.henryford.com/hfhmedjournal/vol8/iss1/9 This Article is brought to you for free and open access by Henry Ford Health System Scholarly Commons. It has been accepted for inclusion in Henry Ford Hospital Medical Journal by an authorized editor of Henry Ford Health System Scholarly Commons. For more information, please contact [email protected]. HYPOGLYCEMIA CHARLES WOLF, M.D.* Hypoglycemia, a state often suspected clinically, but one which must be proved chemically, is a potentially serious condition and may pose a threat to life or cerebral function. The purpose of this paper is to review the clinical features suggesting hypoglycemia, the etiologic factors, mechanisms of pathogenesis and the differential diagnosis. Non-specific diagnosis is not difficult and is provided by a low blood sugar value. Specific diagnosis, however, is vital in order to institute rational management. In taking the history particular care must be taken in establishing the relationship of symptoms to time of day, meals, exercise, emotional upsets and environmental changes. Symptoms may have presented with suddenness or may have been insidious in onset. There is frequently an episodic occurrence of severe or mild symptoms. Convulsions and loss of consciousness is common. Profound personality changes can occur.' Manifestations of the hypoglycemic state may include any of the following: weakness, excessive fatigue, nervousness, anxiety, palpitations, tremors, sweating, nausea, syncope, numbness of the face, epigastric pain, tachycardia, faintness, headaches, hunger, stupor, drowsiness, pallor, restlessness, chilliness and flushing. -
Renal Tubular Disorders
Renal Tubular Disorders Lisa M. Guay-Woodford nherited renal tubular disorders involve a variety of defects in renal tubular transport processes and their regulation. These disorders Igenerally are transmitted as single gene defects (Mendelian traits), and they provide a unique resource to dissect the complex molecular mechanisms involved in tubular solute transport. An integrated approach using the tools of molecular genetics, molecular biology, and physiology has been applied in the 1990s to identify defects in transporters, channels, receptors, and enzymes involved in epithelial transport. These investigations have added substantial insight into the molecular mechanisms involved in renal solute transport and the molecular pathogenesis of inherited renal tubular disorders. This chapter focuses on the inherited renal tubular disorders, highlights their molecular defects, and discusses models to explain their under- lying pathogenesis. CHAPTER 12 12.2 Tubulointerstitial Disease Overview of Renal Tubular Disorders FIGURE 12-1 OVERVIEW OF RENAL TUBULAR DISORDERS Inherited renal tubular disorders generally INHERITED AS MENDELIAN TRAITS are transmitted as autosomal dominant, autosomal recessive, X-linked dominant, or X-linked recessive traits. For many of Inherited disorder Transmission mode Defective protein these disorders, the identification of the disease-susceptibility gene and its associated Renal glucosuria ?AR, AD Sodium-glucose transporter 2 defective protein product has begun to pro- Glucose-galactose malabsorption syndrome AR Sodium-glucose -
Renal Sodium–Glucose Transport: Role in Diabetes Mellitus and Potential Clinical Implications George L
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector review http://www.kidney-international.org & 2009 International Society of Nephrology Renal sodium–glucose transport: role in diabetes mellitus and potential clinical implications George L. Bakris1, Vivian A. Fonseca2, Kumar Sharma3 and Ernest M. Wright4 1Hypertensive Diseases Unit, Department of Medicine, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA; 2Department of Medicine and Pharmacology, Tulane University Health Sciences Center, New Orleans, Los Angeles, USA; 3Department of Medicine, University of California at San Diego/VA Medical System, La Jolla, California, USA and 4Department of Physiology, Mellinkoff Professor in Medicine, Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA The kidneys play a major role in the regulation of glucose in The kidney plays a pivotal role in the regulation of glucose humans, reabsorbing 99% of the plasma glucose that filters reabsorption, and by extension has a major part in through the renal glomeruli tubules. The glucose transporter, maintaining the overall metabolic balance of the body. In SGLT2, which is found primarily in the S1 segment of the healthy humans, more than 99% of the plasma glucose that proximal renal tubule, is essential to this process, accounting filters through the renal glomerulus is reabsorbed. Transport for 90% of the glucose reabsorption in the kidney. Evidence of glucose across cell membranes is accomplished by two has suggested that selective inhibition of SGLT2 induces gene families: the facilitative glucose transporters – the glucosuria in a dose-dependent manner and may have GLUTs – and by an active sodium-dependent transport beneficial effects on glucose regulation in individuals with process mediated by the sodium–glucose co-transporters type II diabetes.