|

. ,;-,ANGEREDPLANTPROGRAM i I i Final Report to the

I State of Depa,:tt_ent ofFish andGame Contract# FG 1460 I

I Demography and Reproductive Biology of

I Kern Mallow ( kemensis: ) Field, Laboratory, and Greenhouse Work in March 1992 - June 1993

I Report prepared by: Dr. Susan J: Mazer

I Gretchen l._Buhn • Daniel E. Meade l_pattment of Biological Sciences

I SantUniva Barbaersirtya,CofalCalififorniaornia93106 Telephone: (805) 893-8011 I FAX: (805)-893-4724 July 31, 1993 I I I I I |

I | | Final Report to the

State of California Depa_'m_entof Fish and Game

I Contract#FG1460

I DemographyandReproductiveBiologyof I Kern Mallow (Eremalche kernensis: Malvaceae) Field, Laboratory, and Greenhouse Work in March 1992 - June 1993 I

I Report prepared by: Dr. Susan J. Mazer

I Gretchen LeBuhn • Daniel E. Meade Department of Biological Sciences

SantaUniversityBarbara, ofCaliforniaCaliforni93106a Telephone: (805) 893-8011 FAX: (805)-893-4724 July 31, 1993 I I I ! i m i

I TableofContents

I Acknowledgements ...... 1 i Chapter 1. Project Outline: Questions Addressed ...... 2 Natural History and Life History of Eremalche kernensis: Brief Overview ...... 3

I Chapter 2. betweenSources ofieldf variatipopulationson in reprofoduEremalchective succekernensss withiis n...... and 8 i Overview ...... :....._...... 8 2.1. Field Methods: 1992and 1993 ...... 10 Population 1...... 10 I Population 2...... 13 2.2. Greenhouse and Laboratory Methods ...... 16

I Results ...... 17 i 2.1. Variaticombinedon betweendata fromindividuals,both populationsgenders,...... flower colors and dates: 17 2.2. Differences between the two populations ...... 30

I 2.3. Effects of date, gender and flower color in each population: three-way analyses of variance ...... 41

I 2.4. Variation within populations: each date evaluated separately ...... 54 2.5. Does E. kernensis require insect visitors for seed set?: I results of bagging experiment ...... 106 2.6. Seed weight and abortion:

I effects of seed number per fruit, gender, and flower color ...... 109 2.7. Vegetative data: branch number predicts reproductive output ...... 125

I 2.8. Interspecific competition: effects of removing competitors ...... 131 2.9. Intraspecific competition: effects of local population density ...... 137

I 2.10. Effects of grazing on growth ...... 142 i 2.11. Emergence of E. kernensis seedlings from seed bank ...... 147 Chapter 3. Sources of variation in reproductive components in the greenhouse ...... 153 I Questions addressed ...... 153

I Methods and experimental design ...... 155 I ii

I Results ...... 157

I 3.1. Effects of gender on seed traits ...... 157 3.2. The effect of pollen donor and recipient on reproductive components .... 165

I 3.3. crossesEffects onof sseedelfingnumberand within-populand seed massation...... vs. between-population 252

I 3.4. Reproductive compatibility of Eremalche kernensis and E. parryi ...... 269 Chapter 4. Summary and Recommendations..: ...... 295 Literature Cited ...... i..._...... _...... _,...... 299

Appendix A" Raw data from field populations ...... 301

I Appendix B: Raw data from greenhouse populations ...... 418 ! I I | | i I I ! ! | ! | 1

I Acknowledgements | | We would like to thank the California Department of Fish & Game for supporting this I research.

I Bseedeth bankHenderistudiescksontocobserveontributedseedlingher skillemergences in the fieinldtheandgreenhouse.greenhouse; she conducted the

I ThelasonbrPrice.eeding experiments reported in Chapter 3 were conducted in the greenhouse by i Gwen Bell and Thek Moua provided assistance weighing and counting seeds. ! I | ! ! I I ! I I I ! 2

I Chapter 1

I Project Outline

I In March of 1992 we proposed to the California Department ofFish and Game (CDFG) to study the demography and reproductive biology of the federally listed

I candidateendangeredforplantlistingspecies,by theKernCDFG.MallowThis(Ereportremalchcoverse kerntheenslabois; rMatory,alvaceagreenhouse,e). This plantand is a field work conducted in the summer and fall of 1992, and the spring and summer of 1993.

I Previous reports have covered field data collection (June 30, 1992), and laboratory and greenhouse work (November 1, 1992) conducted in 1992. This report summarizes all greenhouse and field work conducted between February 1992 - June 1993.

I General questions addressed in this study are:

I Whatof Eremalcheare sourceskernensisof variation? in reproductive success in field populations

i Spe1. cHowifically,doeswetheaskedphenotypic: variation in flower color and gender influence components of reproduction? Do white-flowered and pink-fiowered morphs differ with repect to ovule

I withand seedrespectproductionto these petraits?r floweIsrthis? Dovariationhermaphroditicconsistentandacrossmale-sterilepopulatimons?orphs differ

2. HowEremalchemuch pkernensishenotypiconvaria particularation is theredate?amWhichong rancomponentsdomly sampledof fitnesflowserams anmostd fruits of variable and which are most consistent ? Do individual vary with respect to trait means? Do gender and flower color influence components of reproductive success?

3. Do components of reproduction change across the season? Within a population of Eremalche kernensis sampled on a specific date, how much phenotypie variation is i theremost variableamong rananddomlywhichsamamplmosted flowersconsistentand fruits?over theWhicoursech compof oneonentsgrowingof fitnesseason?s are Do individual plants change significantly over time with respect to trait means?

I 4. Dperoesfruit,the nuthembernumberof viableor proportionseeds peroffruitabortacecuratelyd seeds,predictand themeantotal individseed weightual seeperd wfruit?eight Is there any trade-off between seed number per fruit and mean individual seed weight?

I Does this relationship differ between field and greenhouse populations? 5. Does the number of reproductive branches accurately predict the number of flowers, i buds, fruits, or potential fruits produced by an individual? 6. How do populations differ in density? Does population density influence lifetime fruit production?

I 7. What is the effect of interspecific competition on survivorship, growth or reproduction in Eremalche kernensis ? | | ! 3

I 8. What is the effect of grazing on average branch length, branch number and size? Does sheep grazing influence survivorship, density, or plant reproductive success? ! and ! What are sources of varia•tion in reproductive components in the greenhouse?

I Specifically, we asked:

I 1. Whatother arewords,the effectssince Eremalcheof gender onkernensisseed numberis gynodiecous,per fruit andwhatindividualdifferencesseed inmasfemales? In reproduction are observed between hermaphroditic plants and male-sterile plants?

I 2. Whatviableisseedsthe effectproduced,of pollenmeandonorsindividualand ofseedindividualweight, recipienttotal seedplantsweighton perthe flower,number of number of aborted seeds per flower, and the proportion of aborted seeds per flower?

I 3. What is the effect of selfing, and within-population vs. between population crosses on seed number per fruit and seed mass?

I 4. Are Eremalche kernensis and E. parryi reproductively incompatible? I Natural History and Life History: Brief Overview

| Study sites i The two field study sites for the 1992-1993 season were located in Kern County approximately 6.1 miles north of McKittrick, California. Population 1 is located 50 meters south of Ix)kern Road approximately 1.6 miles east of State Highway 33. Population 2 is

I oflocatedthe trianearngletheformedintersectionby theseof StwotateroadsHighwanday an33oilandpipelineIx)kernroad.RoadThenearterrthezinsouthernis mostlyendfiat with scattered drainage depressions 1 to 2 meters deep. Vegetation is a combination of saltbush scrub (Atripex spp.) and mixed grassland. These sites are described in greater I detailinChapter 2. Sheep grazing is practiced in this area in the spring following seasonal rains.

I years.PopulationSheep2 iswereknownexcludedto havefrombeenpartgrazedof theinpopulation1992 and p2robablsite iny 1993for severalwith thepreviouscooperation of leaseholding shepherds. The population 1 site did not appear to have been grazed in i 1993. | | | | 4

I Plantlifehistory

I It is listedEremalchein the JepsonkernensisManual, or Kernof TheMallow,Higher isPlantsan annualof Californiaplant in astheafamilyrare subspeciesMalvaceae.of Eremalche parryi, which is one of the three genera of Eremalche found in California (Hickman, 1993). This section presents observations and descriptive statistics concerning history I the life and biology ofE. kernensis. Eremalche kernensis is a gynodiecious species. Hermaphroditic individuals and

I hermaphroditicmale-sterile indivpliadualsnts havaree foundflowerswithithatnaretheconsistentlysame populations.larger thanWe male-sterilehave observeplants.d that In addition to the gender dimorphism, we observed three other reproductive waits that exhibit

I qualitativepink-floweredvariation.individualsFirst,ofEboth. kernensisgendersis(hermaphroditicdimorphic for flowerand male-scolor:tJerile)white-floweredcan be foundand at both sites. Second, we observed in the greenhouse that some hermaphroditic individuals produced pollen that was light blue to lavender in color, while other individuals produced

I performancepollen that wasin anypureway;whiteboth. Welavender-pollendo not know whetherindividualspollenandcolorwhite-pollenis relatedindividualsto pollen set fruit in the greenhouse following hand-pollinations. Third, although all both

i hermaphrodiin some individualstes and ledmale-sterileto red-coloredflowersstyleshad andfiveinredotherstigmaindividualslobes pertoflowwhiteer, styles.the stigmasRed- styled morphs appeared to have more strongly recurving stigma lobes than did white-styled

flowers with strongly recurving stigma lobes than in those with erect stigmas, as the former i weremorphclosers. It istopossiblethe anthersthatthanin hermaphrodiwere the moretes erectthe probabilitystigma lobes.of self-feWe didtiilizationnot determineis higher in whether hermaphrodites or male-steriles were more likely to have red styles or white styles.

I In our field populations of E. kernensis, hermaphrodite flowers bore five petals that were 8 - 15 mm long and held ovaries composed of 7 - 13 mericarps; male-sterile flowers i bBothore petalgenderss thatsufferedwere sosomemewhatovulesmalleabortion;r and hovuleeld ovarifailurese coandmposuccesssed ofrates8 - 18arme edescribedricarps. in detail in Chapter 2. See Jepson (1993) for additional morphological descriptions of E. kernensis flowers.

I Eremalche kernensis is self-compatible and in several cases apparendy apomictic (producing seeds without pollination or fertilization; see Chapter 2).

Seedlings emerged in the field approximately two weeks before our visit on January 24, 1993. The first blooms for the 1993 season were observed during a site visit on March 7th. Only three individuals were in flower in a total of 40 experimental plots containing

I meters1160 indiveach.idualsPlantsof Ewere. lernapproximatelyensis (20 each8inweekspopulapasttiongermina1 and ptioonpulaontiothisn 2)date.of 0.As25 ofsquare April 7, 1993 virtually all of the plants were in bloom in both study populations.

I The first fruit was observed on April 7th. Mean developing fruit number for a sample of 110 plants on this day was 4.58 fruits, with a range from 0 to 29 fruits per plant.

i Flowerflower productionproduction waswasapproximatelydecreasing by A14prilweeks21st,inand1993.endedFruinit Maproductiony. The durendedationinofMay as plants senesced with the end of the rains. Duration of fruit production was approximately 8 weeks from mid-March to mid-May. Of the plants surviving to adulthood 52.4% were I hermaphroditic plants and 47.6% were male-sterile plants in both populations pooled. I I | 5

I Seedling density varied from 4 plants per square meter to 712 plants per square meter, and population 1 had higher seedling density than population 2 for twenty non-

I random quadrats that were selected in each population. The relationship between flower color and gender is not random during peak i whilefloweriwhitesng season.are under-representedWhites are over-representedrelative to pinksrelativeamongto pinksmale-sterilesamong hermaphrodites(Table 1.1). Among white-flowered individuals, male-steriles am less common than would be expected by chance relative to hermaphrodites. Among pink-flowered individuals, male-steriles are

I significantly over-represented relative to hermaphrodites. I I ! ] ! ! ! I I ! ! I I I ! 6

I Table 1.1 Chi-square test of independence of flower color and gender in a combined data set of both populations on April 14, 1993.

I CodedChl-SquareX 1 :Gender Y 1 :flcolor Summar Statistics

]B DF: 1 Total Chi-Square: 5.56 p = .0184

I ContingencyG Statistic:Coefficient: 5.686,249 Phi: .257

I Chi-Square with continuity correction: 4.375 p = .0365 I

J Observed Frequency Table MS Herm Totals:

pink 13 5 18

white 27 39 66 Totals: 40 44 84 | Percents of Row Totals

MS Herm Totals:

pink 72.22% 27.78% 100% white 40,91% 59.09% 100%

| Totals: 47.62% 52.38% 100% | ! | | | ! 7

I Percents of Column Totals

(R MS Herm Totals:

B pink 32.5% 11.36% 21.43% white 67.5% 88.64% 78.57%

I Totals: 100% 100% 100% a Expected Values

I MS Herin Totals:

I pink 8.57 9.43 18

white 31.43 34.57 66'

I Totals: 40 ' 44 84 | |

Seed bankLongsamp-termles seed dormancy can be important for maintaining populations of plants during years in which environmental conditions prevent successful seedling survivorship

oThisr reprisoespeducticionally. Annualtrue in desertplants habitatsoften makein whiupcah conspopulidaerabletions areportisubjeon ofct theto substseedantibaankl . environmental variation (Leck et ai., 1989; Brown and Venable, 1986). In thi._study, soil

samppopulationles were2 incoNovember,llected from1p992.opulTheseation 1samplesand popuwerelatiousedn 2 intoApexamineril, 1992;abundandancesfrom of readily germinable seed of Eremalche kemensis. See Chapter 2 for methodology and results Ofour attempts to germinate seed from these soil samples. | ! | | ! ! 8

I CHAPTER2 l Whatpopulationsare sourcesof Eremofalchvariatione kernensisin re?productive success within and between field

How does variation in l phenotypic flower color and gender influence components of reproduction? Is this variation consistent between natural populations?

I OVERVIEW i TwoData neighboringwere collectepopd onuladifftionsereofnt Eredatemals inchoerdkerner toendsisetectwereseasonalstudievariad in t1ion992inandfloweri1993ng. phenology and reproductive allocation. In 1992, peak flowering is represented on the April 9 and April 14 sample dates; the proportion of individuals flowering in the field had

I fromstronglyhermaphroditicdiminished byandAprilmale-sterile24, 1992individuals. On each dinateboth, flowerspopulations.and fruits were sampled

I number Weper measurefruit, thed totalthreenumbermain reofproductivedevelopingtraitsovulesof samperpledfruit,floandwers:thetotaltotalovulenumber of aborted ovules per fruit. With these data, we examined how flower color and gender

in the proportion of ovules aborted per fruit. We report variation in reproductive i influenced reproductive allocation and success. We also measured phenotypic variation components within individuals, between individuals, between populations, and over time.

I describedThebelow:four principal reproductive components evaluated in our analyses are

Total ovule number per fruit represents the amount of resources allocated to reproduction I through female function. Number of developing ovules per fruit represents the number of ovules fertilized that I initiate development. Number of aborted ovules per fruit is determined by the number of ovules not receiving

I pollen and/or the number of ovules aborted early in the developmental process. Proportion of aborted/developing ovules per frui[ represents the relative success of an fruit at ovule development. l Inbreeding depression and variation between the genders (hermaphrodites vs. mule-steriles) in gynodioecions species: theoretical expectations

I There are several theoretical conditions under which gynodioecy (or the presence of male-sterile genotypes) can evolve in hermaphroditic plant taxa. Using a variety of i mshowedathematicalthat gynodioecymodels, Lloycand evolve(1975, if197the6)produand Charlect of (a)sworththe selflngand Charlerate swoof rth (1978) hermaphrodites and (b) inbreeding depression is greater than 0.5. Field studies of gynodioecious species have found populations with levels of selfing between 0.08 and

I inbreeding0.76 (Sun anddepressionGandersbetween1986, W0.07olff, andFriso0.71, and(KohnVan D1988,ammeShykoff1988) an1988,d levelJollss ofand Chenier 1989, Sakai, Karoly and Weller 1989). Alternatively, gynodioecy may evolve if

I the reallocation of resources from male function (pollen) in the hermaphroditic morph to I ! 9

I female function (seeds) in the male-sterile morph leads to female fecundity levels that are twice that of hermaphrodites (Darwin 1877, Lewis 1944).

I Most studies of gynodioecious plants have found the ratio of female to hermaphrodite fecundity to be between 1 and 2 (Maki 1993). While Chapter 3 examines i thewhetherlevelsfemalesof inbreeding(male-steriles)depressionhavein aEremalchereproductivekernensisadvantage, thisthatchaptercompensatesevaluatesfor their lack of pollen, as is predicted by theoretical models of sex allocation. That is, do male- steriles exhibit higher levels of resources allocated to female function than do I hermaphrodites? Understanding the sources of variation in reproductive success may contribute to

I theindividualseffective variesmanagementacross populationsof this species.and ifFormale-sterilesexample, ifproducethe proportiona greaterofnumbermale-sterileof seeds than hermaphrodites, then populations with few male-sterile individuals may have lower levels of seed production solely due to the sex ratio of that population.

I Plans for re-vegetation may make use of our observations concerning inbreeding depression (or outbreeding depression: see Chapter 3) and the relative seed production of

I example,the differentif male-sterilesgenders (Chaptersrequire2 theandpresence3) when ofanhermaphroditesd if new populationsin orderare toestablished.set fruits, For then newly colonized populations must contain both genders of adult plants. k-

I Flower color polymorphism: why are pink and white floral morphs maintained tn natural populations?

The floral color polymorphism (pink and white individuals) in Eremalche kernensis is interesting in two ways. First, if pollinators are attracted to flowers

I differentiallyvisitation betweenon thethebasitwos ocolorf flowmorphs.er color, Floralthen therecolorishasthe beenpotentialfoundfotor uinfluencenequal pollinator pollinator visitation rates in a variety of species (Horovitz and Harding 1972, Stanton et al. 1986). Second, if there is a reproductive cost to producing floral pigments, the pink

1_ colorand Hardingmorph may1972).produce fewer ovules and seeds than the white color morph (Horovitz

1_ form ofThebalancingmaintenselectionance of awherebyfloral coeachlor pcolorolymomorphrphism isismaintainedusually expinlainedthe populationby some due to a different set of fitness advantages. Our observations concerning differences between the pink and white floral morphs with respect to reproductive components are aimed to detect such fitness advantages and disadvantages associated with flower color. fl Seed set in Eremalche kernensis: why do some ovules fail to develop? Eremalche kernensis is self-compatible and appears to be autogamous (capable of

f(capableertilizingofovulesettings ansetd settiwithoutng seedpollenwithoutor fertilization).insect-assistedThepollinatigreenhouseon) andresults/or ap(seeomictic Chapter 3) indicate there is little if any inbreeding depression. fl reasons. InFirst,the abovulessence mayof inbreedingnot developdepbecauseression, theyovulesweremayneverfail tfertilized,o develop indicatingfor three that ovule development is limited by pollen availability (i.e., "pollen limitation') in the

_] sampled individuals. Second, a female parent may initiate more ovules than later ! L0

! resources are able to support indicating some level of resource limitation. Third, fertilized ovules may be aborted by the female parent even though there are sufficient i fertilizedresources ovulesavailablerandomlyto alloworthnon-randomlyeir maturation.onIntheaddition,basis ofmattheernalembryoplantsgenotype.may abortThis type of abortion may indicate that females are exercising a form of mate or offspring i csecondhoice wherebyand third oprocessesnly the highestare notqualitymutuallyoffspexclusive.ring are selectedIn this tostudy,be developwe examineed. Thethe effects of flower color, gender, time of season, and pollinator availability on the rate of ! ovule development (or the risk of ovule abortion).

I SECTION 1 FIELD METHODS: 1992 and 1993

Population 1 I Site location and conditions:

I Tthehisintersectionsite is on theof southLokernsideRoadof Lokemand HighwayRoad near33. Buttonwillow,The vegetation aboutconsists1.6ofmilesrelativelyeast of undisturbed Atriplex spinifercdA, polycarpa scrub with Bromus rubens and Erodium

I cicutariuminformation dominatingabout frequencythe herbor severitylayer. Sheepof grazing.grazingGrazingoccurs damageat the site(branchbut weremovalhave little and trampling) to Eremalche plants was evident on April 14, 1992. Eremalche occurs with a patchy distribution, often in clumps associated with Atriplex shrubs. This

I weredistributiobservedon couldto bebe morea resultlikelyof grazing,to be trampledsince plantsor eatenwhicthanh werethoseinunderopen grasslanor neardshrubareas canopies.

| Activities on March 29, 1992

components: Census of plants and reproductive A transect (50 m) was extended perpendicular to Lokem Road. Because the plants tend

transect.to occur inEveryclumps5 meters,we decidedthe closestto sampleclumpwithinto theclumpstransectratherwas thanlocatedto coverand athe0.25-square-entire meter plot was placed within the clump. All plants within the plot were sampled. A

nplant,umbereandd thestakenumbers(a plastiofc 6branches,-inch stirflowers,rod) wasbudsplaceandd indevelopingthe soil nextfruitsto eachwerecerecorded.nsused Flowers were classified as developing fruits if the petals had wilted and the ovary had begun to expand. The gender (maie-sterile or hermaphrodite) and the flower color (pink [_ or white) of each plant was noted. Because the plants in this transect were almost all male-sterile, we sampled an additional

25production,hermaphroditicseed production,plants for comparisseed weighton (toor flowerdeterminecolorwhetherfrequenciesplant differsize, ovulebetween the two genders). The hermaphroditic individuals were randomly selected from a nearby drainage where hermaphroditic plants were more common than on the upland. The

[ apparentlyobservation associatedthat envirowithnmenthetal frequencyfactors (theof mhermaphroditicore mesic envirplantsonmentcouldof thehavdrainage)e a numberare of explanations. For example, gender may be partly environmentally determined (as II 0 , I1

I opposed to strictly genetically based), or survivorship rates of the two genders may differ depending on local environmental conditions.

I Pollinator exclusion experiment:

Twenty plants were chosen at random and marked for a bagging experiment in which J branches were enclosed within bridal veil bags to exclude potential pollinators. Ten of these 20 plants were male-sterile plants; these were used to establish whether apomlctic fruit development occurs (fruit and seed development in the absence of any pollinations).

I Baggedpollinators)budson(pollinatorseach plant wereexcluded)markedandoneontroltheir calycesbuds (unbagged,by a black andpermanentexposedmarker;to the bridal veil bags were closed with a twist-tie and unbagged control heads were also marked with a twist-tie on the branch below the head.

I Ontogenetic changes in ovule number:

I Twentydevelopingplantsfruitswereor openmarkedflowersfor repeatedwere collectedflower collectionfrom each ofduringthesetheplantsgrowing(fruitsseason;were collected if available, otherwise open flowers were taken) and then stored frozen in a

I plastic,"repeat-sample"air-tight miplants.crocentrifugeAnothertube.20 randomlyThese plantsselectedare referredplants wereto inalsothissampled.report as These are referred to as "one-time sample" plants. Hermaphrodite and male-sterile plants were sampled in equal numbers; one expanding ovary per plant Was removed. These frozen I ovaries were later dissected to determine ovule number.

Activities on April 14, 1992 Census of plants and reproductive components:

developingPlants in thefruits,transewect plotsalso countedwere recmatureensusedorondehiscedthis date.fruitsIn additionand abortedto flowfruitsers,(flowersbuds and which had wilted and dried up without an expanded ovary). Mature fruits, dried sepals

I_ countedand receptaclesin order frtoomavoiddehiscedrecountingfruits, themand abortedon the nextfruitssamplewere removeddate. as they were

Pollinator exclusion experiment: Bagged and unbagged control fruits were removed and put into labeled microcentrifuge tubes for later counts of the developing seeds.

Ontogenetic changes in ovule number:

Developingfrom randomlyor matureselectedfruitsone-timewere collecsampletedplants.from theIf mature,markedfrurepeat-sampleits from theseplantsplantsandwere put into envelopes for seed collection (to be later counted and weighed); developing fruits were frozen for later dissection. Twenty-eight ovaries from the randomly selected one- plants repeat-sample were D time and 20 ovaries collected and then later dissected. Seed bank samples:

I Soil samples were taken using a bulb-planting tool to remove 24 soil plugs approximately 7 cm in diameter and 5 cm deep at random locations within the population. These

Hi samples were put into plastic bags and brought back to UCSB, air-dried, and weighed. m ! | 12 Each sample weighed approximately 100 grams when dry. Samples were then germinated to determine the amount of readily germinable seed remaining in the soil (see t Seed Bank Studies, below). No seed dispersal from plants emerging in 1992 had yet Ill occurred at this time, so all seedlings of Eremalche which appeared from the soil samples represent accumulated seed from past dispersal and reproductive events (pre-1992). ! Activities on April 24, 1992.

components: I Census of plants and reproductive Transect plants were recensused as before; most were dead and dry at this point. The

I werenumbercounted.of successfulFew flowersovariesorandbudsthewerenumberpresent.of unsuccessfulIn addition, ovariesa random(aborsampleted fruits)of hermaphroditic plants in the gully was censused to obtain numbers of successful and

I unsuccessfulplants and 15ovaries.repeat-sample114 ovariesindividualsrepresentingwere collected11 randomlyand thenselecteddissectedone-timeat a latercollectiondate. Seed collection/ontogenetic changes in ovule number:

I Most plants had few or no developing fruits remaining at this date. We sampled mature intact fruits when possible from the transect plants, from repeat-sample plants, from

I randomlyplants. Upselectedto five envelopesone-time cperollectionplant wereplants,collected;and fromfourrandwithomlyindividualselected hermaphroditeheads and one bulk collection.

I Activities on January 24, 1993

Interspecific competition study Ul Ten paired microsites containing Eremalche kernensis seedlings were located. At each

1_ micrtwo otrsiteeatmtwentosquadrats: a controolf 0treatme.25 meternt and2 werean "inestablished.terspeciflc Eachcompetition-freequadrat pair"cotrnsistedeatmenotfin which all species other than E. kernensis were removed. In other words, all potential interspecific competitors were removed from the "competition-free" quadrats. In each I quadrat, the number of Eremalche seedlings was determined.

Activities on February 5, 1993 Interspecific competition study

quadrats were Q Each of the from which all individuals of species other than E. kernensis removed was weeded again. 0 U

U ! 13

I' Activities on March 7 and April 7, 1993

I Interspecific competition study Quadrats were censused. In each census, the number of surviving individuals was i determined.flowers and theThenumberflower ofcolor,developinggender, fruitsnumberwasofrecordedopen flowers,for eachnumberindividualof senescedin each quadrat. ! Population 2

I Site location and conditions: Population 2 is located about a mile from the first population; the two populations may be

I squareconsideredmilespartborderedof a singleby thelargeCaliforniapopulationaqueductwhichonis patchilythe east, distributedHighway 33overon thea fewwest, and Lokern Road on the north. This population is on the east side of Highway 33 about

I 0.5similarmilesto southpopulationof the1,intersectionexcept thatoftheLokernhabitatRoadhere andis fragmentedHighway 33.by anSiteoilconditionspipeline are corridor, with the largest concentration of plants occurring in a triangular section of land between the pipeline and the highway. However, the plants were much more evenly distributed and also more common at this site than at the other site.

I Activities on April 9, 13, and 14, 1992 Census of plants and reproductive components:

I Plants were censused along a transect every 2 meters in 1-meter-square plots (2 m by 50 cm; oriented along the transect). The census was initiated on April 9 and continued on April 13 - 14. Reproductive components were recorded as in population 1.

Pollinator exclusion experiment:

U Bplantsaggedwereand used,unbaggeached (withcontraol)markedflowerbaggedbuds wereand seta markedup as iunbaggedn populatiobranch.n 1. Twenty Ontogenetic changes in ovule number: g Flowers or developing fruits were removed from repeat-sample plants (20 plants) and from randomly selected one-time sample plants and placed into labeled mlcrocentrifuge

R collectedtubes for lateron Aprildisse9ctionand 36andovariesovule counts.from 13 172repeat-sampleovaries fromplants41 rancollecteddomly seleon Aprilcted p14lants were later dissected.

Seedbanksamples: Soil samples were taken using a bulb-planting tool to remove 24 pairs of soil plugs

U Theseapproximately200-gram7 samplescm in diameter(each pairandwas5 cmpooled)deep atwererandoputm intolocatioplasticns withibagsn andthe pbroughtopulation. back to UCSB, where the seed bank was germinated to determine the amount of readily

_] germinable seed remaining in the soil. No seed dispersal in 1992 had yet occurred at this 14

I time, so all seedlings of Eremalche which appeared from the soil samples represent ! accumulated seed from past dispersal and reproductive events (pre-1992). Activities on April 23, 1992

I Census of plants and reproductive components: Transect plants were recensused for flower, bud, fruit and aborted fruit numbers.

l Pollinator exclusion experiment:

I Baggedmicrocentrifugeand unbaggedtubes andcontrollaterfruitsfrozen;werematurecollected.fruits Immaturewere put intofruitsseedwerecollectionput into envelopes.

collection/ontogenetic changes I Seed in ovule number: Seed was taken from transect plants as available; up to 5 envelopes per plant (4 individual i: repeat-samplefruits, one bulkplants.collectiOneon). expandingSeed and/oovaryr maturingfrom eachfruitsofwere19 individualscollected frrepresentedom each of inthe the pollinator exclusion experiment contributed to the study of ontogenetic changes in i ovule number. Activities on November 11, 1992

I Seedbanksamples:

I Sapproximatelyoil samples were7 cmtakenin diameterusing a bulb-plantingand 5 cm deep toolalongto removethree 20-meter22 pairstransectsof soil plugsrandomly located within population 2. These samples were put into plastic bags and brought back to UCSB, air-dried, and weighed. Each sample weighed approximately 250 grams when dry. Samples were then germinated in the UCSB greenhouse to determine the amount of readily germinable seed remaining in the soil (see Section 2 Greenhouse and Laboratory Methods: Soil seed bank study, below). All seedlings of Eremalche which appeared from

I eventsthese so(includingil samples therepresent1992 fieldaccumulatedseason). seed from past dispersal and reproductive

I Activities on January 24, 1993 Interspecific competition

I Ten paired microsites containing Eremalche kernensis seedlings were located. At each microsite two quadrats of 0.5 meter 2 were established. Each pair consisted of two

I treatments:each quadrat,a contrthe numberol treatmeofnEret andmalchea treatmentseedlingswherewas alldetermined.competitors are removed. In ! I | ! 15

I Activities on February 5, 1993

I Interspecific competition Each of the quadrats where competitors were removed was weeded again.

I Activities on March 7 and April 21, 1993

I Interspecific competition The 20 quadrats were censused on each date. In each census, the number of surviving

i individualsof senesced wasflowersdetermined.and numberTheofflowerdevelopingcolor, fruitsgender,wasnumberrecordedof openfor eachflowers,individualnumberin each quadrat.

I Effectof sheepgrazing On March 7, 1993, we encountered shepherds with sheep at population 2. Later in the

I season,of 20 meterswe censusedwere situatedthis populationacross thetoboundaryexamine betweenthe effectgrazedof theseandsheep.ungrazedThreepartstransectsof the population. The transect was centered on the border. All individuals that intersected the transect were censused. Flower color and number as well as the number and length of all I brancheswerecounted. I | | | | I | | ! 16

I SECTION 2 GREENHOUSE AND LABORATORY METHODS ! Soil seed bank study:

I Samples collected April 14. 1992 from populations I and 2 Following air-drying and weighing, on July 13, 1992 each sample of soil (twenty-four

I Population100-gram samples2) was spreadfrom populationevenly in 8"1, andcleartwenty-fplastic odishesur 200-gramover a one-inchsamples fromlayer of perlite, then watered regularly and monitored for seedling emergence until September 9, 1992 in

I theat 5UCSBdegreesgreenhouse.Centigrade T(ando simulatekept moist)winterforconditions,one month theandsamplesthen returnedwere thento therefrigerated greenhouse for continued monitoring of seedling emergence until December 2, 1992. As

I seedlings emerged, they were identified, tallied and removed. S_mples collected November 15. 1992 from population 2

I Following air-drying and weighing, each soil sample (twenty-two 250-gram samples from population 2) was spread evenly in 8" clear plastic dishes over a one-inch layer of i perlite,greenhousethen conditionswatered regfromularlyNovemberand monitored15, 1992for throughseedlingMarchemergence1, 1993.underAsambientseedlings emerged, they were identified, tallied and removed. i Seed weight measurements: t . Ftheromweiallghtmatofuthere fruitstotal cnumberollectedoffrmatureom repeatsee-dssamplein a,fruitone-tiormheade samplewas determinedand transectbyplants, weighing them to the nearest 0.01 mg with a Cahn C-30 Microbaiance. Aborted ovules or seeds were excluded.

I. Weighed seeds were stored under refrigeration for greenhouse studies initiated in August, •1992. We believe that this cooling and after-ripening period is necessary to promote

I gstillermihadnationotn germinatedbecause a sampleas of Juneof seeds30. that were planted in the greenhouse in late May Ovule and seed number measurements:

I For ovaries or fruits sampled from field populations and from greenhouse-raised individuals (Chapter 3), the number of ovules or seeds per fruit and the number of aborted

I ovuleovaries.s or seeds per fruit were determined by microscopic examination of the frozen ! ! 1 ! ! 17

I RESULTS

i Section 2.1 Variation between individuals, genders, flower colors, and dates:

I Combined data from both populations How much phenotypic variation is there among randomly sampled flowers and fruits of

I Evariableremalcheandkernensiswhich areonmosta particulaconsistenr datt (ore? conservatWhich coive)?mponentsDo plantsoffitnessvaryarewithmostrespect to trait means? How do gender and flower color influence the components of reproduction ?

I These data represent collections made on two dates, April 14 and April 23-24, 1992. April 14 represents the peak flowering season. April 24th was after peak flowering. At each date, flowers and fruits were sampled from hermaphroditic and male- I sterile individuals in both populations.

I COMPONENTS OF REPRODUCTION Total ovule number per fruit

I In Eremalche kernensis, there are significant differences among individuals in total ovule number per fruit on April 24 (Table 2.1.1). The main source of variation in ovule number is gender. On both sample dates, there are significant differences between

I gesignindersficantlyin totalmoreovuleovulesnumberper f(Tableruit than2.1hermaphrodites..2 and 2.1.3). MaleFloral-sterilecolorindividualsmorphs dohavenot differ significantly with respect to mean ovule number per fruit. These results suggest

'I thatcontrast,therethereis nois"caost"reductionto floralinp(origmen"cost"t produto) ctiovuleon withproductionrespectthatto ovuleaccompaniesnumber. antherIn production. I I

I I I I ! I 18

Table 2.1.1. Summary of the analysis of variance to detect significant differences among individual plants with respect to mean total ovule number per fruit. Male-sterile and

I hermaphrodite plants ofEremalche kernensis sampled on April 24, 1992 are included. One FactorANOVA X 1 :plant# Y 1 : Totalovules

I AnalysisofVarianceTable

i Source:BetweengroupsDF:36 Sum1121.619Squares: Mean31.156Square: F26,914-test: Within groups 102 118.079 1.158 p = .000t

I Total 138 1239.698 Model II estimateof betweencomponentvariance= 8.02 i ! I !

Ji 11 Ii II 41

U i 19

I Table 2.1.2. Summary of analysis of variance to detect statistically significant effects of flower color and gender on total ovule number per fruit in Eremalche kernensis on April

I number14, 1992.perThefruitincidencefor each tableflowershocolor-genderws sample sizescombination.and mean values for total ovule

i Anova table for a Z-factor Analysis of Variance on Y 1 : Total ovules

I Source: df: Sum of Squares: Mean Square: F-test: P value: Flower color (A) 1 9.560E-7 9.560E-7 1.360E-7 .9997

I GenderAB (B) 1 328.586.005 328.586.005 46..001731 .0001,9792 Error 80 562.515 7.031 I

There were no missing cellsfound.

! The AB Incidence table on Y 1 : Total ovules I! Gender:, MS Herin Totals:

_ pink 15.46213 10.25 1418 27 39 66 == white

' Totals: 15.48410 10.17944 12.34884 15.475 10.182 12.702 ii

n Y I! I] | i 20

I Table 2.1.3. Summary of analysis of variance to detect statistically significant effects of flower color and gender on total ovule number in Eremalche kernensis on April 24, 1992.

i Thefor eachincidenceflower tablecolor-gendershows samplecombination.sizes and mean values for total ovule number per fruit

I Anova table for a 2-factor Analysis of Variance on Y 1 : Total ovules

Source: dr: Sum of Squares: Mean Square: F-test: P value: Flowercolor(A) 1 1.346 1.346 .489 4857

I ABGender (B) 1 1745.095.655 1.095745.656 2.39770.624 .52950001 Error 135 371.968 2.755 I

i There were no missingcells found. 15 casesdeleted with missingvalues.

I The AB Incidence table on Y 1 : Total ovules

I Gender: MS Harm Totals: 45 43 88

"__ pink 1537.4 10.41914 12,96651 = white 15.378 10 13.902

I Totals: 15.3982 10.31657 13.309139 | I I I I II | _ 21

I Numberof developing ovules perfruit

I season, Pbuthenotypbecomeic dquiteifferencespronouncedbetweenlategendersin the areseason.not signiMale-sterilesficant earlyhavein thesignificantlyflowering more developing ovules per fruit than hermaphrodites (Figures 2.1.4 and 2.1.5). The later

i datecapableis probablyof developingmore representativein these individualsof thesinceactualonnumberApril 14of fewerovulesovulesper fruitmaythathaveare been pollinated.

I date (FiguresThere2.1.4are noandsignificant2.1.5). differences between the floral color morphs on either

I Table 2.1.4. Summary of analysis of variance to detect statistically significant effects of flower color and gender on the number of developing ovules per fruit in Eremalche kernensis on April 14, 1992. The incidence table shows sample sizes and mean values i for developing ovules per fruit for each flower color-gender combination. I Anova table for a 2-factor Analysis of Variance on Y 2 : Dev ovules

Source: df: Sum of Squares: Mean Square: F-test: P value: Flowercolor(A) 1 11.893 11.893 .927 .3392

AB 1 .557 .557 .043 .8355 I' Gender (B) 1 13.11 13.11 1.022 .3159 Error 64 820.985 12.828 11

LI_I There were no missingcellsfound.

U The AB Incidence table on Y 2 : Dev ovules

U, Gender: MS Herm Totals: 12 2 14 pink 8.167 7 8

= white 23 31 54 9.87 8.097 8.852

U Totals: 9.28635 8.0333 8.67668 a | | I 22

I Table 2.1.5. Summary of analysis of variance to detect statistically significant effects of flower color and gender on the number of developing ovules per fruit in Eremalche i kernensisfor the numberon Aprilof developing24, 1992. ovulesThe incidenceper fruit tablefor eachshowsflowersamplecolor-gendersizes and meancombination.values

i Anova table for a 2-factor Analysis of Variance on Y 1 : # dev. ovules/flwr

Source: df: SumofSquares: MeanSquare: F-test: Pvalue: Flower color(A) 11 42.954 42.954 2.638 .1072 i_, ABGender (B) I 1 35.407227.551 35.407227.551 213.9.17577 .1432,0003 Error 109 1774.551 16.28 !

I There were no missingcells found. 15 cases deletedwith missingvalues.

The AB Incidence table on Y 1 : # day. ovules/flwr

| Gender: MS Harm Totals: 30 33 63 g pink 8.937 7.0313 7,92150 = white 11.459 7.154 10.34 g Totals: 10.31367 7.06546 8,991113 g g m I | I I I 23

I Number of abortingovules per fruit

I 2.1.7). ThereMale-sterileare significantindividualsdifferencesabort morebetweenovules gendersper fruitonthanbothhermaphrodites.dates (Figures 2.1.6Thereand are also significant differences between the floral color morphs on April 24 but not on April 14. Pink individuals abort more ovules per fruit than white individuals later in the I flowering season.

I flowerTable 2.1.6color. andSummarygender oonf analysisthe numberof varianceof abortedto detectovulesstatisticallyper fruit insignEremalcheificant effectskernensisof on April 14, 1992. The incidence table shows sample sizes and mean values for the i number of aborted ovules per fruit for each flower color-gender combination. Anovatable for a 2-factorAnalysisof VarianceonY 3 : aborts I

I Source:Flowercolor(A) df:1 Sum.52of Squares: M.52eanSquare: F-test:.046 P.8317value: Gender(S) 1 128.26 128,26 11.235 .0014

I ABError 164 1730.435.625 111.416.435 .126 .7241 |

Therewerenomissingcellsfound. The ABIncidencetable on Y 3 : aborts |

Gander: MS 12 Harm 2 Totals:14 pink 7.083 2 6.357

W = white 6.30423 2.19431 3.94454 35 33 68

Totals: 6.571 2.182 4.441 B II 0 U I 24

I Table 2.1.7. Summary of analysis of variance to detect statistically significant effects of flower color and gender on the number of aborted ovules per fruit in Eremalche kernensis

I numberon April of24,aborted1992. ovulesThe incidenper cfruite tablefor eachshowsflowersamplecolor-gendersizes and combination.mean values for the

i Anova table for a 2-factor Analysis of Variance on Y 1 : # aborted ovules/flwr

I Source: df: Sum of Squares: Mean Square: F-test: P value: Flower color (A) 1 99.02 99.02 6.379 .013

I ABGender (B) 1 19109.806.057 19.80609.057 1.2767.026 ,.02610921 Error 109 1691.902 15.522 I

I There were no missingcellsfound. 15 cases deleted withmissingvalues.

I The AB Incidence table on Y 1 : # aborted ovules/flwr

I Gender: MS Herm Totals: 30 33 63

pink 6.86737 3.81813 5.2750 ; white 3.919 2.692 3,6

I Totals: 5,23987 3.546 4.53111 3 I | I! II I!

U I 25

I Proportion of ovules aborted Per fruit

I disappearsThereby areAprilsigni24ficant(Figuresdiffe2.1.8rencesandbe2.1.9tween). gendOn eAprilrs on 14,Aprilmale-steriles14 but the abortdifferencea higher proportion of ovules per fruit than hermaphrodites. At this date, the mean i prhermaphrodites.oportion of ovulesThisabindicatesorted perthatfruittheis number0.42 for ofmale-sterilesaborted ovulesand 0.22is notforsimply due to the higher number of total ovules in male-steriles. There are significant differences between the floral color morphs on April 24 but not on April 14. The effect of flower color on

I Apabortionril 24. rates may suggest a "cost" to floral pigmentation in Eremalche kernensis on

I Table 2.1.8. Summary of analysis of variance to detect statistically significant effects of flower color and gender on the proportion of aborted ovules per fruit in Eremalche kernensis on April 14, 1992. The incidence table shows sample sizes and mean values I for the proportion of aborted ovules per fruit for each flower color-gender combination. Anova table for a Z-factor Analysisof Varianceon Y 4: Proportionof OvulesAborted I

I Source: dr: Sumof Squares: MeanSquare: F-test: P value: Flowercolor(A) 1 .006 .006 .08Z .7754 i GeA8nder(B) 1 ..0133 ..013 3 4..19341 2 .0.6623396 Error 64 4.352 .068 I

I There were no missingcellsfound. TheAB Incidencetableon Y 4 : Proportionof OvulesAborted I

I Genden MS Herin Totals: pink .46912 .22 .4314

I white .39223 .21631 .29154 35 33 68 i Totals: .418 .215 .32 I I I ! 26 i Table 2.1.9. Summary of analysis of variance to detect statistically significant effects of flower color and gender on the proportion of aborted ovules per fruit in Eremalche

I kernensisfor the proportionon April of24,aborted1992. ovulesThe incidenceper fruit tablefor eachshowsflowersamplecolor-gendersizes and combination.mean values

i Anova table for s 2-factor Analysis of Variance on Y 1 : Prop. of Ore Aborted/flwr

I Source: df: SumofSquares: MeanSquare: F-test: Pvalue: Flower color(A) 1 .372 .372 4.867 .0295

I ABGender (B) 1 .057.045 .045.057 .593.746 .4429.3897 Error 109 8.333 .076 I

I There were no missingcellsfound. 15 cases deleted with missingvalues,

i The AB Incidence table on Y 1 : Prop. of Ovs Aborted/TIwr

I Gender: MS 30 Harm 33 Totals:63 pink .434 .341 .385

I '=_ white 37 13 50 .265 .26 .264 67 46 113

I Totals: .341 .318 .332 I I I I I I I I 27

I Table 2.1.10. Summary statistics for the total number of ovules, developing ovules, aborted ovules and proportion of aborted ovules per fruit on April 14, 1992.

I X1 :Totalovules Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:

Minimum: Maximum: Ran,qa: Sum: Sum of Sqr.: # Missing: I io i_o I- i,oo, i,,_o_to t

I Mean: Std. Oev.: Std. Error:X2 . : DevVariancovulese: Coef. Var.: Count:

Minimum: Maximum: Range: Sum: Sum of Sqr.: # Missing: i, 1,6 1,5 15oo 1_oo21,6 I I

I Mean: Std. Dev.: Std. Error:X3: abortsVariance: Coef. Van: Count: 14-, 13083i,63 i,_.6- i-_- 166 I I ioMinimum: IMaximum:,, 1Ran,q,4e: 13o_Sum: I,o,Sum of Sqr.: i# ,_MIssin,q: i I X4 : Proportion of Ovules Aborted Std. Error: Variance: Coef. Var.: Count:

I [M;;n: ist;;ev:: i.o, I.o,6 I""6 I- I Range: Sum: Sum of Sqr.: # Missing: I I?imum: 1%7mt,-_: I_,.., i1_o. 116 I I I I I I I I 28 I Table 2.1.11. Summary statistics for the total number of ovules, developing ovules,

I aborted ovules and proportion of aborted ovules per fruit on April 24, 1992. X 1 : Total ovules Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:

I 113'325 13"029 1"244 19"175 122"732 1154 I Minimum: Maximum: Range: Sum: Sum of Sqr,: # Missing: I 16 1,9 1,3 12062126746I0 I

I X2 : # dev. ovules/flwr Mean: Std. Dev,: Std. Error: Variance: Coef. Vat,: Count:

I 18.562 14.477 I .396 120.043 152.286 1128 I Minimum: Maximum: Range: Sum: Sum of Sqr.: # Missing: I I0 I,° It, 1,09611,931260 I

I X3 : # aborted ovulesfilwr Mean: Sld. Dev.: Std. Error: Variance: Coef. Vat.: Count:

I M14inimum:.,53Maximum:1412591.3Range: 76 ISum:t6,4 165.06Sum of Sqr.: 1# 7Missin,26g: I I0 1,6 1,6 1634 15444126 I I

I , Mean: Std. Dev.: X4 Std. : EProp.rror: of OvsVariance:Aborted/flwr Coef. Var.: Count: 1,364 1,203 1,026 1,966 160,641126, I I 10Minimum: 1Maximum:1 IRang, e: 146Sum: .6,7127.905Sum of Sqr.: 126# Missing: I I I I I I I ! 29 ! Summary of Results Section 2. I

I This table summarizes the results of all ANOVAs described in Section 2.1. Each column indicates, for each date and reproductive trait, the statistical significance of the effect of

i plant identity (ID), gender, and flower color on the mean value of the trait.

I n.s.* notp<0.05significant ** p<0.01

i ******* p

I total ovuleApril# 14 *** **** n.s. 2.1.1,2.12 April24 *** n.s. 2.1.3

I # developingAprilovules14 n.s. n.s. 2.1.4 April24 *** n.s. 2.1.5 # aborted ovules I April14 *** n.s. 2.1.6 April24 ** ** 2.1.7 % aborted ovules

I AprilApril 2414 n.s.* *n.s. 2.1.92.1.8 I ! I I I I ! | | .

| 30 Section 2.2

I Differences between the two populations

I Donumberpopulationof developings differ withovulersespperectfruitto,thethenumbnumberer ofofovulabortes edperovulfruites(orperovary)fruit, , orthethe proportion of aborted ovules per fruit on a particular date?

I Totalovule numberperfruit On both dates, there is no significant difference in mean total ovule number per

I numbefruit betwer perenfrtheuit onpopubothlationdates.s. ThInerebotihs populations,a significant effmale-sterilesect of gendehaver onamhigheanerovulemean number of ovules per fruit than hermaphrodites.

I Table 2.2.1. Summary of two-way analysis of variance conducted to detect statistically significant effects of population and gender on mean total ovule number per fruit of

I theEremalchesample sizekernenandsismeanindividualstotal ovulesamplednumberon Aprilper fruit14,from1992each. Thepopulationincidence andtablegendershows combination.

I Anova table for a 2-factor Analysis of Variance on Y 1 : Total ovules I Source: df: Sum of Squares: Mean Square: F-test: P value:

I Gender3OlOulation(B) (A) 1 595.10617.658 59517.658.106 2.62388.398 .0001.1093 AS 1 7,368 7.368 1.094 .2986

I Error 80 538.568 6.732 ! Therewereno missingcellsfound, I ! ! | | | I 31

I Table 2.2.1 (continued)

I The AB Incidence table on Y 1 : Total ovules

I Gender:. MS Harm Totals: 23 25 48 one

I "= 14.82617 10.0419 12.33336 two 16.353 10.388 13.194

I Totals: 15.47540 10.18244 12.70284 I

I ! | | | | | | | | m_ 32

I Table 2.2.2. Summary of two-way analysis of variance conducted to detect statistically significant effects of population and gender on mean total ovule number per fruit of i showsEremalchethe samplekernensissize individualsand mean totalsampledovuleonnumberApril 23per- 24,fruit1992.from Theeach incidencepopulation table (population 1= level 1; population 2 = level 2) and gender combination.

Anova table for a 2-factor Analysis of Variance on Y 1 : Total ovules I Source: df: Sum of Squares: Mean Square: F-test: P value: i pGenderop (A) (B) 1 2409.46.313 2.3409,4613 .151.743857 ..0001356 AS 1 2.661 2.661 .986 ,3223

I Error 150 404.757 2.698 .

I There were no missing cells found.

I The AB Incidence table on Y 1 : Total ovules

I Gender: MS Herm Totals: 82 57 139 level 1

I_ i 15.395 10.3167 13.30915 level 2 16.25 10,286 13.467

Totals: 15.46790 10,31264 13.325154

I! I! I! U

!1 I 33

I Number of developing ovules per fruit

I total numberOn bothof developingdates, there ovulesare significantper fruit.differencesPopulation be2tweenhas significantlythe populationsmore in the developing ovules per fruit than population 1 on April 14 and significantly fewer ovules i perdifferencesfruit thanin populatithe abioticon 1environmenton April 24. thatThiscausedifferencethe phenologiesbetween datesof thesemaypopulationsrepresent to be non-synchronous. Another possible difference between the populations may be the abundance of pollinators. At both dates, we also see a significant effect of gender on the

I total number of developing ovules.

I Tablesignificant2.2.3 effectsSummaryof populationof two-wayandanalysisgender ofonvariancenumber conductedof developingto detectovulesstatisticallyper fruit of Eremalche kernensis individuals sampled on April 14, 1992. The incidence table shows the sample size and number of developing ovules per fruit from each population I (population 1= "one"; population 2 = "two") and gender combination. I Anovatable for a 2-factorAnalysisof VarianceOn Y 1 : Devovules

I Source: df: Sum of Squares: Mean Square: F-test: P value: _opulation(A) 1 207.964 207.964 21.154 .0001

GendAB er(B) 1 44.36212.81 44.36212.81 41.303.513 .,03752579 Error 64 629.172 9,831

There were no missingcells found.

TheAB Incidencetableon Y 1 : Devovules

Gender: MS Herm Totals: 16 14 32 one

17 19 36 g "= tWO 8 5.5 6.906 10.647 9.895 10.25

Totals: 9,28635 8.0333 8.67668 I! | | I 34 I Table 2.2.4 Summary of two-way analysis of variance conducted to detect statistically

I significantof Eremalcheeffectskernensisof populationindividualsand sampledgender onon theAprilnumber24, 1992.of developingThe incidenceovulestableper fruit shows the sample size and number of developing ovules per fruit from each population

i (population 1 = level 1; population 2 = level 2).and gender combination. Anova table for a 2-factor Analysis of Varianceon Y 1 : Devovules/fruit I

I Sourc_oto(A)e: df:1 Sum161.of898Squares: Mean161.898Square: F-test:10.037 P.0019value: Gender(B) 1 204,481 204.481 12.677 .0005

I ABError 124 62000.367.079 61.6387.13 .396 .5303 I Therewerenohlissingcellsfound.

I TheAB Incidencetable onY 1 : Dev ovules/fruit I Gander: MS Herm Totals:

67 46 113 revel1 10.313 7.065 8.991 8 7 15

level2 775.5 2.85753 5.333128 Totals: 10.013 6,509 8.562 I I I I I | | I 35

I Number of aborted ovules per fruit

I number Onof abortedboth dates,ovulesthereperis fruit.a significantPopulationdifferenc1 hase signifibetweencantlythe morepopulationsaborted inovulesthe total per fruit than population 2 on April 14 (Table 2.25) and fewer aborted ovules per fruit i thangenderpopulationon April 214onbutAprilthis 2effe3 -ct24disappears(Table 2.26)by. AprilThere 23is_also- 24. a significant effect of

I significantTable 2.2.5.effectsSummaryof populationof two-wayandanalysisgender onof varianthe numberce conducof abortedted to deovulestect stperatisticallyfruit of Eremalche kernensis individuals sampled on April 14, 1992. The incidence table shows i the1 = sample"one"; populationsize and number2 = "two")of abortedand gendovuleser combination.per fruit from each population (population

i Anovatablelot a 2-factorAnalysisof VarianceonY 1 : aborts

I Source: df: Sum of Squares: Mean Square: F-test: P value: population(A) 1 125.972. 125.972 13.751 .0004

I GenderAS (B) 1 277.04427.745 277.04427.745 30.2413.029 .0001.0866 Error 64 586.319 9.161 I

I There were no missingcellsfound.

I TheABIncidencetableonY 1 :aborts

I Gender:. MS Herm Totals: = 18 14 32 ¢ 0119 7.278 4.5 6.062 | = i two 5.82417 .47419 363

Totals: 8.57135 2.18233 4.44168 |

0 B I 36

I Table 2.2.6. Summary of two-way analysis of variance conducted to detect statistically significant effects of population and gender on number of aborted ovules per fruit of

I showsEremalchethe samplekernensissize indandividualnumbers sampleof abortedd on Aprilovules 23per- 24f,ruit1992.from Theeachincpopulationidence table (population 1 = level 1; population 2 = level 2) and gender combination.

Anova table for a 2-factor Analysis of Variance on Y 1 : aborts I Source: df: Sum of Squares: Mean Square: F-test: P value:

I Genderpop (A) (B) 1 30.753181.761 " 30.763181.761 1.86711.033 .00121743 AB 1 .572 .572 .035 .8525

I Error 124 2042.893 16.475 I There were no missing cells found.

I The AB Incidence table on Y 1 : aborts

I Gender:. MS Herm Totals: 67 46 113

level 1 5,2398 3.57 4.53115 level 2 8.75 7.429 8.133

Totals: 5.61375 4,01953 4.953128

II il

| | ! 37

I Proportion of ovtll¢_ _irportedper fmi_

I ovules abortedOn both perdates,fruit.thereOn isAprila significant14, populationeffect of1 abortspopulationa significantlyon the prohigherportion of proportion of its ovules per fruit than population 2. On April 24, population 2 aborts a i highernumber prtoopreflectortion thofe itsresourceovules statusper fruofit thesethan ppopulationsopulation 1.andIf wethereconswereider nototalsignificantovule differences between the populations in total ovule number, the significant difference in the proportion of ovules aborted may be due to: (1) differences between the populations

I magnitudein the pollinatorand/orvisitationthe effectrates;of inbreeding;(2) differencesand/orbetween(3) differencesthe populationsbetween inthethepopulations in the availability of abiotic resources on the dates sampled (April 14 and April 23 - 24).

I Table 2.2.7. Summary of two-way analysis of variance conducted to detect statistically significant effects of population and gender on the proportion of aborted ovules per fruit

I showsofEremalchethe samplekernensissize andindividualsproportionsampledof abortedon Aprilovules14,per1992.fruit Thefromincidenceeach populationtable (population 1 = level 1; population 2 = level 2) and gender combination. ! Anova table for a 2-factor Analysisof Varianceon Y 1 : Proportionof OvulesAborted I

I Source:population(A) df:1 Sum1.15of Squares: Mean1.15Square: F-test:25.023 P.0001value: Gender(B) 1 .488 .488 10.628 .0018

I ABError 641 2.941.358 .046.358 7.781 .0069 I i Therewerenomissingcellsfound. I I I I I I | 38

I Table 2.2.7. (continued)

I The AR Incidence table on Y 1 : Proportion of Ovules Aborted

Gender:, MS Herm Totals: 18 14 32 i ..= one .47517 .4519 .46436 two .359 .042 .192

I Totals: .41835 .21533 .6832 I I I I | ! I I I I I I I ! 39 i Table 2.2.8. Summary of two-way analysis of variance conducted to detect statistically significant effects of population and gender on the proportion of aborted ovules per fruit

I showsof Eremalchethe samplekernensissize andindividualsproportion sampledof abortedon Aprilovules24,per1992.fruit Thefrom incidenceeach populationtable (population 1-- level 1; population 2 ---level 2) and gender combination.

i Anova table far a 2-factor Analysis of Variance on Y 1 : %aborts

! Source: df: Sum of Squares: Mean Square: F-test: P value: pop(A) 1 1.082 1.082 13,744 ,0003 t ABGander (B) 1 ..13308 .08.133 11.686,018 ..1965315 Error 124 9.764 .079 I

"4

I There were no missing ceils found. The AB Incidence table on Y 1 : */.aborts i

I Gender: MS 67 Herm 46 Totals:113 level 1 ,341 .318 .332 I level 2 .5278 .7067 .6115 75 53 128 i Totals: .381 .369 .364 I I I I I I I 40

I Summary_ofResultsSection2.2

I This table summarizes the results of all ANOVAs described in Section 2.2. Each column indicates, for each date and reproductive trait, the statistical significance of the effect of

i popugenderlationdifferencesand genderwereonmorethe meanpronouncedvalue ofearlierthe trait.in theNoseasonte thatthanfor twlater,'6--ofwhilethe four traits, differences between populations tended to be significant on both dates• However, the two populations changed their rank over time, with one population exhibiting relatively high I detailedphenotypicTablesvalues2.1.onI -o2.2.8ne dateforandmeanrelativaluesvely ofloweachphenpopulationotypic valuones eachat thedate.other date. See I n.s. not significant * p<0.05

I ***** p<0.001p<0.01 **** p<0.0001

I Population Gender Table total ovule #

i April 2414 n.s. **** 2.212.2.2 # developing ovules April14 **** * 2.2.3 I # abortedAprilovules24 ** *** 2.2.4 April14 *** **** 2.2.5 April24 ** n.s. 2.2.6 I % aborted ovules April14 **** ** 2.2.7

I April24 *** n.s. 2.2.8

| | I O R ! 41

Ii Section 2.3

I Effects of date, gender and flower color in each population: three-way analyses of variance

I Within a population ofEremalche kernensis sampled on a specific date, how much phenotypic variation is there among randomly sampled flowers and fruits? Which

I vcomponary withentsrespectof reproductionto trait meansare?mosHowt variabledo genderandanwhichd flowerare colomostr consisinfluencetent?theDoplants components of reproduction ?

! Do the components of reproduction change across the season?

I mean totalThernumbere are noofsigniovulesficantperdfruit.ifferenThereces amongis a significantsampling differendates withce amongrespect dates,to the however, with respect to the mean number of developing ovules per fruit. Fewer ovules

I peralsofruita significanttend to ddifferenceevelop to mamongaturitysamplinglater in thedatesseasonin the(onmeanAprilnumber23 - 24,of1992)abortedThereovulesis per fruit. There is higher abortion at the later date. There is a significant difference in the proportion of aborted ovules. A higher mean proportion of ovules per fruit is aborted late I in the season than early in the flowering season.

Population 1 Information provided from total data set. These analyses examine the effects of

geotherwisender, flownoted,er coalllor interactionand samplintermsg dateareonnotcompostatisticallynents ofsignifireprocductant.ion.TheseUnlessanalyses differ from those in Sections 2.1 and 2.3 in that they provide, for each population analyzed separately, simultaneous analyses of the effects of gender, flower color, and

_ indatea singleon reprodataducsettiveto traitsexamine. In overallSectionstrend2.1 sanwithind 2.3, thethe spetwocies.populationsIn this section,were combinedthe two populations can be compared to determine whether the effects of gender, flower color, 1_ and date on reproductive components are the same at both sites.

Q Ii U ! 42

I Total ovule number per fruit

I ovules perTherefruit arethansignifihermaphrodites.cant differences Therbetweene are nogenderssignificant. Male-sterileseffects of samplinghave moredate or flower color on the mean total number of ovules per fruit. I Table 2.3.1. Summary of three-way analysis of variance conducted to detect statistically significant effects of date, gender and flower color on the number of ovules per fruit of

I ofEremalcheovules perkernensisfruit fromindividuals.each date, Theflowerincidencecolor andtablegendershowscombination.the sample size and number

I Anova table for a 3-factor Analysis of Variance on Y 1 : Total ovule #/fruit

I Source:date (A) df:1 Sum2.982of Squares: Mean2.982Square: F.676-test: P.4121value: Gender(B) 1 690.375 690.375 156.518 .0001

flABcolor(C) 1 11.318.574 1.5741.318 .357.299 ,.5853551 AC 1 .008 .008 .002 .9661

i ABCBC 1 .446.147 .446.147 .101.033 1.8555.7508 Error 179 789.537 4.411 a j Therewerenomissingcellsfound. The ABC Incidence table on Y 1 : Total ovule #/fruit II

i fiGander:.color:, pink MS white pink Herin white Totals: 10 13 5 20 48 Apd114

-o 45 37 43 14 139 i _ April 24 15 14.692 10.2 10 12.333 15.4 15.378 10.419 10 13.309

Totals: 15,32755 165.20 10.39648 3410 13.059187 I | ! 43

I Number of developing Ovules P..e.Ifr0i_

I developingTherovulese are sperignififruit.cant Male-sterilesdifferences beproducetween gendersfruits within thesignificantlymean total morenumber of developing ovules than hermaphrodites. There are no significant differences between

i dates or flower colors with respect to the number of developing ovules per fruit. Table 2.3.2. Summary of three-way analysis of variance conducted to detect statistically

I persignificantfruit of effectsEremalcheof datekernensis, gender individuals.and flower colorThe incidenceon the numbertable showsof developingthe sampleovulessize and number of developing ovules per fruit from each date, flower color and gender

I combination.

i Anovatablefor a 3-factorAnalysisof Varianceon Y 1 : # dev.ovsJfruit Source: df: SumofSquares: MeanSquare: F-test: P value:

I Genddate(A)er(B) 1 40.703101.231 101.40.703231 6.4912.61 .0119.1088 AB 1 6.044 6.044 .388 .5346

I fACl color(C) 1 .51922.269 22.269.519 .0331.428 .8555.2342 BC 1 16.144 16.144 1.035 .3107

I ABCError 1371 2136,579.847 15.595.847 .054 .816 i Therewere no missingcellsfound.

, TheABC Incidencetable onY 1 : # dev,ovedh'ult

i Gender: MS Herm Totals: fl color:, pink white pink white

I April14 8,1119 7.8899 72 5.2512 6.90632 -o 30 37 33 13 113

I April24 8.939 11.45946 7.0335 7.15254 8.991145 Totals:

i 8.718 10.761 7.029 6.24 8.531 I I I I 44

I Number of aborted ovules tLe,.[fruit

ovule aborTheretions arepersignifruit.ficanMale-sterilest differences havebetwsignificantlyeen genders higherwith respectnumbersto theof abortednumber of ovules per fruit than hermaphrodites. There is a significant date by color interaction.

i Tforhisplantsinteracsampledtion apponearsAprilbecaus14eis amlowerong thanpink onindAprilividuals24. thIne contnumberast,r oamongf abortedwhitoveules individuals, the number of ovules aborted per fruit on April 14 is higher than the number ! aborted on April 24. Table 2.3.3. Summary of three-way analysis of variance conducted to detect statistically

I significantfruit of Eremalcheeffects okernensisf date, genderindividuals.and flowerThecolorincidenceon thetablenumbershowsof abortedthe sampleovulessize perand number of developing ovules per fruit from each date, flower color and gender ! combination. Anovatable for a 3-factorAnalysisof Varianceon Y 1 : # abortedovaJfruit

Source: df: SumofSquares: MeanSquare: F-test: P value:

i dateGend(A)er(B) 1 17145.922,861 17145,922.861 19.724.195 .27630022 AB 1 11.627 11.627 .775 .3802

i flACcolor(C) 1 73.108.085 73.085,108 .0064.874 .9401.0289 BC 1 11.151 11.151 .743 .3901

I ABCError 1137 ,2055126 ,041 .12615 ,008 .g272

I Therewerenomissingcellsfound.

J The AC Incidencetable onY 1 : # abortedOVS./fTUlt

!- flcolor:, pink white Totals: 11 21 32

I Apd114 5.727 6.238 6.062 "o 63 50 113 Apd124 5.27 3.6 4.531

I Totals: 74 71 145 5.338 4.38 4.869 !

m I 45 i Table 2.3.3. (continued)

I The ABC Incidence table on Y 1 : # aborted ovsJfrult

I Gender:. MS Herm Totals: flcolor: pink white pink white

' April 14 6.5569 "89 2 4.91712 6.06232 •1o 30 37 33 13 113 i Apd124 6.86739 3.91946 3.81835 2.69225 4,531145 Totals: 8,795 4.717 3.714 3.76 4.869 t I I I 11 W II I!1 U U U

U I 46

I" Proportion of ovules aborted per fruit

I however,Therea significantare no significantdate by colordifferencesinteraction.betweenOn Aprilgenders,14,colorswhite orindividualsdates. Therehave is, much higher abortion rates than pinks; in contrast, on April 24th, pinks have a higher i abortion rate than whites. Table 2.3.4. Summary of three-way analysis of variance conducted to detect statistically significant effects of date, gender and flower color on the proportion of aborted ovules t andper fruitproportionofEremalcheof abortedkernensisovules individuals.per fruit fromTheeachincidencedate, flowertable colorshowsandthegendersample size combination. ! Anovatablefor a 3-factorAnalysisof Varianceon Y 1 : Prop. ovulesaborted/fruit

Ii Source: df: SumofSquares: MeanSquare: F-test: P value: date(A) 1 .119 .119 1.591 .2094

I GenderAB (B) 1 ..02613 ..02613 1.35.729 ..55531908 -. flcolor(C) 1 .008 .008 .112 .7386

I ECAC 1 ..357112 ..135712 41..763493 .22380308 ABC 1 .025 .025 .333 .5649

I Error 137 10.283 .075

I Therewerenomissingcellsfound.

The AC Incidencetableon Y 1 : Prop.ovulesaborted/fruit

_1 fl colon pink white Totals: 11 21 32 April 14 "0 63 50 113 Apd124 405 4g5 .385 .264 .332

Totals: .38874 .33271 .361145 | I tl I 47

I Table 2.3.4. (continued)

I The ABC Incidence table on Y 1 : Prop. ovules aborted/fruit

Gender: MS Herin I Totals: fi color: pink white pink white j _ April 14 ,459 .4999 .22 ,49212 .46432 o 30 37 33 13 113 Apdl 24 t Totals: .43439 .26548 .34135 .2625 .332145 .437 .311 .333 ,371 .361 I

| ! I |

| ! ! Ill | I 48

I_ POPULATION 2

I General information provided bv the analysis of the reneat-samnle nlants examined on three dates. These data examine the effects of gender and date on the components of

I reffecteproduofctiocolorn. Thonerereproductivewere not etnouraits.gh Unlesspink indivotherwiseiduals innotedpopualllatiointeractionn 2 to exatermsmine theare not significant.

I Total ovule number per fruit

I ovules perTherefruitarethansignhermaphificant rdodites.ifferencesSimilarbetweeton populationgenders. M1a,lethe-sterilestotal numbhaveer moofreovules produced does not change significantly over the flowering season.

I' Table 2.3.5. Summary of two-way analysis of variance conducted to detect statistically significant effects of date and gender on the number of ovules per fruit of Eremalche

I perkernensifruits fromindividualeach s.dateTheand incgenderidencecombination.table shows the sample size and number of ovules

I Anovatablefor a 2-factorAnalysisof Varianceon V 1 : Total ovules I Source: df: Sumof Squares: MeanSquare: F-test: P value:

I GenderDate(A)(B) 12 78.02556.742 756.7424.013 267.8161.42 ,0.2439001 AB 2 2.197 1.098 .380 ,6784

Error 217 613,155 2.826

Therewerenomissingcellsfound. ! | | | _ 49

1_ Table 2.3.5. (continued)

I The AB Incidence table on Y 1 : Total ovules

, Gender:. MS Herm Totals: April14 17 19 36 16,353 10.368 13.194

I "¢ April24 16.258 10.2867 13.46715 88 84 172 i April 9 15,636 10.131 12.948 Totals: 113 110 223 15.788 10.182 13.022 !

| = I I | | | |

11 Q I 50

I' Number of developing ovules P..Cd:fruit

developingThereovules.are significantThe numberdifferencesof developingbetweenovulesgenderspeakandondatesApril in14theandtotaldeclinenumberby of April 24, 1992. Male-steriles have more developing ovules per fruit than hermaphrodites.

I Table 2.3.6. Summary of two-way analysis of variance conducted to detect statistically significant effects of date and gender on the number of developing ovules per fruit of

' ofEremalchdevelopinge kernenovulessis iperndivfruitidualsfrom. Theeachincdateidencande tabgenderle shocombination.ws the sample size and number

Anovatablefor a 2-factorAnalysisof Varianceon Y 1 : Devovules/fruit

! Source: df: Sumof Squares: MeanSquare: F-test: P value: Date(A) 2 315.168 157.584 13.76 .0001

' ABGender(B) 21 46.358163.05 23.179163.05 2.02414.237 .1348,0002 I Error 217 2485.111 11.452

I Therewerenomissingcellsfound.

'_' The AB Incidencetableon Y 1 : Devovules/fruit

I Gender:. MS 17 Herin19 Totals:36 April14 10.647 9,895 10.25

•o_ April24 7.58 2.8577 5.33315 88 84 172

I April9 11,159113 8.452110 9.837223 Totals:

i 10.823 8.345 9.601 I 11 I

' Number of aborted ovule8 Per fruit

I aborted Thereovulesarepersignifruitficanton Apdiffereril 24thncesthanbetweenon anygofendersthe previousand datessampling. There aredates.moreMale- steriles have significantly higher numbers of aborted ovules per fruit than i hermaphrodites.sterile individuals, Therethe meanis alsonumbera significantof abortedgenderovulesby dateper fruitinteraction.was higherAmongon Aprilmale-14th than on April 9th (5.82 vs. 4.48). In contrast, among hermaphroditic individuals, the number of aborted ovules per fruit was much higher on April 9 than on April 14 ( 1.68 vs. I 0.47).

I_ Tablesignificant2.3.7.effectsSummaryof dateof andtwo-waygenderanalysison the ofnumbervarianceof abortedconductedovulesto detectper frustatisticallyit of Eremalche kernensis individuals. The incidence table shows the sample size and number

, of aborted ovules per fruitAnovefromtableeachfor datee 2-faandctor genderAnalysiscombinationof Variance. on Y 1 : aborted ovules/fruit

Source: dr: Sum of Squares: Mean Square: F-test: P value: : Date (A) 2 348.333 174,167 18.722 ,0001 + Gender (B) 1 222.764 222.764 23.946 .0001 AB 12 161.12 130.56 13.285 +0393 II Error 1217 12018.698 19,303

l There were no missingcellsfound. The AB Incidence table on Y 1 : aborted ovules/fruit ! Gender:. MS Herin ")'Ot_l_;

I m Apn114. 5.82417 .47419 363 -_ . 8 7 15

88 84 172 i _ Apn124 8.75 7.429 8,133 April9 4.477 1.679 3.11

Totals: I 4.982113 1.836110 3.43223 ! I ! ! 52

I proportion of ovules aborted per fruit

I are abortedThereonareAprilsign24th.ificant Thedifferenceseffect of betweengender ondates.the proportionThe highesoft abortedproportioovulesn of ovuleis nots quite statistically significant, although male-steriles appear to have a higher rate of ovule

I abortion than hermaphrodites. The significant gender by date interaction appears because, among male-steriles, ovule abortion rates for plants sampled on April 14 exceed abortion rates of plants

I ratessampleford plantson Aprilsampled9 (0.36onvs.April0.29)9. farIn exceedcontrast,theamongabortionhermaratesphroobserveddites, ovulein plantsabortion sampled on April 14 (0.17 vs. 0.04). ! Table 2.3.8. Summary of two-way analysis of variance conducted to detect statistically significant effects of date and gender on the proportion of aborted ovules per fruit of I Eremalche kernensis individuals. The incidence table shows the sample size and proportion of aborted ovules per fruit from each date and gender combination.

1' Anovatablefor a 2-factorAnalysisof Varianceon Y 1 : Proportion of AbortedOvules

I Source: df: SumofSquares: MeanSquare: F-test: Pvalue: Date(A) 2 2,163 1.082 23.338 .0001 I Gender(B) 1 .17 .17 3.864 .0569 AB 2 .669 .334 7.216 .0009

Error 217 10.058 .046 i_ Therewereno missingceilsfound.

TheAB Incidencetable onY 1 : Proportionof AbortedOvules

I_, Gender: MS 17 Herm19 Totals:36 April 14 .359 .042 .192

._ April 24 .5278 .7067 .6115 88 84 172 i] TotaAprills:9 .292113 .168110 .223231 .318 .181 .25 U II II k 53

SummaryofResultsSection2.3

i Thisindicates,table forsummaeachrizespopulationthe resultsand ofreproductiveall ANOVAstrait,describedthe statisticalin Sectionsignificance2.3. Eachof columnthe effect of date, gender, and flower color on the mean value of the trait. Population 2 more

i cindicatingonsistentlythatshoseasonalws an effectvariationof datein oreproductiven reproductivecharacterstraits thanis moredoes pronouncedpopulation 1,in population 2 than in population 1. The effect of gender on reproductive traits is similar in both populations. See detailed tables (Tables 2.3.1 - 2.3.8) to examine the direction and I formagnitudeeach trait.of phenotypic change in response to date that occurs within each population

I n.s.* np<0.05ot significant ** p

I, Date Gender FlowColorer Table '" total ovule #

i Pop 21 n.sn.s.. **** n.s. 22.3.5.3.1 # developing ovules Pop1 n.s. * n.s. 2.3.2 I # abortedPopovules2 **** **** 2.3.6 Pop1 n.s. * n.s. 2.3.3

' % abortedPopovules2 **** **** 2.3.7 Pop1 n.s. n.s. n.s. 2.3.4

_i Pop2 **** n.s. 2.3.8 II W

i

U U ! 54

! Section 2.4

I Variation within populations: each date evaluated separately Within a population of Eremalche kernensis sampled on a specific date, how i muchof the phcomponentsenotypic vaofriatfitnession isaretheremostamongvariablerandoandmlywhichsamplaedfiowre mostersconsistent?and fruits?DoWplantshich vary with respect to trait means? How do gender and flower color influence the components of reproduction? I

Population 1

MARCH 29, 1992 - Prior to flowering Total ovule number per fruit (or developing QYorY_

On March 29, 1992, flowers had not yet opened. Flower buds were sampled and total ovule number per fruit was recorded following examination with a dissecting

betweenmicroscopgenderse. Amowithng inrespectdividualtos meansampledtotalonovulethis dnumberate, thereperwerefruitsigni(Tableficant2.4.1).differencesMale- steriles had more ovules per fruit than hermaphrodites. There were no significant I differences between flower color morphs with respect to ovule production per fruit. | | | I I ! I ! ! I 55

I_ Table 2.4.1. Summary of the analysis of variance to detect statistically significant effects of flower color and gender on total ovule number per fruit in Eremalche kernensis on

I Marchvalues 29,for total1992 ovulein popunumberlation per1. Thefruit incidenfor eachce flowertable showscolor-gendersample combination.sizes and mean

I Anova table for a 2-factor Analysis of Variance on Y 1 : Total ovules/Iruit

I Source: df: SumofSquares: MeanSquare: F-test: P value: Flower color(A) 1 18.289 15,289 2.621 1142

I ABGender (B) 1 .178.17061 2 .178061.172 .0130.549 .9191.0001 Error 36 209.962 5.832 I

I There were no missingcellsfound.

I The AB Incidence table on Y 1 : Total ovules/fruit

I Gender: MS Herin Totals:

3 pink 5 3 8 r_' _ 13 7.66719 3211 -- white 14.692 9.158 11.406

I 18 22 40 Totals: 14.222 8.955 11.325 I I I I I i I I 56

I APRIL 14, 1992

I To_I number of ovules per fruit There are significant differences between genders. Male-steriles had more ovules i perbetweenfruit thancolor hermaphroditesmorphs, Summary(Tablestatistics2.4.2). forTherepopulationwere no1signiare ficpresentedant differenin Tableces 2.4.6 and the frequency distribution in Figure 2.4.1

I Table 2.4.2. Summary of the analysis of variance to detect statistically significant effects of flower color and gender on total ovule number in Eremalche kernensis on April 14,

I ovule1992 innumberpopulationper fruit1. Thefor eachincidenceflowertablecolor-gendershows samplecombination.sizes and mean values for total

i Anovatablefor a 2-factorAnalysisof Varianceon Y 1 : Total ovules/fruit

I Source: df: SumofSquares: MeanSquare: F-test: Pvalue: Gender(A) 1 211.054 211.054 22.239 .0001

I flABcolor(B) 1 .6.02704 ..027604 .064.003 .8957602 Error 44 417.569 9.49 I

I Therewerenomissingcellsfound. i TheAB IncidencetableonY 1 : Totalovules/fruit

i flcolor:, pink white Totals: 3 MS 10 13 23 -m 15 14.692 14.826

I ¢¢ Herm 10.25 2010 10.0425 15 33 48

I Totals: 13.4 11.848 12.333 ! I ! I I II 57 Number of developing ovules IL¢.Ifl': 0i¢

I There are no significant differences between genders although male-steriles appear to have more developing ovules per fruit than hermaphrodites. (Table 2.4.3; 8.0 vs. 5.5 ovules/fruit) The frequency distribution is shown in Figure 2.4.2. There is also no

I producingdifference pinkbetweenfloralcolpigments.or morphs on this date, suggesting that there may be no "cost" to

I Table 2.4.3. Summary of the analysis of variance to detect statistically significant effects of flower color and gender on number of developing ovules per fruit in Eremalche kernensis on April 14, 1992 in population I. The incidence table shows sample sizes and I mean values for total ovule number per fruit for each flower color-gender combination. Anova table for a 2-factor Analysis of Vadance on Y 2 : Dev ovules/fruit I

I Source: df: Sum of Squares: Mean Square: F-test: P value: ., Gender (A) 1 17.457 17.457 1.35 .2551 fl color (B) 1 4.829 4.829 .373 .5461

I AB 1 2,898 2.898 .224 .6396 Error 28 362.028 12.93 I

I There were no missing cells found.

i The AB Incidence table on Y 2 : Dev ovules/fruit

I fl color: pink white Totals: 9 9 18 MS 8.111 7.889 8 I r_® Herin 2 12 14 7 5.25 5.5

Totals: 7.909 6.381 6.906 i 11 21 32 I I I I I 58

I Number of aborted ovules _ fruit

I have a higherThere numberare significantof aborteddifferencesovules perbetweenfruit thangendershermaphrodites.(Table 2.4.4). ThereMale-sterilesare no significant differences between color morphs, suggesting there may be no "cost" to i producing the pink pigment.

Table 2.4.4. Summary of the analysis of variance to detect statistically significant effects

I kernensisof flower conolorApriland 14,gender1992oninthepopulationnumber o1.f aborteThe incidenced ovules tableper frushowsit in Ersampleemalchesizes and mean values for number of aborted ovules per fruit for each flower color-gender

I combination. Anovatablefor a 2-factorAnalysisof Varianceon Y 3 : abortedovules/fruit I

I Source:Gender(A) df:1 Sum72.438of Squares: Mean72.43Squar8 e: F-test:5.585 P.0253value: fl color(B) 1 23.61 23,61 1.82 .1881

I ABError 281 363,1392.691 12.9692.691 .207 .6523 I

Therewerenomissingcellsfound.

I TheAB Incidencetable on Y 3 : aborted ovules/fruit

I flcolor:, pink 9 while 9 Totals:18 MS 6.556 6 7.278 Herm 2 12 14 II = 2 4.917 4.5 11 21 32

Totals: 5.727 6.238 6.062 | | m U I II 59 Proportion of ovules aborted per fruit

I to this traitThereon arethisnodatesignificant(Table 2.4.5).differences between genders or color morphs with respect

I Table 2.4.5. Summary of the analysis of variance to detect statistically significant effects of flower color and gender on the proportion of aborted ovules per fruit in Eremalche

mean values for proportion of aborted ovules per fruit for each flower color-gender i combination.kernensis on April 14, 1992 in population 1. The incidence table shows sample sizes and

I Anova tablefor a 2-factorAnalysisof Varianceon Y 4 : Proportionaborted ovules I Source: df: Sum of Squares: MeanSquare: F-test: P value: i Genderfl color (A)(B) 1 .082.144 .082144 2.0621.182 .2861.1821 AB 1 .073 .073 1.053 .3135

I Error 28 1,95 .07

I There were no missingcellsfound. | TheAB Incidencetableon Y 4 : Proportionabortedovules | fl color: pink white Totals: MS 9 9 18 '1: .45 .499 .475 2 12 14 ¢Z Herm .2 .492 I .45 Totals: 11 21 32

.405 .495 : .464 | | I 6O

I Table 2.4 6. Summary statistics for the total number of ovules per fruit in population 1 on April 14, 1992.

I X 1 : Totalnumberof ovulesper fruit Mean: Std.Dev.: Std.Error:. Variance: Coef.Vat.: Count: | I`2.33313-a3I_, , I"'_a 13,.,2,I,_ I Minimum: Maximum: Ran,qe: Sum: SumofSqr.: # Missing: | Io 12o 12o 1_°2 I,,- Io I

Figure 2.4.1. Frequency distribution of the total ovule number per fruit in population l I on April 14, 1992. I 25 I | 20

I 15 e-" "1 ! O L2 | lo I

I 0 -I I 0 5 10 15 20 25 30 35 40 45 50 | Total number of ovules per fruit [! il I II 6, Table 2.4.7. Summary statistics for the number of developing ovules per fruit in i population 1 on April 14, 1992. X2 : Oevovules Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:

Minimum: Maximum: Range: Sum: Sum of Sqr.: # Missing:

I Figure 2.4.2. Frequency disuibudon of the number of developing ovules per fruit in I population 1 on Apd! 14, 1992.

|

I 25' ' ' '

! 20 | | is ¢,-.

! ° 10 , | o0 5 10 1,5 20 25 30 35 40 45 50

I Numberof developingovulesperfruit J | I 62

I Table 2.4.8. Summary statistics for the number of aborted ovules per fruit in population i 1 on April 14, 1992. X 3 : aborts Moan: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:

Minimum: Maximum: Ran,qo: Sum: Sum of Sqr.: # Mlssln.q:

I IO 114 I TM 1194 11624 116 I

I Figure 2.4.3. Frequency distribution of the number of aborted ovules per fruit in

I population25l ...... on Apri114,1992. , , , , , , , , , ,

| 20

I, _ 15 1 _ 10 I

i 20 25 30 35 40 45 5 Numberof abortedovulesperfruit I I I I | 63 Table 2.4.9. Summary statistics for the proportion of aborted ovules per fruit in i population l on April 14, 1992. X4 : Proportion aborted ovules Mean: Std. Dev.: Std, Error: Variance: Coef. Var.: Count:

Minimum: Maximum: Range: Sum: Sum of Sqr.: # Missing:

I I 0 I '933 I '933 114"842 18'995 116 I

I Figure 2.4.4. Frequency distribution of the proportion of aborted ovules per fruit in I population 1 on April 14, 1992.

[ i 25 .... | 20 ! 15 e- -'I ! o ¢D | 10 ! , J O0 .1 .2 .3 .4 .5 .6 .7 " .8 .9

Proportion aborted ovules per fruit I! II I

APRIL 24, 1992

I T0tP-Inumberof ovules per fruit

I ovules perTherefruitare(Tablesignificant2.4.10).differencesMale-sterilesbetweenhavegendersmore ovuleswith respectper fruittothanthe number of hermaphrodites.

I Table 2.4.10. Summary of the analysisof variance to detect statistically significant effects of flower color and gender on total ovule number per fruit in Eremalche kernensis

I valueson Aprilfor24total, 1992ovulein pnumberopulationper1.fruitTheforincidenceeach flowertablecolor-gendershows samplecombination.sizes and mean

i Anova table for a 2-factor Analysis of Variance on Y 1 : Total # of ovules/fruit

I Source: dr: Sum of Squares: Mean Square: F-test: Pvalue: Gender (A) 1 438.845 438.845 219.372 .0001

I ABfl color(B) 1 5.641.371 5.371.641 2.32.685 .1042.5725 Error 110 220.051 2 I

I There were no missingcellsfound.

I The AB Incidence table on Y 1 : Total # of ovules/fruit

I fl color:, pink white Totals:

MS 37 35 72 C I O"1= 15.32435 15.6867 15.425 Herrn 10.886 10,143 10.762

I Totals: 72 42 114 13.167 14.762 13.754 ! I | | I | 65 Mean number of ovules per fruit per individual plant

i In this analysis, each individual plant is represented in the data set by the mean of two to four ovaries. Because of the reduced degrees of freedom relative to the preceding analysis, this provides a more conservative test of the effect of gender on the number of

i Male-sterilesovules per fruit.haveTherea higherare significantmean numberdifferencesof ovules.betweenThere theare gendersno signifi(Tablecant differences2.4.11). between color morphs.

I Table 2.4.11. Summary of analysis of variance to detect statistically significant effects of flower color and gender on mean number of ovules per fruit per individual in Eremalche

i kernensismean valueson forAprilmean24, number1992 in ofpopulationovules per1. fruitThe perincidenceindividualtableforshowseach sampleflower color-sizes and gender combination.

I Anova table for a 2-factor Analysis of Variance on Y 2 : Mean # ovules/fruit/ind

| - Source: df: Sum of Squares: Mean Square: F-test: P value:

i fGenderl color (B)(A) 1 .018120.071 ,120018.071 .01495.389 .9063.0001 AB 1 2.083 2.083 1.655 .2117

i Error 22 27.693 1.259 | There were no missingcells found.

I The AB Incidence table on Y 2 : Mean # ovules/fruit/ind | fi color:, pink white Totals:

I _ MS 8 8 16 =o 15.438 16.05 15.744. 8 2 10

I Herm 10.98816 10.2510 10.8426 Totals: 13.212 14.89 13.858 | | II m I | 66 Figure 2.4.5. Means and one standarddeviationof the mean number of ovules per fruit I for hermaphroditeand male-sterile individuals in population 1 on April 24, 1992.

I Mean + One Standard Deviation 18

I 16.

• 14. I 0 t,. I =_ 12. --_ 10. I 0° '3 8.

J= 6'

I z 4, ¢,-

{_ =!_ 2' 0 ] Male-SterileIndividuals HermaphroditeIndividuals | | | | | I

| 67 Number of developine ovules P_r fruit

I developingThereovulesare sigpernififruitcant (Tabledifferen2.4.12).ces betweenFruitsgendersof male-sterilewith respectflowersto thehavenumbera higherof number of developing ovules than those of hermaphrodites, iThere are no significant

I didevelopingfferences betweenovules perflofruitwer thancolorpinkmorphsindividuals.although white individuals appear to have more

I Table 2.4.12 Summary of the analysis of variance to detect statistically significant effects of flower color and gender on number of developing ovules per fruit in Eremalche kernensis on April 24, 1992 in population 1. The incidence table shows sample Sizes and

I combination.mean values for the number of developing ovules per fruit for each flower color-gender

i Anova table for a 2-factor Analysis of Variance on Y 3 : # Dev ovules/fruit

II Source: df: Sum of Squares: Mean Square: F-test: P value: Gender(A) 1 151.376 151.376 10,443 .0017

I ABfl color(B) 1 499.322.346 9.32249.346 3.643.404 .424.06837 Error 90 1304.591 14.495 I

I There were no missingcallsfound.

I The AB Incidence table on Y 3 : # Dev ovules/fruit

I flcolor:, pink white Totals: 24 35 59 •o 9.375 12 10.932 I _ MS 29 6 35 Harm 6.966 8 7.143

I Totals: 53 41 94 8.057 11.415 9.521 I I I I 68

I Me,In number of developing ovules per fruit per irldividua[

I two to fourIn thisovaries.analysis,Becauseeach indof ivtheidualreducedplant degreesis representeof freedomd in therelativedata settobythetheprecedingmean of analysis, this provides a more conservative test of the effect of gender on the number of developing ovules per fruit. There are significant differences between the genders in the I mean number of developing ovules per fruit (Table 2.4.13). Male-steriles have a higher mean number of developing ovules than hermaphrodites. There are also significant differences between the color morphs. White individuals have a higher mean number of

I developing ovules.

Table 2.4.13. Summary of the analysis of variance to detect statistically significant I effects of flower color and gender on mean number of developing ovules per fruit per individual in Eremalche kernensis on April 24, 1992 in population 1. The incidence table shows sample sizes and mean values for mean number of developing ovules per fruit per

I individual for each flower color-gender combination.

I Anovatablefor a 2-factorAnalysisof VarianceonY 4 : Mean# dev ovs/fruitllnd

I Source: df: Sumof Squares: MeanSquare: F-test: P value: Gender(A) 1 45.721 45.721 5.469 .0289

I ABflcolor(S) 1 6.58319.211 6.58319.211 .72.29887 .38.143845 Error 22 183.952 8.361 I

I Therewereno missingcellsfound. I ! I I I! ! ! I 69

I Table 2.4.13 (continued)

I The AB Incidence table on Y 4 : Mean # flev ovs/frulthnd ! fl color:, pfnk white Totals:

o 8.762 12.013 10.388 I ,_ MS 8 8 16 8 2 10 Herm

I Totals: 616.8 7.6510 6.9726 7.781 11.14 9.073 I I I I I I I I I I I I I I 70

I Figure 2.4.6. Means and one standard deviation of the mean number of developing ovules per fruit per individual for hermaphrodite and male-sterile individuals in I population 1 on April 24, 1992.

I Mean+ OneStandardDeviation

0

Q.

0 e_ 10] g_ I Q.° 0 8" I, ->

I "6_ 4", ,,0

I Z_- _ C

I _ O_ Male-Sterile Individuals Hermaphrodite Individuals I I ! ! I ! I I 71

I Number of aborted ovules _ fruit

I steriles Therehave moreare significantaborted ovulesdifferencesper fruitbetweenthan hermaphroditesgenders and flo(Tableral colo2.4.14).r morphs.PinkMale- individuals have a higher mean number of aborted ovules per fruit than white individuals. II Table 2.4.14. Summary of the analysis of variance to detect statistically significant effects of flower color and gender on the number of aborted ovules per fruit in Eremalche

I meankernensisvalueson forAprilthe24,number1992 ofin poabortedpulationovules1. Theper incifruitdencetotal ovuletable showsnumbersampleper fruitsizesforand each flower color-gender combination. ! Anovatablefor a 2-factorAnalysisof Varianceon Y 5 : # abortedovs/fruit I i SourcGendere: (A) dr:1 Sum55.135ofSquares: Mean55.135Square: F4.244-test: .P.0423value: fl color(B) 1 93.914 93.914 7.23 .0085

I ABError 901 1169.098.128 12.99.098 .008 .9308 I i Therewere no missingcellsfound. I TheAB Incidencetable on Y 6 : # aborted ovs/fruit

I fl colon pink 24 white 36 Totals:59 MS 6.292 3.686 4.746

I _ Harm 4.27629 1,8336 3.85735 53 41 94

I Totals: 5.189 3.415 4.415 I I I I I 72

I Mean number of aborted ovules per fruit per individual

I used, theWheneffectmeanof gendervalues onperabortionindividualcannotof thebe numberdetected o(Tablef aborted2.4.15).ovules Thereper fruairet areno significant differences between genders or color morphs at the level of individual plants.

! Table 2.4.15. Summary of the analysis of variance to detect statistically significant effects of flower color and gender on the mean number of aborted ovules per fruit per

I showsindividualsamplein Eremalchesizes and meankernensisvalueson forAprilthe 24,mean1992numberin populofatiabortedon 1. ovulesThe incidenceper fruit tableper individual for each flower color-gender combination. ! Anovatablefor a 2-factorAnalysisof Varianceon Y 6 : Mean# aborted ovs/frult i

I Source:Gender(A) df:1 Sum20.401of Squares: Mean20.401Square: F-test:2.712 P.1138value: flcolor(B) 1 20.16 20.16 2.68 .1158

I ErABror 221 165,4771.26 7,5221.26 .168 .6883 I i Therewereno missingcellsfound. The AB Incidencetableon Y 6 : Mean # abortedovs/frult I

I fl color, pink 8 white 8 Totals:16 MS 6.662 4.037 5.35 i :m_ Herrn 4.0258 2.452 3.7110 16 10 26

I Totals: 5.344 3.72 4.719 I I I I , 73

I Figure 2.4.7. Means and one standard deviation of the mean number of aborted ovules per fruit of hermaphroditic and male-sterile individuals in population I on April 24, 1992. !

I Mean+ OneStandardDeviation 18 ' '

I > 16 0 14 I Q. u)

I 0--_ 12 "a 10 1: II o- 8

I "6 6

=" 2 II m" O_ I Male-SterileIndividuals Hermaphrodite Individuals I I I I I I I , 74

I proportion of ovuIe_ aborted per fruit

I ovules abortedThere arepernofruit.significantThere are,differenceshowever,amongsignificantgendersdifferencesin the meanbetweenproportcolorion of morphs. Pink individuals abort a higher proportion of ovules per fruit than white date. i individuals. This suggests there may be a "cost" to being pink in population 1 on this

I flowerTable 2color.4.16. andSummagenderry onof analysisproportionof ofvarianceabortedtoovulesdetect perstatisticallfruit iny Eremalchesignificant kernensiseffects of on April 24, 1992 in population 1. The incidence table shows sample sizes and mean

I valuescombination.for the proportion of aborted ovules per fruit for each flower color-gender

i Anova table fora 2-lectorAnalysisof Varianceon Y 7 : Proportionaborted ova/fruit

I Source: df: Sumof Squares: MeanSquare: F-tast: P value: Gender(A) 1 .033 .033 .527 .4696

I flABcolor(B) 1 .55.004 ..00455 8.888.065 .0037.7998 Error 90 5.573 .062 I

I Therewerenomissingcellsfound.

I The AB Incidencetableon Y 7 : Proportionaborted ovules/fruit

fl color:, pink white Totals: 24 35 59

5 i P_ MS .41129 .2346 .30e35 Herm .38 .17 .344

I Totals: .39453 .22541 .3294 I I I I , 75

I Mean proportion of aborted ovules per fruit per individual

I 2.4.17). There are no significant differences between genders or color morphs (Table

I Table 2.4.17. Summary of the analysis of variance to detect statistically significant effects of flower color and gender on mean number of aborted ovules per fruit per individual in Eremalche kernensis on April 24, 1992 in population 1. The incidence table

I individualshows sampforle eachsizes flowerand mecolor-genderan values forcombination.mean number of aborted ovules per fruit per

I Anova tablefor a 2-factorAnalysisof Varianceon Y 8 : Mean PropAbortedovs/fruiUlnd

I Source: df: Sumof Squares: MeanSquare: F-test: Pvalue: Gender (A) 1 .014 .014 .379 .5443 I fl color(B) 1 .128 .128 3.557 .0726 AB 1 004 .004 .119 _ .7337

i Error 22 .791 .036

I Therewerenomissingcellsfound.

I The AB Incidencetableon Y 8 : Mean PropAbortedovs/fruW]nd I fl color: pink white Totals:

-o .443 ,245 .344 i _¢¢ MS 8 8 16 8 2 10 Harm

I Totals: .35816 .22110 .3326 .4 .24 .339 I I I I I I | 76 Figure 2.4.7. Means and one standard deviation of the mean proportion of ovules aborted

I perAprilfruit24,per1992.individual for hermaphrodite and male-sterile individuals in population 1 on

I Mean+ OneStandardDeviation I _._ 0. .8 -_._

_ .5 I _.4

I __Q. .2

C

Male-Sterile Individuals Hermaphrodite Individuals I ! I I I I I I 77

I Table 2.4.18. Summary statistics of the reproductive components of sampled individuals and fruits in population 1 on April 24, 1992.

I X 1 : Total # of ovules/fruit Mean: Std. Dev.: Std. Error:. Variance: Coef. Van: Count:

II Minimum:It375412.5,0Maximum: Rangi252e: 1720Sum: , It050,Sum of Sqr.: I# tM-issing: I II 10 I,° 113 11555122355I0 I X2 : Mean # ovules/fnJit/Ind i 113.505Mean: 12.550Sld. Dev.: 1.523Std. Error:. I,.Varianc122e: 1Coa1l. Var.:,.255125Count: I I 15.2Minimum: IMaximum:1,.. 10.5Range: 1350.3Sum: 15Sum of1Sqr.:,0.0,158# Missing: I

I X3 : # Dev ovules/fruit Mean: Std. Dev.: Std. Error:. Variance: Ccef. Van: Count:

I 19"521 14"305 I "_''H 118"532 145"213 194 I Minimum: Maximum: Range: Sum: Sum of Sqr.: # Missing:

I Mean: Std. Dev.: X4 Std. Er: Meanror:. # deVarianv ovs/fruce:lt/Ind Ccef. Van; Count: I,.0,3 13.45 157, 111,5,135.131251 I Minimum: Maximum: Range: Sum: Sum of Sqr.: # Missing: II 12 11,.3 115.3 12,5, 1243,.57158 I

I X5 : # aborted ovules/fruit Mean: Std. Dev.: Std.Error:. Vadarme: Coal. Var.: Count:

Minimum: Maximum: Ran,qe: Sum: Sum of Sqr.: # Missing: I I0 112 It2 t,15 131,5120 t I I I I I | 78 Table 2.4.18 (continued)

X6 : Mean # aborted ovs/frult I Mean: Std. Dev.: Std. Error: Vadance: Coef. Var,: Count: I,.,,o 12.o231.5,3 15.s,215,.,3312o I I Minimum: Maximum: Range: Sum: Sum of Sqr,: # Missing: i 10 Ill Ill 1122.7 1'025' 15" I

I Mean: Std. Dev.: X7 Std.: Error:Proportion aboVariance:rted ovules/fruitCoef. Var.: Count: 1.32 1.28 1.02, 1.8s, 18,.,, I,, I I [oMinimum: j._,8Maximum: j._8Ran,qo: [3o.o,Sum: 1Sum,8ofSqr.:.0 12o# Missinq: J I X 8 : Mean Prop Aborted ovsllrult/ind i IMean:.339 IStd"198. Dev.: 1.039Std. Error: 1.039Variance: 158"421Coef. Van: 128Count: I Minimum: Maximum: Range: Sum: Sum of Sqr.: # Missin,q:

I I I ! ! t II ! I ! 79 Summary of Results Section 2.4 - Pog¢l;l_;iQn1

I' This table summarizes the results of all ANOVAs described in Section 2.4 for population 1. Each column indicates, for each date and reproductive trait, the statistical significance of the effect of gender, flower color, and the gender x color interaction on the mean value

I componentsof the trait. Genderthan doeshasflowera stroncolor.ger and more consistent effect on reproductive

I n.s. not significant * p

I ******* p

I total ovule # Gender Color Color Table March29 **** n.s. n.s. 2.4.1 m April 14 **** n.s. n.s. 2.4.2 April24 **** n.s. n.s. 2.4.10 II # developing ovules April14 n.s. n.s. n.s. 2.4.3

I # abortedAprilovule24 * n.s. n.s. 2.4.12 April14 * n.s. n.s. 2.4.4 % aborted ovules i April 24 * ** n.s. 2.4.14 April14 n.s. n.s. n.s. 2.4.5 i April 24 n.s. ** n.s. 2.416 For the following data the degrees of freedom are lower because we calculated

I meansgendersforandeachcoloindividual,rs for reproductivso It is heardertraits.to detect significant differences between

ovules/fruit/individual i Mean number of April 24 **** n.s. n.s. 2.4.11 Mean number of developing ovules/fruit/individual I Mean numbApriler2of4 aborted ovule*s/fruit/individun.als. n.s. 2.4.13 April 24 n.s. n.s. n.s. 2.4.15

i Mean prApriloportion24 of aborted ovulesn.s./fruit/indivin.s.dual n.s. 2.4.17 ! I ! I ! 80

I Population2

I APRIL 9, 1992

I Tot_al ovule number per fruit There are significant differences between genders in total ovule number per fruit

I hermaphrodites.(Table 2.4.19). MaleThere-sterileare noindisignividualficants hadifferencesve significantlbetweeny moretheovfloralules thancolor morphs. i Teffectsable 2.4.of 1flower9. Summarycolor andof genderthe analysion stotalof varianovule cenumberto detectin Eremalchestatistically kernenssignificantis on April 9, 1992 in population 2. The incidence table shows sample sizes and mean values for total ovule number per fruit for each flower color-gender combination.

I Anovstablefor a 2-factorAnalysisof Variance on Y 2 : Total ovules/fruit

| i Source:FIcolor(A) df:1 Sum.725ofSquares: Mean.725 Square: F.268-test: P.5053value: Gender(B) 1 1030.884 1030.884 381.123 .0001 AB 1 6,526 6.526 2.413 .1222 I Error 168 454.417 2.705

| There were no missing cells found. I The AB Incidencetableon Y 2 : Totalovules/fruit I

I -_ whiteGender:. MS 60 Harm 60 Totals:120 o 15.817 10.05 12.933

I --u. pink 15.2528 10.33324 12.98152 88 84 172 i Totals: 15.636 10.131 12.948 I I I ! 81

I Mearl number of ovules per fruit per individual

I four fruits.EachThereof 36 aindividualsre significantis represendifferencested betweenin this datagendersset bywiththe meanrespectvalueto meanof two to number of ovules per fruit per individual (Table 2.4.20). Male-sterile individuals have more ovules per fruit per individual than hermaphrodites. There are no significant I differences between the floral color morphs.

I Teffectsable 2.of4.20flower. Summarycolor andof genderthe analonysismeanof variancenumber toof detecovulest stapertisticallfruit ypersignificantindividual in Eremalche kernensis on April 9, 1992 in population 2. The incidence table shows sample sizes and mean values for mean number of ovules per fruit per individual for each flower I color-gender combination. Anovatable fora 2-factorAnalysisof Varianceon Y 1 : Mean ovule#/frulthnd I

I' Source: df: SumofSquares: MeanSquare: F-test: P value: FIcolor(A) 1 ,184 .184 .09 .7658

I GenderAB (B) 1 240.883.215 240.883.215 118.225.105 .0001.7473 Error 35 71.312 2,037 I

J Therewere nomissingcellsfound.

j TheAB Incidencetableon Y 1 : Meanovule#/fruiffind

I Gender:. MS Henn Totals:. 14 13 27 __ white

I oo 15.743 10.196 13.072 ;" pink 15.4336 10.2086 12.R9112

I Totals: 15.6520 10.219 12.99539 I I I ! ! 82

I Number of developing ovules per fruit

I significantlyThere moreare signidevelopingficant differencesovules perbetweenfruit thangenders.hermaphroditesMale-steriles(2.4.21).have There are no significant differences between the floral color morphs.

I Table 2.4.21. Summary of the analysis of variance to detect statistically significant effects of flower color and gender on number of developing ovules per fruit in Eremalche

I kernmeanensisvalueson Aprilfor the9number1992 in ofpopulationdeveloping2. ovulesThe incidenceper fruit tabletotal showsovule numbersample sizesper fruandit for each flower color-gender combination.

I Anovatablefor a 2-factorAnalysisof Varianceon Y 4 : Devovules/fruit I Source: df: Sum of Squares: MeanSquare: F-test: P value:

, FGenderIcolor(A)(B) 1 26712.47,481 26712.47.461 21.4581 ..00013186 AB 1 .006 .006 4.529E-4 .983

'1 Error 168 2094.042 12.465

I Therewerenomissingcellsfound.

_1 The AB Incidencetable onY 4 : Dayovules/f_uit I Gender:. MS Harm Totals:

I "5O3 white 11.3560 8.61760 9.983120 28 24 52

I pink 10.7588 8.04284 1729.5 Totals: 11.159 8.452 9.837 I I I I ! I 83

I Mean number of developin_ ovules per fruit

I higher meanThere numberare significantof developingdifferencesovulesbetweenper fruitgenders.per individualMale-sterilethan hermaphroditesindividuals have a (Table 2.4.22). There are no significant differences between the floral color morphs.

! Table 2.4.22. Summary of the analysis of variance to detect statistically significant effects of flower color and gender on mean number of developing ovules per fruit per

I showsindividualsamplein Esizesremalcheand meankernensisvalueson forAprilmean9, 1992numberin pofopuldevelopingation 2. Thovule einscidenper cfruite tablpere individual for each flower color-gender combination.

I Anovatable for a 2-factorAnalysisof VarianceonV 3 : mean# dev ovules/fmithnd I Source: df: Sumof Squares: MeanSquare: F-test: P value:

I GenderFI color(A)(B) 1 64,072.844 64..844072 18,398.242 .00625701 AB 1 .16 .16 .046 .8313

I Error 35 121.89 3.483 ! Therewerenomissingcellsfound.

I The AB Incidencetable on Y 3 : mean# dev ovules/fruit/Ind I Gender: MS Herin Totals: white 14 13 27 I "_o 11.246 8.608 9.976 -- 6 6 12

I " pink 11.06720 8.1519 9.60398 Totals: I 11.193 8.463 9.863 I I I I ! 84

I Number of abortedovules per fruit

I have higherTherenumbersare significantof aborteddifferencesovules perbetweenfruit thangendershermaphrodites.(Table 2.4.23).ThereMale-sterilesare no significant differences between the floral color morphs.

Table 2.4.23. Summary of the analysis of variance to detect statistically significant effects of flower color and gender on number of aborted ovules per fruit in Eremalche

i kernensismean valueson forAprilthe9,number1992 inofpopulabortedation ovules2. Theperinfcidenceruit for eatabchle flowershows color-gendersample sizes and combination. I Anova table for a 2-factorAnalysisof Varianceon Y S : # abortedovules/fruit I Source: df: Sum MeanSquare: F-test: P value:

• Ii FIGendercolor(A)(B) 1 7.181248.182 7.181248.162 .74925.869 .3882.0001 AB 1 6,148 6.148 .641 .4245

I' Error 168 1611.625 9.593

I Therewerenomissingcellsfound. I The AB Incidencetable on Y 5 : # aborted ovules/fruit I

I Gender: MS Herin Totals: white 60 60 120 4.467 1.433 2.95

I _ pink 4.528 2.29224 3.48152 88 84 172

Totals: 4.477 1.579 3,11 I I I I I 85

! M_n Number of aborted ovules per fruit

I individualsTherehaveare asignificanthigher meandifferencesnumber ofbetweenaborted gendersovules (Tperablefruit2.4.24than). hermaphrodites.Male-sterile There are no significant differences between the floral color morphs. ! Table 2.4.24. Summary of the analysis of variance to detect statistically significant effects of flower color and gender on mean number of aborted ovules per fruit per

showsindividualsamplein Eremalchesizes and meankernensisvalueson forAprilthe 9,mean1992numberin populaoftiabortedon 2. Theovulesincidenceper fruittableper individual for each flower color-gender combination. ! Aflovatable for a 2-factorAnalysisof Varianceon Y 7 : mean# abortedovs/frulthnd i r

I Source:FIcolor(A) df:1 Sum.24of Squares: Mean.24 Square: F.142-test: P,7082value: Gender(B) 1 58.489 56.489 33.494 .0001

1' ABError 351 59.029.746 .7461.687 .443 .5102 1

J Therewere no missingcellsfound.

I TheAB Incidencetable onY 7 : mean# abortedovs/frult/Ind

I Gender:. MS Harm Totals: white 14 13 27 ¢J I "--3 4.4968 1.5888 3,09612 u. pink 4.367 2.058 3,213

I Totals: 4.45720 1.73719 3.13239 I I i i ! 86

Proportion of ovules aborted per fruit

I individualsTherehaveare asignificanthigher propodifferencesrtion of abortedbetween ovulesgendersper(Tablefruit than2.4.25).hermaphrodites.Male-sterile There are no significant differences between the floral color morphs. ! Table 2.4.25. Summary of the analysis of variance to detect statistically significant

', kernensiseffects of onflowerAprilcolor9 1992and ingenderpopulationon proportion2. The incidenceof aborted tableovulesshowsper samplefruit in Eremalchesizes and mean values for the proportion of aborted ovules per fruit for each flower color-gender

I combination.

I Anovatable for a 2-factorAnalysisof Variance onY 8 : Proportionabortedovules/fruit

I Source: df: Sumof Squares: MeanSquare: F-test: P value: FIcolor(A) 11 ,068 ,066 1.342 .2484

I ' ASGender(B) i1i1 .048.419 .0.41948 .9888.558 ,3222.0039 Error 168 8.216 .049 I

I Therewerenomissingcellsfound.

I The AB Incidencetableon Y 8 : Proportionabortedovules/fruit

I Gander:. MS Herin Totals: 3 white 60 60 120

I _ .2928 .14524 .21852 pink .298 .225 .263

I Totals: .29288 .16884 .231172 I I I I I | 87 Mean proportion of ovules aborted per individual

I There are significant differences between genders (Table 2.4.26). Male-sterile individuals have a higher mean proportion of aborted ovules per fruit than hermaphrodites. There are no significant differences between the floral color morphs.

t Table 2.4.26. Summary of the analysis of variance to detect statistically significant effects of flower color and gender on mean number of aborted ovules per fruit per I, individual in Eremalche kernensis on April 9 1992 in population 2. The incidence table shows sample sizes and mean values for the mean number of aborted ovules per fruit per individual for each flower color-gender combination.

i Anova table for a 2-factor Analysis of Variance on V 8 : Mean Prop. abe. ovs/frulVInd I Source: df: Sum of Squares: Mean Square: F-test: P value:

I GenderFIcolor(B)(A) 1 .101.003 .101,003 9,759.285 ..59660036 AB 1 .003 .003 .275 .6032

' Error 35 .362 .01 I There were no missingcells found. 1 I

i The AB Incidence table on Y 8 : Mean Prop. abe. ovs/fruit/Ind

' Gender:. MS Herin Totals: --3 white 14 13 27 o ,288 .159 .226 -- 6 6 12 I, u°. pink .288 .196 .242 20 19 39

I Totals: .288 .171 ,231 /" I I ! I I 88 I Table 2.4.27. Summary statistics for reproductive components of sampled fruits and individuals in population 2 on April 9, 1992.

I X1 : Mean ovule #/frult/lnd Mean: Std. Dev.: Std. Error: Variance: Coef, Var.: Count:

Minimum: Maximum: Range: Sum: Sum of Sqr.: # Missing:

- X 2 : Total ovules/fruit Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:

Minimum: Maximum: Ran,qe: Sum: Sum of Sqr.: # Missing: 1, ]2o [_3 /222, ]3o_0o]o ] I ,/

Mean: Std. Dev.: Std. Error:. Variance: Coef. Van: Count: Ii X3 : mean # dev ovules/fruit/ind

I I_,Minimum: 1Max,2imum: Io_Range: 1_8,Sum: _ 1_o.2o2Sum of Sqr.: i# ,_3Missing: I I X4 : Developing ovules/fruit I Mean: IStd.-_Dev.:.,_3IStd._Error:., 1_,Vadance,6: 13Coaf. Var.:_ ICount:,,2 Sum of Sqr.: # Missing: I IMinimum: I'_ox'mum:I_s,nge:1% I_,8_ Io I

I X 5 : # aborted ovules/fruit Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:

Minimum: Maximum: Range: Sum: Sum of Sqr.: # Missing: I io i1, 1,4 Io_o I_0_ io I I i I I 89

Table 2.4.27 (continued)

I X6 : Proportion aborted ovules/fruit Mean: Std. Dev.: Std. Error:. Veriance: Coef. Var.: Count:

Minimum: Maximum: Range: Sum: Sum of Sqr.: # Mlssln,q:

i X7 : mean #eborted ovules/frult/Ind Mean: Std. Dev.: Std. Error:. Variance: Coef. Vat.: Count:

Minimum: Maximum: Range: Sum: Sum of Sqr.: # Missing:

I X 8 : Mean Proportion aborted ovules/frult/ind Mean: Std. Day.: Std. Error: Vadence: Coef. Ver.: Count: 12,1 1.115 1.0,8 io,3 I,,,81 I_, I i Minimum: Maximum: Range: Sum: Sum of Sqr.: # Missing: I° 1'2_ i"_ i8,8,, I_s,5 I1_ I I I I I

'|

I I ! I 90

! April 14, 1992 - Peak flowering I

I individualsThese data weerere analyzedfound. by one way analysis of variance because only 3 pink

I Total ovule number per fruit There are significant differences among individuals and genders in total ovule number per fruit (Tables 2.4.28 and 2.4.29). While floral color morphs do not differ

I individualssignificantly, (17pinkvs. individuals12.8 ovules/ov.).appear to have more total ovules per fruit than white i Table 2.4.28. Summary of one-way analysis of variance to detect statistically significant differences among individual plants (that is, significant effects of plant identity [ID]) on

I the number of ovules per fruit in Eremalche kernensis on April 14, 1992 in population 2. One FactorANOVA X 1 : plantIDcategory Y 1 : Total ovule#/fruit I Analysisof VadanceTable

I Source: DF: SumSquares: MeanSquare: F-test: Betweengroups 12 415.139 34.595 30.026 Withingroups 23 26.5 1.152 p = .0001

I Total 35 441.639 I ModelII estimateofbetweencomponentvariance= 12.1 I I I I I I

I I II 9l Table 2.4.29. Summary of one-way analysis of variance to detect statistically significant effects of flower color and gender on total ovule number per fruit in Eremalche kernensis

I valueson Aprilfor14total, 1992ovulein pnumberopulationper2.fruTheit forincidenceeach flowertablecolor-gendershows samplecombination.sizes and mean I One Factor ANOVA X 1 : Gender Y 1 : Total ovule #/fruit

I AnalysisofVadanceTable

i Source:Between 9roups DF:1 Sum321.335Squares: Mean321.335Square: F90-test:.815 Within groups 34 120.303 3,538 p = .0001

I Total 35 441.639 Model II estimate of between componentvadence = 17.71 I One Factor ANOVA X 1 : fl color Y 1 : Total ovule #/fruit

I Analysisof Variance Table

. Source:Between groups DF:1 Sum47.396Squares: M47.396ean Square: F4.088-test: Within ,qroups 34 394.242 11.595 p = .0811

I Total 35 441.639 Model II estimateof between componentvadance= 6,509 I I I I I I I I I 92 I Table 2.4.29 (continued)

I The AB Incidence table on Y 1 : Total ovule #/fruit I fl colon pink white Totals:

I _ MS 173 16.21414 16.35317 0 19 19 i Herm 3• 10.36833 10.36838 Totals: 17 12.848 13.194 I I I I I I I I I I I I I I I 93 Number of developing ovules _ fruit

I There are significant differences among individuals (distinguished by plant ID number, Table 2.4.30). There are no significant differences between color morphs or genders (Table 2.4.31) in the number of developing ovules per fruit. I Table 2.4.30. Summary of one-way analysis of variance to detect statistically significant effects of plant ID on the number of developing ovules in Eremalche kernensis on April I 14, 1992 in population 2. I One FactorANOVA X 1 : plantID category Y 2 : # of Devovules/fruit AnalysisofVarianceTable

I Source: DF: SumSquares: MeanSquare: F-test: Betweengroups 12 150.917 12.576 2.497 Withingroups 23 115.833 5.036 p = .0286 I Total 35 266.75 I ModelII estimateof betweencomponenvadancet = 2.728

I Table 2.4.31. Summary of one-way analysis of variance to detect statistically significant effects of gender and flower color on the number of developing ovules per fruit in i Eremalsamplechsizese kernandensmeanis onvaluesApril for14, number1992 in ofpopdevelopingulation 2. ovulesThe incperidencefruittablefor eachshowsflower color-gender combination.

I One FactorANOVA X 1 : Gander Y 2 : # of Oevovules/fruit

I Source: DF: AnalySumsisofSquares:VadanceTableMeanSquare: F-test: Betweengroups 1 5.078 5.078 .66

I TotalWithingroups 3834 266.75261.672 7.696 p= .4223

I ModelII estimateofbetweencomponentvadanca= -.146 I I I I I 94 I Table 2.4.31 (continued)

I One Factor ANOVA X 1 : fl color Y 2 : # of Dev ovules/fruit

I AnalysisofVarianceTable Source: DF: Sum Squares: Mean Square: F-test: Between groups 1 12.023 12.023 1.605

I Within groups '34 254.727 7.492 _= .2138 Total j35 266.75

I Model II estimate of betweencomponentvariance = .824 I

I The AB Incidence table on Y 2 : # of Dev ovules/fruit

I fl color:, pink white Totals:

'oC 8.333 11.143 10.647 I ¢D_ MS 3 14 17 _3 0 19 19 Harm • 9.895 9.895

I Totals: 3 33 36 8.333 10.424 10.25 I I I I I I I I I | 95 Number of aborted ovules per fruit

I (Tables T2.h4.er32e arande signifi2.4.33cant) withdiffererespnceects toamongthe numbinderividuofalas,bortedgendeovurs lesand pcoerlorfruitm.orphMale-s sterile individuals have more aborted ovules per fruit than hermaphrodites. Pink-

I flowindividualered s.individuals have higher numbers of aborted ovules per fruit than white-flowered

I Table 2.4.32. Summary of one-way analysis of variance to detect statistically significant effects of plant ID on the number of aborted ovules per fruit in Eremalche kernensis on April 14, 1992 in population 2. ! One FactorANOVA X 1 : plantID category Y 3 : # aborted ovules/fruit I Analysisof VadanceTable

I Source:Betweengroups DF:12 Sum385.S333quares: Mean32.111Square: F1-test:0,451 Withingroups 23 70.667 3.072 p = ,0001

I Total 35 456 ModelII estimateof betweencomponentvadanca= 10,506 I Table 2.4.33. Summary of one-way analysis of variance to detect statistically significant I effects of flower color and gender on the number of aborted ovules per fruit in Eremalche kernensis on April 14, 1992 in population 2. The incidence table shows sample sizes and mean values for the number of aborted ovules per fruit for each flower color-gender

I combination.

I One FactorANOVA X 1 : Gender Y 3 : # aborted ovulesper fruit

Analysisof VadancaTable I Soume: DF: SumSquares: MeanSquare: F-test: Betweengroups 1 256.793 256.793 43.828

I WithinTotalgroups 3435 456199.207 '5.859 p = .0001

I ModelII estimateof betweencomponentvadance= 13.984 I I I I I ,6 Table 2.4.33. (continued) I One Factor ANOVA X 1 : fl color Y 3 : # aborted ovules/fruit

I AnalysisofVarianceTable Source: DF: Sum Squares: Mean Square: F-test:

I Between groups 1 105.091 105.091 10.182 Within,qroups 34 350.909 10.321 p = .003 i Total 35 456 Model II estimate of between componentvadancs = 17.231

I The AB Incidence table on Y 3 : # aborted ovs/ovary I fi color:, pink white Totals:

I :5-. MS 8.6673 5.21414 5.82417 5 g O 19 19

Herin 3, .47433 .47436 Totals: 8.667 2.485 3 I I I I I I I I I I 97

I Proportion of ovules aborted her fruit

I morphs Tinherethe areproportionsignificantof ovulesdifferencesabortedamongper fruit.individualsMale-sterile, gendersindividualsand flowerhavecoloar higher proportion of aborted ovules per fruit than hermaphrodites (Table 2.4.34 and

I 2.4.35).individuals.Pink individuals abort a higher proportion of aborted ovules per fruit than white

I effectsTable 2.4of.34plant. SummaryID on the oproportionf one-way ofanalabortedysis of ovulesvariancein tEremalcheo detect stakernenstisticallyis signion Aprilficant 14, 1992 in population 2. ! One Factor ANOVA X 1 : plant I0 category Y 4 : Proportionof abortedovules/fruit

I Analysisof VarianceTable i Source:BetweengroupsDF:12 Su1.353mSquares: Me.113anSquare: F-test:6.809 Withingroups 23 .381 .017 p = .0001

I Total 35 1.734 ModelII estimateofbetweencomponentvadanca= .035 I

I effectsTable 2.4.35.of flowerSummarycolor andof genderone-wayonanalysisthe proportionof varianofceabortto edeted covulest statisperticallyfruit signifiin cant Eremalche kernensis on April 14, 1992 in population 2. The incidence table shows

I sflowerample color-gendersizes and meancombination.values for the pruportion of aborted ovules per fruit for each

I One FactorANOVA X 1 : Gander Y 4 : Proportionof abortedovules perfruit

I AnalysisofVadanceTable Source: DF: SumSquares: MeanSquare: F-test: i WithinBetweengrou.qroupsps 134 ..8359 ..0259 36p=.635.0001 Total 35 1.734

I ModalII estimateofbetweencomponentvadance= .049 I I I Table 2.4.35. (continued)

I One Factor ANOVA X 1 : fl color Y 4 : Proportion of aborted ovules/fruit

I Analysisof Variance Table Source: DF: Sum Squares: Mean Square: F-lest: i WithinBetweengrougroupsps 341 .1.373362 .36204 8.961p = .0051 Total 35 1.734

I Model I1esttmate of betweencomponentvariance = .058

I The AB Incidence table on Y 4 : Proportion of aborted ovules/fruit I fl color:, pink white Totals:

II _ MS ,5243 .32314 .35917 o_ 0 19 19 i L9 Herm 3• .04233 .04236 Totals: i .524 .161 .192 I I I I I I I I I | " Table 2.4.36. Summary statistics for reproductive components of individuals and fruits in i population 2 on April 14, 1992. X 1 : Total ovule #/fruit Mean: Std. Dev,: Std. Error. Variance: Coal. Var.: Count:

I 113'194 13.552 I .592 112"618 126.922 136 I Minimum: Maximum: Range: Sum: Sum of Sqr.: # Missing: I t_ I,o t,_ I,,_ is,sois t i X2 : # of Dev ovules/fruit Mean: Std. Day.: Std. Error. Variance: Coef, Var.: Count:

Minimum: Maximum: Range: Sum: Sum of Sqr.: # Missing: I i, I,o I,_ t_o i_o,oto i

i X3 : # aborted ovules/fruit Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:

Minimum: Maximum: Range: Sum: Sum of Sqr.: # Missing: I io I,, t,, i,o_ t_o is i I X4 : Proportion of aborted ovules/fruit Mean: Std. Dev.: Std. Error:. Variance: Coef. Var.: Count: II i192 1_3 i03, 105 11161,,i36 i Minimum: Maximum: Range: Sum: Sum of Stir.: # Missing: II io I,_ i-,33 16.6991305, i0 i I I I I I I | 10o APRIL 24, 1992 I These data represent samples of one fruit per individual for 15 individuals from i populationis not possibl2.e Stoinctestonlyfor significantone developingdifferefncruites wasbetwsampledeen individuafrom lse.ach Weindividual,were it unable to locate any pink individuals at this date in population 2 so these samples represent only white individuals. I Tg_I ovule number per fruit

I There was a significant effect of gender on total ovule number per fruit (Table 2.4.37). Male-sterile individuals had more total ovules than hermaphrodites.

I effectsTable 2.4.37.of genderSummaryon the numberof one-wayof ovulesanalysisper offruitvariancein Eremalcheto detectkernensisstatisticallyon Aprilsignificant24, 1992 in population 2.

I One Factor ANOVA X 1 : Gender V 1 :Total ovule#/fruR

I AnalysisofVadanceTable Source: DF: SumSquares: MeanSquare: F-test:

I WithinBetweengroups,qroups 131 30.929132.805 2.379132.805 55p=.821.0001 Total 14 163.733

I ModelII estimateofbetweencomponentvadance= 17.468 I One Factor ANOVA X 1 : Gender Y 1 :Total ovule#/fruit I

I Group: Count: Mean: Std.Dev.: Std.Error:,

I 7 10.286 1.38 .522 I I I I I

i 101 Number of developing ovules _r fruit

I There was a significant effect of gender on the number of developing ovules per fruit (Table 2.4.38). Male-sterile individuals had significantly higher numbers of developing ovules than hermaphrodites.

i Table 2.4.38. Summary of one-way analysis of variance to detect statistically significant effect of gender on the number of developing ovules per fruit in Eremalche kernensis on

I April 24, 1992 in population 2.

i One Factor ANOVA X I : Gender Y 2 : # of Oev ovules/fruit Analysis of Vadanco Tabto

i Source: DF: Sum Squares: Mean Square: F-test: Betweengroups 1 80.476 80.476 8.953 Withingroups 13 116.857 8.989 p = .0104 I Total 14 197.333

i Model II estimate of between componentvadance= 9.574

I One Factor ANOVA X 1 : Gender Y 2 : # of Dev ovules/fruit I

i Herin 7 2.857 2.61 .986 I I I I I I I

I 102 Notnber of aborted ovules oer fruit

I There was no significant effect of gender on the number of aborted ovules per fruit (Table 2.4.39).

I effectTable of2.4.3gender9. Summaryon the numberof one-wofayabortedanalysiovuless of varianper cfruite toindeEremalchtect statisticalle kernensisy signifioncant April 24, 1992 in population 2. ! One FactorANOVA X 1 : Gender Y 3 : # abortedovules/fruit

I AnalysisofVadanceTable

i Source:Betweengroups DF:1 Sum6.519Squares: Me6.519anSquare: F.434-test: Withingroups 13 195.214 15.016 p = .5215

I Total 14 201.733 ModelII estimateofbetweencomponentvadance= -1.138 I

I One Factor ANOVA X 1 : Gender Y 3 : # aborted ovules/fruit I Group: Count:, Mean: Std.Dev.: Std,Error.

7 7.429 3.505 1.325 I I ! I ! I I I i 103 Proportion of aborted ovules per fruit

I fruit on TAprilhere 24,was 1992no sig(Tablenificant2.4.40).effect of gender on the proportion of aborted ovules per

I Teffectable 2.4of .gender40. Summaryon the proportionof one-wayof analysisaborted ovulesof varianceper frutoitdetectin Eremalchestatisticallykernensissignificanton April 24, 1992 in population 2.

I One FactorANOVA X 1 :,Gender Y 4 : Proportionabortedovules/fruit

I AnalysisofVeflanceTable Source: DF: SumSquares: MeanSquare: F-test: i Betweengroups 1 .119 .119 1.723 Withingroups 13 .899 .069 _ = .212 I Total 14 1.018 ModelII estimateof betweencomponentvadance= ,007 I

I One Factor ANOVA X 1 : Gender Y 4 : Proportion aborted ovules/fruit I Group: Count: Mean: Std.Dev.: Std,Error:.

7 .706 .283 .107 I I I I I t I I | lO, Table 2.4.41. Summary statistics of the components of reproduction in population 2 on i April 24, 1992. X 1 : Total ovule #/fruit Mean: Std. Dev.: Std. Error:. Variance: Coef. Var.: Count:

Minimum: Maximum: Range: Sum: Sum of Sqr.: # Missing:

I X2 : # of Dev ovules/fruit Moan: Std. Dev.: Std. Error:. Variance: Coef. Var.: Count:

Minimum: Maximum: Range: Sum: Sum of Sqr.: # Missing: ! io I,, I,, I_o i_, I° i

I Mean: Std. Dev.: XStd.3 Error:.: # abortedVariancovulese:/fruit Coef. Var.: Count: 18,33 i3,o8 1o8 i,,,1 1,88,2i18 i i Minimum: Maximum: Range: Sum: Sum of Sqr.: # Missing: Io i,3 i,_ i,22 I-o, Io i I

Mean: Std. Dev.: Std. Error:. Variance: Coaf. Var.: Count: i 181 i2, X4 io,: Proportion iabortedo,_ovules/fruI,,.it ,,1 1,5 I i i?'m''°t_M:aximum: i,Range: t,Sum,_,: iSu_m ofooSqr.: io# Missin,q: I I I I I I I !

i 105 Sumnlarv of Results Section 2.4 - Population 2

I This table summarizes the results of all ANOVAs described in Section 2.4 for population 2. Each column indicates, for each date and reproductive trait, the statistical significance of the effect of plant ID (when available), gender, flower color, and the gender x color

I effectinteractiononreproductivon the meane componentsvalue of thethantraitdoes. Genderflowerhascolor.a stronger and more consistent

I NAn.s. notnotsignificantavailable due to lack of pink individuals on that date. * p<0.05 ** p<0.01

I ******* p<0.0001p<0.001 Gender x

I total ovule # ID Gender Color Color Table April9 **** n.s. n.s. 2.4.19

April 24 **** n.s. one-wayANOVAs 2.4.37 i April 14 **** **** n.s. one-wayANOVAs 2.4.28,2.4.29 # developing ovules

April 14 * ** n.s. one-wayANOVAs 2.4.30,2.4.31 I April924 ***** n.s. one-wayn.s.ANOVAs 2.4.212.4.38 # aborted ovule

I April 914 **** **** n.s.** one-wayn.sANOVAs. 2.4.232.4.32, 2.4.33 April 24 n.s. NA one-way ANOVAs 2.4.39 % aborted ovules

I April 914 **** ****** **n.s. one-wayn.s.ANOVAs 2.4.34,2.4.252.4.35 April24 n.s. NA one-wayANOVAs 2.4.40

I For the following data the degrees of freedom are lower because we calculated means for each individual, so it is harder to detect significant differences between I genders and colors for reproductive traits.

I Mean nuAprilmber9of ovules/fruit/in****dividual n.s. n.s. 2.4.20 Mean number of developing ovules/fruit/individual Mean number of aborted ovules/fruit/individual i April 9 **** n.s. n.s. 2.4.22 April24 **** n.s. n.s. 2.4.24 Mean proportion of aborted ovules/fruiffindividuai I April 24 ** n.s. n.s. 2.4.26 I l I ! 106

I Section 2.5

I Does E. kernensis require insect visitors for seed set? Results of Bagging experiment

I Is Eremalche kernensis self- pollinating or dependent on insect visitation ?

i unbaggedWhileindividualsthere is a(Tablesignificant2.5.1),ditherefferencaree noin totalsignificantovule ndiffereumberncesbetwebetweenen bagged and treatments in the number of developing ovules per fruit, the number of aborted ovules per fruit (shown in Table 2.5.2) or the proportion of ovules aborted per fruit. This indicates

I werethat Erplacedemalcheoverkernbothenshermaphroditicis can set seed iandn themale-sterilefield in theinabsencedividuals.of insectBoth gendersvisitation.setBags seed. Since male-sterile individuals do not produce pollen, Eremalche kernensis appears

i tpossibilityo be settingthatseedbaggedwithoutmale-sterilepollinationplants(apomicticallreceived y)wind-borne. There is,pollen.however, a small Chapter 3 reports the results of controlled hand-pollinations in the greenhouse; in

I notthesepollinatedgreenhousbye handstudieneverthelesss we also observedset seed.caseFutures in whistudiesch maleshould-sterilebe conductedflowers thatot were determine whether male-sterile plants in the field are truly capable of setting abundant

I fruitshermaphroditiwithoutc poplants,llen. Thithens isreim-vegetationportant beecfforause,ts willif malrequiree-sterilesthe destablishmo requireepont llenof adultfrom populations in which both genders are represented.

I In addition, since it is not possible to predict the gender of an adult plant from the morphology of the seed from which it germinates, it would also be extremely useful to determine the sex ratios of progeny produced by adult male-steriles and hermaphrodites.

I populationsThat is, if re-ve(if gnecessary)etation effortsin naturareet,othenuse itseedis snecessarythat will tocreaknowte mixewhetherd-gendethre sexadultratios differ among the progeny of male-sterile relative to hermaphroditic plants. I ! ! ! ! ! ! ! I

I 107 Table 2.5.1. Summary of one-way analysis of variance to detect a significant difference between bagged (pollinators excluded) and control branches with respect to mean ovule I number per fruit. Among the experimental plants in this study, the unbagged branches represented ovaries with slightly more ovules on average than the bagged branches.

I One Factor ANOVA g 1 : treatment Y 1 : Total ovules

I Analysis of Variance Table Source: DF: Sum Squares: Mean Square: F-teat:

I WithinBetween,qrougroupsps 15 72.46732.475 432.475.831 p6.722= .0204 Total 16 104.941

I Model II estimate of between component vadance = 3.916 1

I OneFactorANOVAX 1 : treatment Y 1 : Total ovules I Group: Count: Mean: Std. Dev.: Std. Error:

I unbaggad 13.833 2.29 .661 I I I I I I I I I i 108 Table 2.5.2. Summary of one-way analysis of variance to detect a significant difference between bagged (pollinators excluded) and control branches with respect to the mean

I betweennumber oftreatmentsaborted owithvules respectper fruit.to abortionThere wasrates;nobothstatisticallygroups setsignificantseed. difference

I One FactorANOVA X 1 :treatment Y 3 : abortedovulesper fruit

I AnalysisofVarianceTable Source: DF: SumSquares: MeanSquare: F-test:

I WithinBetween,qroupsgroups 121 258.93.457 21.5753.457 p.16= .696 Total 13 262.357

I ModelII estimateof betweencomponentvadance= -3.171 I I I I I 1 I I I I I I !

, [09 Section 2.6

I Seed weight and abortion: effects of seed number per fruit, gender, and flower color

I Individual seed weight is an important determinant of seedling performance and survival under stressful conditions in many species. Consequently, the ecological and

I i geneticestablishfactorsnew populthat ainfluencetions of aseedrareweispecies,ght are(b)ofconserveimportancea geneto ecpoolologists(e. g.,aimina seedg tobank): (a) of high quality, and (c) understand the sources of variation in seedling performance under ,b field conditions. In this section, we examine several sources of variation in individual seed mass in order to determine whether this trait is influenced by an apparent resource II constraint at the level of individual fruits, and/or whether it is associated with gender or flower color in a non-random manner.

I' There are often negative correlations between mean individual seed weight and the number of viable seeds within a fruit. A "trade-off" of this type indicates that

i resourceindividualisfruitthens dividedmay be amongallocatedthea fertilizedfinite amountovulesof ora limitingsuccessfullyresource.developingThis finiteseeds within that fruit. Variation seed size may be due to variation in the rates of seed abortion; fruits with high levels of seed abortion may allocate available resources among fewer

I resultseeds thanfrom fruitsinsufficientwith lopollinatorw levels ofserviceseed aborortion.from resourceHigh levelslimitation,of seed soabortionvariationoftenamong fruits with respect to mean individual seed weight may be indirectly linked to variation in

i pollinator service, the quality of the pollen received, or the availability of resources. Since we found no variation in the number of developing ovules (a correlate of seed set) between individuals that had pollinators excluded and individuals that were ._ visited at natural levels, pollen deposition (and insect visitation) does not seem to be a I critical determinant of seed number per fruit. It is likely, therefore, that the rate of seed abortion is at least in part determined by resource availability or the quality of pollen

I received. In this study, we asked whether the pattern of resource allocation seen in

seeds per fruit and mean individual seed weight at the level of individual fruits. We also i individual fruits suggests the presence of a "trade-off' between the number of mature asked whether there was significant variation among genders or floral color morphs in the following fruit and seed characters:

I 1. mean individual seed weight; 2. number of aborted seeds;

i 3.4. ptotalropoindividualrtion of aboseedrtedweight.seeds; and For these data, gender and color were not randomly associated (Table 2.6.1). Among

I pink-floweredwhite-flowered morphs,morphs,hermaphroditesmale-steriles wereweresigover-representednificantly over-represented,relative to thwhileat expectedamongby chance. I ! ! I

I llO Table 2.6.1. Chi-square test of the relationship between color and gender. Flower color i and gender do not segregate independently.

Coded ChI-Square X 1 : Color Y 1 : Gender

I SummarStatistics DF: 1

I GTotalStatistic:Chi-Square: 30.20734.923 p = .0001 Contingency Coefficient: .275

I Phi: .286 Chi-Square with continuity correction: 33.113 p = .0001 I

I Observed Frequency Table

W P Totals:

I H 45 35 80

I MS 296 50 346 I Totals: 341 85 426

I Percentsof RowTotals

I W P Totals: H 56,25% 43.75% 100%

I MS 85.55% 14.45% 100%

I Totals: 80.05% 19.95% 100% I I I I I

I III Table 2.6. I (continued)

I PercentsofColumnTotals

I W P Totals: H 13.2% 41.18% 18.78%

I MS 88.8% 58.82% 81.22%

I Totals: 100% 100% 100% II I

the field? I Is there a trade-off between seed number and seed weight among fruits sampled in

Mean seed weight per fruit decreases significantly as seed number per fruit

I resourceincreases. andThisallocaresultte thsuggat reessourts cethatamongfruits probabdevelopingly recovuleivees.a finThesite equdataantitywereof aanalyzedlimiting by a simple linear regression of mean individual seed weight on the number of viable

I sfreedsom Pperopulatiofruitn usin1,gcansuse376 fruitsd Aprilrepre1se7,nti1n99g 2 -1and50 Apriindividl 24,ual1992s of (FigureEremalch2.6.1;e kernensisTable 2.6.2). ! I ! ! ! ! ! ! I 112 | Figure 2.6.1. Simple linear regression of mean individual seed weight on the number of viable seeds per fruit using 376 fruits representing ~ 150 individuals of Eremalche

I fromkernensisboth fromsamplingPopuldatationes (d1,eletingcensusethosed Aprilthat 1w7eandre enclosedApril 24,wi1992.thin bagsAll tforuitsexcludecollected pollinators) are combined in this regression. Note that as the number of seeds per fruit

I increasesvaries by, morethe vathanriatioann orderin meaofn magnitudeindividual se(0.05ed weightmg- 1.10declinerag)s. whenIndividseeduals areseedborneweight singly in a fruit; mean individual seed weight varies by only a factor of 2.5 (0.30 - 0.80) i within fruits that possess 10 seeds.

I y = -.01x+ .595,r 2 = .012 1 _ 121 ' ' ' ' ' ' ' ' ' ' ' ' ' I' n ,,-,,,, t | o . o o " I I i W I • • • i ®_ oi l';.,,o• • _ • _ n Ill!i!.:, : , ;'°l!!i!l!!:'.: I

I O0 2 4 6 8 10 12 14

I Numberof ViableSeedsperFruit I I I I I I ,,3 Table 2.6.2. Simple regression of the number of mature (apparently viable) seeds per

i fruit on mean individual seed weight (viable seeds per fruit).

Simple Regression X 1 : # Viable Seeds per Fruit Y 1 : Mean Individual Seed Wt.

I Count: R: R-squared: AdI. R-squared: RMS Residual: 1376 Ill 1.012 1.009 1.217 I

I Analysis of Vadance Table Source DF: Sum Squares: Mean Square: F-test: FLeGRESSION 1 .216 .216 4.587

I RESIDUAL 374 17,642 .047 p = .0329 TOTAL 375 17.859 ! No Residual Statistics Computed

I Note:50 casesdeletedwithmissingvalues.

I Simple RegressionX 1 : # Viable Seeds per Fruit Y 1 : Mean IndividualSeed WL

I Variable: Coefficient: Std. ErrBeta.: CoefficientStd.TableCosff.: t-Value: Probability: ooo . 1 ,o I I '1 -.01 .0329 Confidence Intervals Table

I Variable: 95% Lower:. 95% Upper: 90% Lower:. 90% Upper. MEAN (XTY) .539 .583 .542 .579 I -.019 -.001 -.017 -.002

I What are the effects of gender and floral color on seed and fruit characters?

I 2.6.3 andGeFigurender ha2.6.3).s a signTheificantsignificanteffect oninterameanctiindividuon termalbetweenseed weightgenderperandfruiflowert (Tablecolor indicates that the combination of flower color and gender also has a strong influence on mean individual seed weight. White-flowered male-sterile flowers produce particularly I heavy seeds relative to the other color/gender combinations (Table 2.6.3). The total number of seeds per fruit (including aborted and apparently viable

ssterileseeds) dabortoes noathighdiffeer snumberignificantlyof seedsbetweenper frutheit gthanendershermaphrodites(Figure 2.6.2).(TableHowe2.6.4).ver, maleThis- is the case for both white-flowered and pink-flowered morphs. There is, however, a i significant flower color x gender interaction that influences the number of aborted seeds I ! I ,,4 per fruit. Among hermaphroditic flowers, fruits from white flowers have higher abortion

i levhigherels thanabortionfruitslevelsfrom thanpink whitfloweers.flowers.AmongWemaldoe-stnoteriknowle flowewhetherrs, thethesepink differenflowersceshavine abortion rates among flower color/gender combinations are due to differences in pollinator service, pollen quality, or the availability of resources for successful seed I development. There is a significant interaction between gender and color that influences total

i seedper fruitweight(althoughper frufewerit (Tableaborted2.6.5).seedsPinperk hermaphroditefruit) than whites havhermaphrodites.e higher total seedPinkweightsmale- steriles have lower total seed weights per fruit (but higher numbers of aborted seeds) than white male-steriles.

I Neither gender nor flower color, however, has a significant effect on the total number of mature (apparently viable) seeds per fruit (Table 2.6.6), nor did we detect a

, statistically significant interaction between gender and flower color for this trait. Table 2.6.7 summarizes the phenotypic variation, across dates, in the seed traits i examinedin this section. I I |' ! I ! I ! l ! ! !

, 115 Table 2.6.3. Summary of two-way analysis of variance to detect statistically significant effects of gender and flower color on the mean individual seed weight in Eremalche Ii kernensis.

t Anovs table for a 2-factor Analysis of Variance on Y4 : Mean Ind. Seed Wt (viable seed [mg]) t Source: df: SumofSquares:MeanSquare: F-test: Pvalue: Gender (A) 1 ,81 ,81 19.391 .0001

I ASColor (B) 1 .223141 .,141223 5.3263.372 .0216.0671 Error 372 15.543 .042 I

I There were no missing cells found. I The AB Incidence table on Y 4 : Mean Ind. Seed Wt (viable seed [mg]) I

_ Color: W P Totals: ' _ H .41238 .42633 .41971 ¢0 D _ Ms .611262 .488,3 .594_05 300 76 376 Totals:

, .586 .461 .561 |

I I i I I 116

I Figure 2.6.2. Means + one standard deviation of the number of mature seeds per fruit from hermaphroditic (bisexual) and male-sterile fruits. Included in these data are 376

i fruAprilits re17presentingand April ~24,1501992.indiviAlldualsfruoitsf Ercollectedemalchefromkernensbothis samplingfrom populationdates (deleting1, censusedthose that were enclosed within bags to exclude pollinators) are combined in this comparison of

i fruits representing hermaphroditic and male-sterile individuals.. I Mean + One Standard Deviation : t '. r

0

I Hermaphrodite Flowers Male-Sterile Flowers ! I I I i I !

, 117 Table 2.6.4. Summary of two-way analysis of variance to detect statistically significant effects of gender and flower color on the number of aborted seeds per fruit in Eremalche i kernensis.

i Anova table for s 2-factor Analysis of Variance on Y 2 : # Aborted Seeds/Fruit

I Source: df: Sum of Squares: Mean Square: F-test: P value: Gender(A) 1 151,59 151.59 20.514 ,0001

ABColor (B) 1 33.653,34 33,653,34 4.512.088 ,.76630342

i Error 422 3118.4 7.39

,I There were no missing cells found.

I The AB Incidence table on Y 2 : # Aborted Seeds/Fruit I Color:. W P Totals:

' H 4.13345 3.45735 3.83880

5.024 5.92 5.153 i L_ MS 341296 8550 426346 Totals:

I 4.906 4.906 4.906 ! I I I 1 I I

, 118 Table 2.6.5. Summary of two-way analysis of variance to detect statistically significant effects of gender and flower color on total seed weight (mature seeds) per fruit in

Eremalche kernensis. Anova table for a 2-factor Analysis of Vadance on Y 3 : Total Seed Wt (Vlable Seeds [mg]) I

I Source: df: Sum of Mean Square: F-test: P value: Gender(A) 1 ,262 .262 .112 .7383

AB 1 9.826 9.826 4.187 .0414 i Color (B) 1 .196 .196 .083 .7729 Error 422 990.296 2.347 I

Therewereno missingcellsfound. I 1 The AB Incidence table on Y 3 : Total Seed Wt (Viable Seeds [mg])

I Color:. W P Totals: H 45 35 80 •c:o 1,345 1,712 1.506

' _ MS 1,842296 1.35550 1.734671 341 85 426

I Totals: 1.776 1.502 1.721 I I

I, L= ! I I I

j 119 Figure2.6.3. Means+one standarddeviationof thetotalweightof matureseedsper I fruitand the meanindividualseedweightproducedby fruitsderivedfrom hermaphroditic

(bisexual)andmale-sterileflowers. . . I Mean + One Standard Dev,atton

I i I I

! 4.5 BB Total Weight of Viable Seeds

I' 4 BB Mean Individual Seed Weight i 3.5, _ 3

1.5, | 1. i .5, ii OHermaphroditeMale-Sterile HermaphroditeMale-Sterile Flowers Flowers Flowers Flowers |, i I I I I

| i I20 i Table 2.6.6. Summary of two-way analysis of variance to detect statistically significant effects of gender and flower color on the number of viable seeds per fruit in Eremalche i kernensis. Anova table for a 2-factor Analysis of Variance on Y 1 : # Viable Seeds per Fruit I

Source: df: Sum of Squares: Mean Square: F-test: P value: Gender(A) 1 12.659 12.659 1.867 .1725 Color (B) 1 2.354 2.354 .347 !.556

I AB 1 11.614 11.614 1.713 ,1913 -_ Error 422 2860.757 6.779

_ There were no missing cells found. ._

_ The AB Incidence table on Y 1 : # Viable Seeds per Fruit

i Color: W P Totals: 45 35 80 -¢ 3.156 3.829 3.45 296 50 346 MS

Totals: 341 85 426 , 33.135.138 32.88.271 3.164098 I t I I I I i i 121

_1 Figure 2.6.4. Means + one standard deviation of the number of aborted and mature seeds

I produced by fruits derived from hermaphroditic (bisexual) and male-sterile flowers.

I Mean+ OneStandardDeviation I I I I

I ' 8"' Aborted Seeds/Fruit Viable Seeds/Fruit | 7. II 6.

I "6 4' t. | - =E 3' Z II 2. 1.

I 0,

I , HermaphroFlowers dite MalFlowerse-Sterile HFlermaphroditeowers MaleFlowers-Sterile 1 I i I ! ! I I [22

I Table 2.6.7. Summary statistics of seed traits examined in this section. Fruits represent all dates and treatments but excluding bagged flowers (N = 426 excluding 13 bagged I flowers).

Mean: Std. Dev.: Std, Error: Variance: Coef. Var.: Count: I X1 : # Viable Seeds per Fruit i3,o, 12oo3i_2o Io,,o Io22,_I-o i Minimum: Maximum: Range: Sum: Sum of Sqr.: # Missing: l io i,_ I,_ i,_- i.t. Io i I

Mean: Std. Dov.: XStd.2 Error:: # AbortedVariance:Seeds/Fruit Cool. Var.: Count: I,.ooo 12,,o i,34 I,,o, 1oo._,oI`20 I I IoMinimum: iMaximum:,o IRan,,oqe: i2oooSum: iSu_52om of Sqr.: Io# Missing: I I

I Mean: Std. DevX.:3 Std.: TotalError:SeedWt(ViableVariance:Seeds[mg])Coal. Var.: Count:

11.721 11.54 1.075 12.371 [89.452 1'20 I I Minimum: Maximum: Range: Sum: Sum of Sqr.: # Missing: io I,oo I,,o I,_, 1225o.ooio i I

I X4 : Mean Ind. Seed Wt (viable seed ling]) Moan: Std. Dev.: Std. Error: Variance: Coef. Vat.: Count: !! i-_ i_ Io,, io. i-,- l_._ i Minimum: Maximum: Range: Sum: Sum of Sqr.: # Missing:

I I I I ! 123

I Summary of Results Section 2.6

I Tindicates,his table forsummeacharizseedes theWait,resultsthe statisticalof all ANOsignificanVAs descecriofbedtheineffectSectionof gender,2.6. Eachflowercolumn color, and the gender x color interaction on the mean value of the trait. The relative phenotypic values of the means of male-sterile (MS), hermaphrodite (H), Pink male- I sterile (PMS), Pink hermaphrodite (PH), While male-sterile (WMS), and While hermaphrodite (WH) are summarized in the far-right column.

I n.s* . notp<0.05significant P pink ** p<0.01 W white i ******* pp<0.0001<0.001 HMS hermaphroditemale-sterile Gender x

I Gender Color Color Interaction # ofviableseedsperfruit n.s. n.s n.s

I # aborted seeds per fruit **** n.s. MS > H PMS > WMS WH> PH

I total weight of viable seeds n.s. n.s. * PH > WH perfruit WMS>PMS

I mean individual seed weight **** n.s. * MS > H per fruit PH > WH i WMS > PMS Effects of gender on seed traits

I Although analyses reported in previous sections demonstrate clearly that male- sterile individuals produce more ovules than hermaphrodites, the two genders do not

I differdue towiththe factrespectthat trateso the ofmeanovuletotalabortionnumberperofomaturevary areseedsgenerallyper fruhigherit in theamongfield.male-This is steriles than among hermaphrodites. This rate of higher abortion can also be detected in the examination of aborted seeds within the mature fruits analyzed in this section.

I Overall, male-steriles exhibit significantly higher mean values for the number of aborted seeds per fruit than do hermaphrodites. In spite of the fact that male-steriles and

I hermaphroditesseeds that are onexhibitaveragesimilarsignificantlynumbersheavierof maturethan setheedsseedsper fruit,of hermaphroditesmale-steriles produce(male- sterile individual seed weight mean = 0.594 mg, hermaphrodite individual seed weight mean = 0.419 mg.) This difference appears to reflect a reproductive "cost" to being a I hermaphrodite.

I Effectsof flowercoloron seed traits Flower color and gender exhibit strong interactive effects on components of seed

I production. While pink male-steriles exhibit higher mean values for the number of ! ! 124

I aborted seeds per fruit relative to white male-steriles, the opposite relationship is observed among hermaphrodites. While pink hermaphrodites exhibit higher mean total

I weightshigher totalof allweightmatureofseedsmaturethanseedswhitethanhermaphrodites,white male-stedles.pink male-stedlesFinally, whileproducethe meana individual seed weights of pink hermaphrodites exceeds that of white hermaphrodites, the steriles. As a result of these interactions, there is no overall association between flower i opposite effect of flower color on mean individual seed weight is observed among male- color and the components of seed production that we observed. I I I I I I I I I I I I I I I ! 125

I Section2.7 l Vegetative data: branch number predicts reproductive output i number Inof mbranchesany plantsthat, reprhaveoductiveenteredoutputa reproductiveis positivelphay sce.orrelatedLarge withplantsplantmaysisimplyze or the produce more flowers and fruits. There are two explanations for this relationship. First, a plant may allocate the same proportion of its total energy to reproduction regardless of

I resourcethe plant allocatedsize. In thisis largercase, thanlargeinr plantssmall producplants ethoughmore thefruitsproportionalbecause thealltotalocationamountis thofe same. : i I Second, large plants may allocate a higher propo_on of their total resource to reproduction. For example, if plants require a minimal level of resource (e.g., water, soil nutrients) prior to flower production, then individuals with less than this "threshold"

I otherresourcewords,levelsmallmay individualsallocate all mayof theirexhibitresourcesa low to"reproductivegrowth and neffort".one to repIn rcontrast,oduction. In individuals that have attained the threshold resource level can allocate resources to

I reprodufunctionctionof plantin addisize,tionthento grothe wnumberth. If reproof branchesductive mayeffortserveor reproto predictductivetheallocationnumber ofis a flowers and fruits produced.

Using I individuals from population 2, we determined whether the number of branches accurately predicts the number of flowers, buds, fruits, or potential fruits.

I correlatedWewithfoundthethnumberat in Eremalchof buds,e kernenflowers,sis andthe fruitsnumber(Tablesof branches2.7.1, 2.7.2,is positivelyand 2.7.3; Figures 2.7.1 and 2.7.2). However, even small individuals produced fruits indicating that i therewas considerableis probably notvariationa minimalin thethresholdamount ofresourcebuds, flowers,requirementpotentialfor reproduction.fruits and fruitsThereat all plant sizes. At this time, it is not clear whether differences in flower and fruit production among individuals with the same number of branches are due to environmental or genetic I (perhaps gender-based) factors. ! ! ! ! ! ! ! I 126

I Table 2.7.1. Simple regression of the number of flowers produced per individual (dependent variable) on the number of reproductive branches per individual (independent

I variable) on April 13, 1992.

I Simple Regression X 1 : 4/13 # branches Y 1 : 4/13 # Flowers Count: R: R-squared: Adj. R-squared: RMS Residual: | 1104 1.666 1431 1,426 14.177 I Analysis of Variance Table i SourceREGRESSION DF:1 Sum1347.644Squares: Me1347.844an Square: F77-test:.24 RESIDUAL 102 1779.916 17.46 p = .0001

I TOTAL 103 3127.76

I No Residual Statistics Computed

I Simple Regression X 1 : 4/13 # branches Y 1 : 4/13 # Flowers Beta Coefficient Table

I Variable: Coefficient: Std. Err.: Std. Coeff.: t-Value: _robability: I INTERCEPT -31.168.576 I ,407 .656 8.789 |.0001

I Confidence Intervals Table

Variable: 95% Lower:' 95% Upper: 90% Lower: 90% Upper:

I _._ (X,YI 32.639769 54.383.264 32.9.77201 4.2525.132 I I I I I I I ! 127

I Figure 2.7.1. Simple linear regression of the number of flowers produced per individual (dependent variable) on the number of branches per individual (independent variable) on

I April 13- 14, 1992. !

| _o y_-3._7_x.1.188,2--.431, II 25 20

I 4/13 # Flowers 15

I' i0 1 2 3 4 5 6 4/13 # branches I ! I I I I ! I ! I i28

I Table 2.7.2. Simple regression of the number of flower buds observed per plant (dependent variable) on the number of branches per plant (independent variable) I observed on April 13- 14, 1992.

i Count: Simple R:Regression X 1 R-s:q4uared:/13 # branchesAdI. YR-sq1uared:: 4/'13RMS# budsResidual: t104 1.631 139g 1.393 16.472 I

I Analysis of Variance Table Source DF: Sum Squares: Mean Square: F-test: REGRESSIC_I 1 4854.694 4854.694 67,636 I RESIDUAL 102 7321.219 71.777 p = .O0Ol TOTAL 103 12175.913 I No Residual Statistics Computed I I

I Simple Regression X 1 : 4113# branches Y 1 : 4/13 # buds

I BetaCoefficientTable Variable: Coefficient: Std. Err.: Std. Coeff.: t-Value: Probability:

I , SLINTERCEPOPE T I-61.174.787 .825 .631 8.224 .0001

Confidence Intervals Table

I Variable: 95% Lower: 95% Upper: 90% Lower: 90% Upper:

,_ (XrY} 7.881 11.177 8.15 10,908 I 5.15 8.424 5.417 8.157 I I I I I I 129

I Table 2.7.3. Simple regression of the number of fruits produced per individual on the number of branches per individual on April 13, 1992. I Simple Regression X 1 : 4/13 # branches Y 1 : 4/13 # fruits

I Count: R: R-squared: Adj. R-squared: RMS Residual: 1104 I "708 I "501 1.496 111.012 I

I Source DF: AnalysisSumofSquares:VarianceTableMean Square: F-test: REGRESSION 1 12401.968 12401.968 102.267

I TOTALRESIDUAL 103102 ,2477112369.538571 121.27 _ = .0001

I No Residual Statistics Computed I

I Simple Regression X 1 : 4/13 # branches Y 1 : 4/13 # fruits Count: R: R-squared: AdI. R-squared: RMS Residual: II04 1.706 1.501 I.,96 Ill.012 I

I AnalysisofVarianceTable Source DF: Sum Squares: Mean Square: F-test:

I RESIDUALI:_-GRESSIE_ il102 12369.57112401,968 12124011.27.968 p102.267= .0001 TOTAL 103 24771.538 I No Residual Statistics Computed I I I I I I I I 130

! Figure 2.7.2. Simple linear regression of the number of fruits produced per individual on i the number of branches per individual on April 13, 1992. I

I y = 10.848x 5.261, r2 -- .501

100

I,' 4/13 # fruits o54001• 7e o°° 20

, 10_ 1 2 3 4 5 6 i 4/13 # branches ! I I I I • ! I I I 131

I Section2.8

Interspecific competition In many species, the presence of interspecific competitors can have a significant

ofimpacompetitorsct on the reprodumay decreasective susurvivorship,ccess of individuals.growth andIf r/esourcesor reproduction.are limited,To thedeterminepresence whether Eremalche kernensis is influenced by the presence and absence of competitors, ten pairs of plots were chosen in each population. In each pair of plots, we removed all

I cdeterminedompetitors whetherin one plotinterspecificof the paircompetitionwhile the otherinfluencedplot wastheleftfollowingin a naturaltraits:state. We

1. seedling survivorship . . ... : I 2. adult survivorship 3. number of flowering individuals, 4. fruit production,

I 6.5. individualtotal reproductivereproductiveeffort effort.per plot, and

I The presence of competitors did not affect any of the measured traits, indicating that biotic factors may be less important than abiotic for survivorship and reproduction in Eremalche kernensis. Table 2.8.1 illustrates that there was no significant difference between the I competitor-free andthecontrolplots withrcspect to thenumberof seedlings present on March 7, 1993 (the starting date of the experiment).

control OnplotsAprilwith7,respect1993, theto thecompetitor-freenumber of flowering(weeded)individualsplots did not(Tablediffer2.8.2).from the Consequently, the presence of competitors did not affect the rate of survival to adulthood

of the ability of plants to flower. On April 21, 1993, all the plots were censused. We recorded all surviving individuals, the number of open flowers per individual, the number of senesced flowers

I summedper individual,the numberand theof numberopen flowers,of developinsenescedg fruitsflowersper andindividual.developingFor fruiteach acrossplot, weall individuals to estimate the total reproductive effort (or reproductive output) per plot.

Totreatment,examinewehowdividedthe mtheeantoindividualtal reproductivereproductiveeffort in eacheffortplwotasbyaffectedthe numberby theof weeding flowering individuals in that plot.

I Becausephenological differencesbetweenindividualsand possiblybetween populations might produce misleading results when flower production and senesced flower number are analyzed separately, these data were only used in the analyses of total reproductive effort and individual reproductive effort. The data on fruit production, total reproductive effort per plot and mean

indivievaluatesdual therephypothesisroductive effortthat therewere isthenon differenceanalyzed bybetweenpaired thet-tests.meansTheofptheairecontrold t-test and weeded plots. A paired t-test was done for each population separately and then for a combined data set including data from both populations. We detected no significant

thesedifferencetraits between(Table 2.8.3).competitor-freeTable 2.8.4(wsummarizeseeded) and ctheontrreproductiveol plots with outputrespectoftoinanydividualsof in the control and in the competitor-free plots. While the t-test detected no statistically

significant differences between the control and weeded plots, the large differences I ! Z32

I between the means of the control and the weeded plots indicate that an effect might be detectable with largersample sizes.

I The p-values of the t-tests are close to being less than 0.05 (indicating a significant difference between treatment means) when testing for a difference in

I r2;eproductiveand in meaneffindividualort in populreproductiveation 2; in meffortean indinivtheidualcombinreprodedudatactiveseetff(populaort in populatitions 1oannd 2 pooled) (Table 2.8.3). One factor contributing to the absence of significant differences between the competitor-free and the control plots may be the high level of variability

I seenamonbyg plcomparingots within thtreatme coefficientsents, partiofcuvariatiolarly amnonamongg weedeweededd plotsplo. Ttshitos variathe cobielfficientsity can beof variation among the control plots and among all plots combined (Table 2.8.4). I ! I ! ! ! ! ! I ! ! ! ! ! I 133

I Table 2.8.1: Summary of two-way analysis of variance to detect statistically significant effects of treatment (control = 1; competitors removed = 2) and population (population

I 1=1; population 2 = 2) on the number of seedlings per plot on March 7, 1993.

I ANOVA Table for Mar 7 seedlCFingSum# of Squares Mean Square F-Value P-Value treatment 1 160.000 160.000 .244 .6240

i Potreatmentpulation* Population 1 213178.400.600 2131.60078.400 3.257.120 .0795.7313 Residual 36 23564.000 654.556 i One case was omitteddue to missingvalues.

I MeansEffect: Tabletreatmentfor Mar 7 seedling # Count Mean Std. Dev. Std. Err.

I ,2.000ooo:O27.0o00 ,Ooo124.544 5.488 ..,

I Effect:Means TablePopulafortionMar 7 seedling # Count Mean Std. Dev. Std. Err. I 2.,0ooo00 21.700 21.861 I 0o,4.888

I Means Table for Mar 7 seedling # Effect: treatment * Population

I 1.000, 1.000 Count10 39Mean.700 Std32..218Dsv. Std.10.188Err. 1.000, 2.000 10 22.300 19.842 8.211

I 2.000, 2.0001.000 10 2132.900.100 2423.919.945 77.564.889 I I I I I ! I 134

I Table 2.8.2. Summary of two-way analysis of variance to detect statistically significant effects of treatment (control = 1, competitors removed = 2) and population (population 1 I = 1; population 2 = 2) on the number of flowering individuals on April 7, 1993. ANOVA Table for Apt 7 # fl ind. i Population E1F Sum of Squares4.379 Mean Square4.379 F-Value.020 P-Value.8877 Treatment(weeded=2) 1 169.173 169,173 .783 .3831

i PopResiduulational ° Treatment (we... 311 67254.74900.167 254,749216.134 1.179 .2860 6 cases were omitteddueto missingvalues.

I Means Table for Apr7 # fl Ind. Effect: Population * Treatment (weeded=2)

I 1.000, 1.000 Count9 15.556Mean Sld.25.594Dev. Std.8.531Err. 1.000, 2.000 8 5.750 5.175 1.830

I 2.02.00000,, 2.01.00000 9 10.9.444_ a. 11.1705.855 3.7231.952 I I I I I I I I I I I I 135

I Table 2.8.3. Paired t-tests comparing fruit number, reproductive effort and mean individual reproductive effort between control plots and weeded plots. Each paired t-test

I datawas donefrom separatelyboth populations.on each population as well as on a combined data set including the i Differences between treatments in the number of fruits per individual

I Pairedt-test Split By:

I Population Mean Diff. _ t-Value P-Value control vs. weeded fruit: Combined -27.333 controlvs. weeded fruit:Pop 1 13/._ A,

I controlvs. weeded fruit:Pop 2 -68.111 Results fortotals may not agree withresultsfor individualcellsbecauseof missingvalues for split vadables. I Differences between treatments in reproductive effort per plot I Paired t-test

I Split By: Population Mean Diff. E:F t-Value P-Value

I Controlvs. Weeded Rep. Effort:Combineddata Controlvs. Weeded Rep. Effort:Pop. 1 Control vs. Weeded Rsp. Effort:Pop, 2 individual cells because of missing values for split I Results for totals may not agree with results for vadables. I Differences between treatments in mean individual reproductive effort I Paired t-test

I SplitBy: Population Mean Diff. CF t-Value P-Value

I ContControroll vs.vs. Weeded Ind.Ind. Rep.Rap. Effort:Effort:TotalPop 1 -1-..034931 Control vs, Weeded Ind. Rep. Effort:Pop 2 -2.126

I variablResultsesfor. totalsmay not agree withresultsfor individualceils because of missing values forsplit ! ! I 136

I Table 2.8.4. Summary statistics for the number of developing fruit per individual, the reproductive effort per plot, and the mean individual reproductive effort for control and

I weededcontrol andplotsweededsampledplotson combinedApril 23, 199as 3well. Theas forstatisticaleach treatmentparameterssepaarerately.calculated for

I Number of developing fruitsper individual Mean Std.Error Count Minimum Maximum # Mlssin,cI Coef.Var.

Control 41.278 10.818 18 0 167,000 2 1.112 Weeded 68.811 26.667 0 458.000 2 1.649 I

I Reproductive effort per Meplotan(buds.Std.flEowers,r ... Coand... fruits_Minim... Maximum # Miss ... Coef. V... Rep.effort,Total 243,972 60.351 36 0 1594.000 4 1.484 I Control 149.833 26,071 18 0 372.000 2 .738 Weeded 338.111 115.218 18 0 1594.000 2 1.446 I

i Mean reproductive effort perMeanindividualStd. Err... Co... Minim... Maximum # Missi... Coef. V.., Ind.repro, effort, Total 28.815 4.189 34 1.683 104,533 6 ,848 I Control 17,687 2.882 17 1.683 54.750 3 .672 Weedec_39,943 6,970 17 6.667 104,533 3 .720 I I I I I I I I ! I37

I Section2.9

I lntraspecificcompetition(density) The density of a population can affect the reproductive output of individual plants. i Inproduction.some specAlternatively,ies, aggregationindividualss of indivimaydualsalsoattractcompetemore forpollinatorsabiotic resourwhichces,increasesresultingfruitin a negative relationship between local population density and fruit production. We have documented that there are differences between the two populations in density and we

I thisobservedsection,conwesiderevaluatedable variatiothe ndegreein thetodwhichensity ofpopulationindividualdensitys withininfleachuencpesopfruitulation. In production in individual plants.

I In both populations, the density of individuals did not predict the amount of fruit production per plant. Figure 2.9.1 and Table 2.9.1 illustrate that fruit production per plant in population 1 is independent of local population density. In Figure 2.9.1, the estimated I fruit production of each of 217 plants distributed among fourteen 0.25-m 2 quadrats in population 1 is plotted as a function of the population density of the quadrat in which each plant is found. In Figure 2.9.2, the estimated fruit production of each of 97 plants

I dipopulationstributed densityamong nofinethe0.25quadrat-m 2 qinuadratswhichineachpopulatioplant nis 2found.is plottedIn bothas a cases,functiotheren of theis no significant relationship between local population density and lifetime fruit production by

I individual plants. ! ! ! I I ! I I I I I 138

I Figure 2.9.1. Simple regression of estimated fruit production on population density per i 0.25 m2 in population 1.

I y = -.126x + 11.176, r 2 = .011

I 90 , ' ' ' ' ' ' ' 80' "

I 70

I 60 • •

I' _ 50: ° o •

40. ! U.I

I 2300 ". •• • .. , •:. • ..:| l I o . I _.]U ,1L ..;"• 'n- ° l •. ,- .O-.,. •I I"r / { . I.. I • • • • • P 0 °°°" - " • I I 0 5 10 15 20 25 30 35

I Population I Density i Plants per 0.25 meter-squarequadrat I I I I I I 139

I Table 2.9.1. Simple regression of fruit production on population density per 0.25 m 2 in ! population 1.

I Simple Regression X 1 : Density Y 1 : Est. fa. prod Count: R: R-squared: Adj. R-squared: RMS Residual: 1217 1.106 1011 1.007 112.377 I

I Analysis of Variance Table Source DF: Sum Squares: Mean Square: F-test:

I RESPLeGRESSIIDUAL ON 2151 32933.767375.578 153.18375.578 2p.452= .1189 TOTAL 216 33309.346 I No Residual Statistics Computed

I Note: 18 cases deleted with missing values. I Simple Regression X 1 : Density Y 1 : Est. frt. prod

I Beta Coefficient Table Variable: Coefficient: Std. Err.: Std. Coeff.: t-Value: Probability:

I _p_CEPT 11.176

I Variable: 95% Lower:Confidence95% UppIntervalser: Table90% Lower: 90% Upper:

._ (X,Y, 7.169 110.481 7.437 110.213 I -.285 .033 -.259 .007 I i I I I I I 140

I Figure 2.9.2. Simple regression of fruit production per plant on population density per 0.25 m2 in population 2. ! y -" -.121x + 14.958, r 2 = .01 I '°I I _Io,

60 • ., ,oI:. . • ,oI • I= 2oiI .• • . ,. • Im | _o4.."" I :r I "1 • I1•. GO i _' 0 =•=" " l I 0 5 10 15 20 25 30 35 Population 2 Density

I Plants per 0.25 meter-squarequadrat ! II ! II I ! I 141

I Table 2.9.2. Simple regression of fruit production per plant on population density per I 0.25 m2 in population 2. ! SlmplaRegresalon X 1 : p2density V 1 : pop 2 Eat.tit prod

I 19Count:7 I1R: 0, IR0-sq1uared: Ad-3. 1R2-s1quared:E-, I1RMSs729Residual: I i Source DF: AnalysisSumofSqVarianceuares: TabMeanle Square: F-test: I:_--GRE._eIt"__ 1 239.965 239.985 .97

I TOTALRESIDUAL 9958 223500"6743740.639247.376 p = .3272

i NOResidualStatisticsComputed

i Note: 138 cases deleted with missing values.

i Simple Regression X 1 : p2 density Y 1 : pop 2 Est. frt prod Beta Coefficient Table

I Variable: Coefficient: _td. Err.: Std. Coeff.: t-Value: Probability: ,_CEPT -14.121.958 |.122 -.1 01 .985 .3272

I Confidence Intervals Table Variable: 95% Lower: 95% Upper: 90% Lower: 90% Upper:

-.363 .122 -.324 I 1 I I I I I ! 142

I Section2.10

I Effect of grazing on growth Grazing can have a significant impact on the reproductive output of individual and fruit number. In Eremalche kernensis, we know that the total number of branches is i plants. A highly grazed plant may suffer reductions in plant leaf area, flower number, significantly correlated with fruit production (Section 2.7).

I ungrazedWeandmeasuredgrazed patchesthe numberto seeandwhetherlength sheepof all branchesgrazing hadon aindisignificantviduals foimpactund inon plant size.

I There are significant differences in average branch length, branch number, and plant size between grazed and ungrazed plants. Plant size was calculated by multiplying the average branch length of an individual by the number of brancbes on that individual.

I branchesUngrazed wereplantslargerwereintwiceungraztheedsizplants.e of grazed plants. Both the length and number of

I. larger (estimatedFigure 2.10.1as meanshowsbranchthat thenumberungrazeperd individual)plots containthanindividualthose ins thethatgrazedare somewhatplots, although this difference is not statistically significant (Table 2.10.1). Ungrazed plots contain individuals with significantly larger average branch lengths than grazed plots I (Figure 2.10.2; Table 2.10.2). When plant size is estimated as the product of branch number and average branch length, ungrazed plots contain plants of significantly greater size than grazed plots (Table 2.10.3) ! ! I I I I ! I I ! , 143

I Figure 2.10.1. Frequency distribution of branch number (an estimate of plant size) for grazed and ungrazed plants.

I Grazed Plants I 3o 25 I 20

=15 8 I ,o

I 0 0 1 2 3 4 5 6 7 8 branch #

I Ungrazed Plants

40

_ 35 30

I _ 25 _2o

I' 15

, 105

I 0 0 1 2 3 4 5 I 6 I 7 I 8 branch # i i I I 144

I Table 2.10.1. Result of Mann-Whitney U test conducted to detect significant differences between grazed and ungrazed plots with respect to the number of branches per individual. I Ubranchesngrazedperandindividual.grazed plots do not differ significantlywith respect to the mean number of

I Mann-Whitney U for branch # Grouping Variable: _]razed=l U 991.000

I ZU-ValuePrime 1457.000-1.577 P-Value .1148

I TiTieded PZ-VValuealue -1.0693.816 # Ties 6

I One case was omitteddue to missingvalues. I ! I 1 I I | ! i I I I 145

I Figure 2.10.2. Frequency distribution of branch length for grazed and ungrazed plants.

I Grazed Plants

I 12 10 ! 8

I | 2 o I I i 0 5 10 15 20 25 30 35 40 Average branch length (cm) I

I UngrazedPlants 18 | 18 14 | 12

I 88,El0 |' 8 4 | 2 o t

I 0 5 10 15 20 25 30 35 40 Averagebranch length(cm)

i I I46

I Table 2.10.2. Result of Mann-Whitney U test conducted to detect significant differences between grazed and ungrazed plots with respect to the mean branch length of individual

I grazedplants. plots.Ungrazed plots contain plants with significantly longer branches than plants in

Mann-WhitneyU for Averagebranchlength Variable: I GroupU ing 370.500grazed=l U Pdme 2077.500

: PZ-Value <.0001-5.777

Tied P-Value <.0001 i Tied Z-Value -5,T79 # Ties 24

I One case wasomitteddue tomissingvalues. I

between grazed and ungrazed plots with respect to mean plant size (number of branches i Table 2.10.3. Result of Mann-Whitney U test conducted to detect significant differences X average branch length per plant). Ungrazed plots contain plants significantly larger I than plants in grazed plots.

II Mann-Whitney Ufor size Grouping Variable: grazed=l I U 475,000

I ZU-ValuePrime 1973.-5.070000 P-Value <.0001

I TiedZ-Value -5.071 TiedP-Value <.0001 i One# Tiescase wasomitteddue23tomissingvalues. I i ! I I p 147

I Section 2. 11. t Emergence ofE. kernensis seedlings from seed bank Ill Results from soil samples removed from population 1 and population 2 on April

I during14, 1992September. From Jul-yOctober),13, 1992no- Dseeecemberdlings 2,of 1992Eremalche(includkernensising one mwereonth obserof vernalizatived to on germinate from the 24 100-gram samples representing population I or from the twenty-

i fourseedlings200-gramin thesesamplesoilssamplesrepresenting, we observedpopulationmany2. seedlingsIn spite ofoftheErodiumabsenc,e Poaof Eremalche, Euphorbia, Festuca, and Bromus emerging until December, 1992, at which time the experiment was terminated.

I Eremalche kerrnensis did germinate in the twenty-two 250-gram soil samples collected in November, 1992 and monitored until March 1, 1993. These soil samples

i werenumbernotofvernalizedEremalchetoseedlingspromote germinemergingationfrom. Theredifferentwas csoilonsiderablesamples. variation in the Figure 2. i 1.1 shows a frequency distribution of the number of Eremalche

_ (Marchseedlings1,th1993).at emergedSoil samplesfrom thefromtwenwhichty-twonosamEremalcheples by theseedlingsend of theemergedobservadotionnotperiod • appearin the figure. i From nine of the twenty two 250-gram samples, two E. kemensis seeds germinated; from one of the samples, three seeds germinated; from two of the samples four seeds germinated, and from one of the samples six seeds germinated. From 13 of the no arc I samples, Eremalche kernensis appeared. These results in contrast to the samples collected from populations 1 and 2 in April 1992, from which no Eremalche seedlings appeared during five months of monitoring in the greenhouse (including one month of

I vernalization). I I I | t I I I I 148 ! Histogram | ,0 9

7

= 5 O

3 I I

I 0 1 2 3 4 5 6 7 Eremalche

i Figure 2.11.1. Frequency of Eremalche seedlings in soil samples from population 2.

Ii In addition to Eremalche, several other species were well-represented in the seed bank collected in November 1992. The most common were Erodium cicutarium, Bromus and other unidentified grass species (Figures 2.11.2 and 2.11.3). Other dicot species

, penicifoundUinatathe, Thelupodiumsamples includedlasiophyllum,AmsinckiaLayiasp., Cryptanthapentachaeta,sp.Crassula, Pectocaryasp., Plagiobothrys canescens, Atriplex suberecta, Lotus wrangelianus and Capsella bursa-pastoris.

| I i I I I I !

i 149

I Histogram 14

I 12

I 10 8

1 _6 - I 4 2 ! o

Bromus i 0 20 40 60 80 1O0 120 Figure 2.11.2. Frequency of Bromus seedlings emerging from soil samples I co1993.llected from population 2 in November 1992 and monitored until March 1,

'1 6 Hlstogram

! I _ 2 '| 1 1 o 1 2 3 4 5 6 7 8

, Erodlum Figure 2.11.3. Frequency of Erodium seedlings emerging from soil samples collected from population 2 in November 1992 and monitored until March 1,

I 1993. I I 15o

I Conclusionof seed bankstudy The soil samples collected in April, 1992 represent the period after seedling emergence

I bureprt epriorsent theto seeperdiodidspaersfteral sfroeedmdi199spersal2 adufrlts.om Soi1992l samadultsplesbutcollecpriorted toin sNeeovember,dling 1992 emergence for the 1993 season. The fact that we were not able to germinate E. kernensis

from soil samples collected six months after seed dispersal (the November 1992 i collectifrom theon),Apindicatesril 1992 soieitherl samplesthat: , but we were able to germinate E. kernensis seedlings

I (I) there is not a viable dormant seed bank ofE. kernensis retained in the soil, or (2) seeds that do not germinate promptly (in the next year) enter a very deep dormancy

, that is not easily broken. ! ! ! ! I ! ! I ! I I I I I 151 I APPENDIX -Chapter2

I Data on plant sizes sampled during the 1993reproductive season

X 1 : 4/13 # branches

i Mean: Std. Dev.: Std. Error: Variance: Coef. Vat.: Count: I 1"577 I 1"012 I .099 I 1"023 164'145 1104 I Ii i1Minimum: 15Maximum: iRang4 e: 1154Sum: 1354Sum of Sqr.: io# Missing: I I X 2 : 4/13 # rapt. bran.

1.519 .945 .093 .893 2.196 104 I [Mean: itd' Dev': Std' Error: Variance: C°ef' Var': iount: I I i_Minimum: i,Maximum: i_Range: ISum:,- I-_Sum of Sqr.: i# oMissing: L

'I X3 : 4/13 # Flowers Mean: Std. Dev.: Std. Error: Variance: Coal. Var.: Count:

I L4"452 ,0.367 Minimum: Maximum: Range: Sum: Sum of Sqr.: # Missing:

I ]0 i26 126 1463 15189 00 I

I, X4 :4/13#buds Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:

i I.Minimum:-o iMaximum:,o._ iR1o.ange: iSu,,m: _ 0Sum,,.of Sqr.:lO_t# ,Mlssin,o.q: I I to l_o i_o too, i_,_,,io t

X5 : 4/13 # fruits Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:

I IMinimum:11"846 115"508Maximum: I 1"521 1240.5Sum: 1130'912Sum of 1104# Missis I I lo ,8 I I ! 152

X6 :4/23buds Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:

I I 1"299 12"132 I "216 14.545 1164'124 197 I Minimum: Maximum: Range: Sum: Sum of Sqr.: # Missing: I is is i_ i1. lose i, i

i X7 : 4/23 fls Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:

Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: # Mlssinq: ! 120 128 1322 1372817 I

I X 8 : 4/23 mat trts Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:

! 112"629 115"726 I 1"597 1247'2981124"522197 I Minimum: Maximum: Range: Sum: Sum of Sqr.: # Missing: I is I_ i_ I_-o I_o_, I, I

I Mean: Std. Dev.: Std. XError:9 :4/23abortsVariance: Coef. Var.: Count: 15.01 15.378 1.540 128.9271107.348197 I I I0Minimum: 127Maximum: 127Ran,qa: 1485Sum: 1521_Sum of Sclr.: 17# Missing]: I I X 10 : aborts/mat I 181Mean: , 11.307Std. Dev.: 1.15Std. Error: 11.953Variance: 1171.134Coef. Vat.: 187Count: I Sum: Sum of Sqr.: # Miasin,q: I IM_nimum:I'_sximI_sum:°°s:i71t°391-5.-8 i17 I I I I I ! I53

I Chapter3

I What are sources of variation in reproductive components in the greenhouse?

I In greenhouse populations raised to flowering from field-collected seed, we conducted hand-pollinations between flowers within the same individual (self-pollinations)

I anoutcrossing)d between toflowersdetermine:produced by different individual plants (cross pollination, or

i) if individuals are self-compatible (capable of producing seed from serf-pollinated I flowers), ii) if flowers must receive pollen from genetically distinct individuals in order to I produce fruits with viable seeds, iii) if the quality of the seeds produced by an individual is influenced by the pollen i source used to pollinate it, and iv) if Eremalche kernensis and E. parryi are compatible.

The most direct way to determine whether geographically separated populations I have acquired strong genetic differences is to conduct hand-pollinations between individuals representing different field populations. If hand-pollinations do not result in

I succethey dossfulnotcrtrulyossesrepresent, one maythearguesamethaspecies.t the taxaForareEremalchesufficientlykernensis,geneticallyfordivergewhichnttherethat are few extant populations and about which there are taxonomic questions and uncertainties with respect to its distincmess relative to E. parryi. We conducted crosses between I individuals representing different taxa. This comparison provides data that indicate the relative degree of genetic differentiation and reproductive isolation that exists between populations.

I Questions addressed: i 1. Whathermaphroditiare the effec pctslantsof andgendmaieer on-sterileseed numberplants dipeffrerfruitin thanednuindivimberdualof maseedturemass?seeds,Do mean individual seed weight, total seed weight, number of aborted seeds, and proportion of aborted seeds?

I In gynodioeeious species, male-sterile plants appear to have a major disadvantage relative to hermaphrodites (male-steriles cannot contribute genes to future generations

I throughpopulationspolleovn).er Cmanyonseqgeunerations,ently, in orderthey formustmaleexhibit-sterilesomgenotypee compensatorys to persiadvast innnaturaltage with respect to survivorship or reproduction. In this greenhouse study (as in the field study described) we seek such a compensatory advantage among male-steriles relative to I hermaphrodites at the level of individual flowers and fruits. Because no resources are allocated to anther production (male function), higher

I seednumberprodofucmaturetion perseedsfruitorin meanmale-sterileseed weightplantsproducedis one suchby compensmale-sterileatoryplantsadvanshouldtage. Thebe greater than the number produced by hermaphroditic plants if male-sterile plants are i maintaining a relatively constant proportion of individuals in E. kernensis populations. If I ! 154

I this higher number or higher weight of mature seeds produced by male-sterile plants is found, it may explain the persistence of male-sterile individuals in these populations.

I notHowever,differ inin seedChapnumberter 2 of fromthis reporthermaphrodites.we saw that in the field populations male-steriles do

2. What on number of I istheeffectofpollen donorsandofindividualrecipient plants the viable seeds produced per fruit, mean individual seed weight, total seed weight per flower, number of aborted seeds per flower, and the proportion of aborted seeds per I flower? Observing the effects that pollen donors and recipient plants have on reproductive

I componentsexperimental willplantsenaweblecanus tmeasureo better undifferencesderstand thein theE. effectkernensisthat malebreedingand femalesystem.functionsFor our have on reproductive components, determine if flowers must receive pollen from genetically distinct individuals in order to produce fruits with viable seeds, and assess

I individualwhether themalequalusedity oftothepollinateseeds producedit. by an individual female is influenced by the

I "families"Variationof seedsinwillseedprovidecharactersa meaandsuregerminationof geneticbehaviorvariationamongin thesegeseedneticallytraits.distinct

are VS. per I 3. What the effects of selling within-population outcrossing on seed number fruit and mean individual seed mass? Is inbreeding depression detectable in traits expressed during seed development?

I By collecting and examining seeds that result from hand-pollinated selfed vs. outcrossed flowers, it can be determined whether self-pollination produces seeds of lower quality than seeds that are the result of hand-pollinated outcrossing. This phenomenon, I "inbreeding depression", is expected in species that are adapted to insect visitation and outcrossing. Inbreeding depression is caused by the expression of deleterious recessive alleles, which are more likely to appear (and be expressed phenotypically) in homozygous

I matingform followingin large populations.selling (or mating between relatives) than following outcrossing or random

I to populationsPopulationswith thathigh normallylevels of outcrosselflng.s hConsequently,ave high frequenciesoutcrossingof heterozypopulationsgotes relativein which close relatives do not frequently mate may "hide" or mask many of their deleterious recessive alleles in heterozygous genotypes, which do not express the recessive phenotype. I When individuals in natural populations are inbred (due to self-pollination or matings between relatives), inbreeding depression is often observed as reduced seed set (i.e., higher abortion rates during seed development) or lower seed quality (often detected as

I inlowerlargeseedonesmas-- s).evenSinceif mostmatiindividualsng between outcrossrelatives--is mdeoclinesre likeinly populationin small posizepulatiocannsbethan accompanied by high levels of inbreeding depression. Accordingly, the degree to which a i degreenatural topopwhichulationit wouldexhibitsbeinbreedingat risk of reduceddepressiviabilityon followfollowinging forceda sellingpopulationmaydecline.suggest the One goal of the experiment described in this chapter was to determine whether

I weightinbreedingrelativein E.tokernoutcrossing.ensis due toThatselfinis,g doreesultss inbreedingin lower resultseed setin oinbreedingr mean individdepressionual seed with respect to traits expressed during fruit and seed development? ! ! I 155

I 4. Are Eremalche kernensis and E. parryi reproductively incompatible? l California,Eremalcheas beingkernena subspeciessis is listeofEremalched in the JepsonparryManuali. Becauseof ThethereHigisheruncertaintyPlants of as to the taxonomic status of these plants we performed a breeding experiment to determine if E. parryi is a distinct species. The level of successful breeding between these plants will may I contributeindicate theirto adegreetaxonomicof theirclarification.genetic relatedness, and provide information that

I METHODS

effects of l Three greenhouse experiments were conducted to detect possible gender, selfing, within-population crosses and between-population crosses on seed number and seed mass. These experiments were conducted at the University of Caiifomia at Santa

I consistedBarbara inofthe686greenhousecrosses betweens of the fiveBiolopollengical donorSciencesplantsDepartment.and 17 recipientThe expeplants.rimentsTwelve Eremalche kernensis plants were grown from seed collected from population 1 at our study m sitewereongrownLokernfromRoadseed, KemcollectedCountyin adurinfieldgpopulationthe 1992 seaslocatedon. FiniveLostEremalcheHills aboutparryi1 mileplants south of the rest stop on Interstate 5 on the west side of the interstate near a cotton field. Each individual plant used in these experiments came from a different maternal plant in the field. Seeds were striated using sand paper,

waterwrappeford ionen lineweekn andatsoake40 dedgreesin dionizedFahrenheit. E. trernonsis_ Seeds were planted in 4-inch pots and DONORS germinated in a temperature controlled growth 1 - - 4 5" tO chamber before being moved the z greenhouse. All plants were raised under / identical conditions to minimize E. kernensis r

Observedenvironmenvariatital variation betweenon betweenplantsplantswith, la.ECiPiF_N'_3-2" respect to reproductive traits should be a _ 4_ result of genetic differences and not a result of ill r_ between-plant environmental variation. Pollinations were accomplished by

receptiveremoving sdtieghismas.cingFlanthersowers receifromvidonng opollenr plantswerewithtaggforceped. sAllandplantsbrushinwereg thein theanther on greenhouse from which natural pollinators were excluded. I

Experiment 1 tests the effect of selfing on seed production in comparison to outcrossed flowers using all possible combinations of crosses among five plants. The

pollinationsdesign consistedwereofperformed195 crossesby amonhand gbetweenEremalche3 Februarykernensis1993hermaphroditicand 9 March 1993.plants. All !

I . I 156 I Experiment 2

I E. kernensis DONORS

I 6 1 2 3 4 5 E.partyi 7 I RECIPIENTS8 9

I Experiment 2 detected the level of compatibility between E. kemensis and E. parryi. This experiment consisted of 205 crosses between donor plants 1 through 5 (which I were the same E. kernensis individuals used in experiment 1) and Eremalcheparryi recipient plants 6 through 10. All pollinations were performed by hand between 2 February 1993 and 5 March 1993. I Experiment 3

I E.DONORSkemensis 1 2 3 4 5

E.kemensis 12

I RECIPIENTS 13

15

17 I Experiment 3 addressed the importance of gender in the production of seeds. The

I designseven Econ. kernensissisted ofmale-sterile286 crosses recipientbetween plantsfive E.11kernensisthrough d17.onorNineteenplants (1flowersthroughin5)plantsand 16 and 17 set seed without being pollinated: an apparent occurrence of apomixis. All i pollinthe maationle-ssterilweree plantsperformedused asbyrechipandientsbetweenwere limit8 Feebrud toaryfemale1993 funandction4 Mar, itchwas199expe3. cStedince that they would have greater fecundity than the hermaphrodite plants used as recipients in I Experiment 1 if natural populations maintain a stable gender ratio. I I ! 157

I Although each experiment had specific questions to address, the results also address the more general question of the effect of pollen donor and recipient plant on seed

I number, seed weight, and the number of seeds aborted. Data analysis was conducted using the Statview 4.0 program (Abacus Concepts, i Inc.).correlationTwo-wayvaluesanalysiswere computedof varianceas appropriate.(ANOVA), one-way ANOVAs, unpaired t-tests, and Two-way ANOVAs were computed for each experiment using "pollen donor

I capertegfruit,ory" meaandn"reindividualcipient category"seed weight,as nominaltotal seedvariweight,ables (factnumberors), anofdabortviabelde seseededsnupermber fruit, and proportion (arcsine transformed) of seeds that are aborted as separate continuous i computingdependent variablesthe arcsinein ofsepthearatesquareANOrootVAsof. Thethe proportionarcsine transfof abortedormationseedswas todostandardizene by the distribution as is appropriate for proportional data (Ott, 1992).The ANOVAs use full interaction models with each factor as a main effect and all possible combinations of factors

I theas interactionmagnitude effects.of the F-statisticANOVA otablesccurredpresentby chance.the F-statisticFisher'sandProtea probabilitycted Least (p-value)Significantthat Difference procedure was used as a post hoe test to detect significant differences between

I group means. Tables of descriptive statistics are presented. Correlation and eovariance values were computed to determine if a significant relationship exists between the number of seeds per fruitand the mean individual seed in these I weight experiments. One-way ANOVAs were computed on the data from experiment 1 to show the

I totaleffectseedof selweightling onperviablefruit, senumbered numberof abortedper fruit,seedsmeanperindividualfruit, and theseedproportionweight per(aresinefruit, transformed) of seeds that are aborted per fruit. These ANOVAs used as the independent i factor the designation "outerossed" or "selfed". Summary tables were calculated to show the proportion of pollinations that did not ! set fruit in each experiment by individual donors and mothers. RESULTS

I Section 3.1.1 1. What are the effects of gender on seed number per fruit and seed mass? Do

I meanhermaphrodindividualitic plantsseed weightand mal, totale-sterilseede plweighants t,diffnumberer in theof nabortedumber ofseedsviable, andseeds, proportion of aborted seeds per fruit?

I The means of the number of viable seeds per fruit, the individual seed weight per fruit, and the total seed weight per fruit, the number of aborted seeds per fruit, and the proportion of aborted seeds per fruit, for hermaphroditic plants (Experiment 1) are used determine if I compared to male-sterile plants (Experiment 3) as recipients to gender effects these characters. All plants were grown under the same conditions in the greenhouse and pollinated with pollen from the same set of donors (1-5). Since

I crossesExperimwentere 1removedinvolved fromall comthebicomnatipaonrsisonsof crossesso thatbetweeinbreedingn hermaeffephroditiccts wouldplannotts,biasselfth- e analysis. All plants were included in the data set from experiment 3 (although 19 flowers ! ! ! 158

I in plants 16 and 17 where apomixis appears to have occurred were excluded), and t-tests were performed to determine if these two distributions are statistically different.

I Results show a significantly (p=.0007) higher mean for number of viable seeds for male-sterile plants in Experiment 3 than for hermaphroditic plants in Experiment 1 (Table i 3.1viable.1). seedsAdditiperonally,fruit (Tablethe mean3.1.3)indiisvidgreaterual seedforweightmale sterile(Tableplants.3.1.2) Maleand thseubtiletotalplantsweightalsoof had significantly (p=.0301) more aborted seeds (Table 3.1.4) per fruit than hermaphrodites. The proportion of aborted seeds was not significantly different between I genders (Table 3.1.5). Male-sterile plants produced more seeds per fruit than hermaphroditic plants in

I thesefindingsexperiments.support the Mideaeanthatindividualgreater seedresourceweightallocationwas greaterto femalein male-sterilefunction resultsplants.inThesehigher female fecundity in E. kernensis. These differences in seed production may contribute to the maintenance of the gynodioecious breeding system in these populations.

I Male-sterile plants had significantly higher numbers of aborted seeds than hermaphroditic plants, but the proportion of aborted seeds was the same in both genders.

I Thesuggestabsencethat theof atwosignificantgroups (male-steriledifference betweenrecipientsgenders11-17inandthehermaphroditicproportion of abrecipientsorted seeds1- 5) are equally compatible with the donors used to pollinate them (hermaphrodites 1-5). i Consequently,hermaphrodites theas observedrecipients differenceswith respectbetweento seed male-sterilesnumber per fruitas recipientsand meanandseed weight are probably due to true differences between the genders in resource allocation patterns. ! I ! ! ! ! ! ! I ! I 159

I Table 3.1.1. Results of t-test comparing the mean number of mature seeds per fruit produced by hermaphroditic flowers (Experiment 1) to the number

I producedpollen donors.by male-sterile flowers (Experiment 3) outcrossed with the same

I UnpaSeedsired/Samt-testple for Humber of Viable Grouping Variable: Experiment ID Hypothesized Difference = 0

I Mean Diff. CIF t-Value P-Value Experiment 1. Expedmant3 I -1322136813418I ooo7I

! F Teat for Number of Viable Seeds/Sample

I HypothesizedGrouping Variable:Ratio Experiment= 1 Var.ID Ratio Num. DF Den. DF F-Value P-Value Expedmantl, Expertmant3 I '4341 1031 2851 .4341 <-°°°1 I I Group Info for Number of Viable Seeds/Sample

I Grouping Variable:CountExperimentMean IDVadance Std. Dev. Std. Err Experiment 1 104 2.490 5.747 2.397 I .235 258 3.812 13.243 3.639 I .227 I Expenment 3 Descriptive

I StatMeianstics Viable seed number3.812exp. 3 Viable seed numberexp2.490.1 ... Std. Dev. 3.639 2.397

I StdCount. Error .258227 .235104 Minimum 0 0

I VarianceMaximum 13.23415.000 9.0005.747 Coef. Var. .955 .963

I SumRange 97615.000.000 259.0009.000 I Sum Squares 7098.000 1237.000 I I ! I I 160

I Table 3.1.2. Results of t-test comparing the mean individual seed weight per fruit between Experiment 1 (all hermaphrodites) and Experiment 3 (all

I male-steriles). Unpaired t-test for Mean Individual seed wt. (mg.) i GroupingHypothesizedVariable:DiffereExperimentnce = 0 ID Mean Diff. CIF t-Value P-Valua ! Experiment 1, Experiment 31 -171 12971-9.057 l<.0001 I

Grouping Variable: Experiment ID i F Test for Mean individual seed wt. (rag.) Hypothesized Ratio = 1 Var. Ratio Num.DF Den.DF F-Value P-Value

I Experiment 1, Experiment 3 I 1.575 I 551 1721 1.5751 02691

I Group Info for Mean individual seed wL (mg.) Grouping Variable: Experiment ID Count Mean Variance Std. Dev. Std. Err Experiment I 1 .152 .019 Experiment3 .009

I Descriptive Statistics Mean Ind. Seed Num., Exp.3. Mean ind. Seed Num. Exp. 1 ...

I MeanStd. Dav. ..121948 .778.153 Std. Error .009 .019

I MinimumCount .580173 .48065 Maximum 1.270 1.150

I Coal.VariancVar.e .128.015 .196.023 Range 750 67O

I Sum Squares 157163,.934971 40.85450.581 ! ! ! I I I 161

I Table 3.1.3. Results of t-test comparing the distribution of the total weight of viable seeds per fruit between hermaphroditic plants (Experiment 1) and I male-sterile plants (Experiment 3).

Unpaired t-test for Total Wt Viable Seeds (mg) I Grouping Variable: Experiment ID Hypothesized Difference = 0 Mean Diff. DF t-Value P-Value

I Experiment 1, Experiment 31 .1691 13541-44191<0001 I

I F Test for Total Wt Viable Seeds (mg) Grouping Variable: Experiment ID Hypothesized Ratio = 1

I Var. Ratio Num.DF Den. DF F-Value P-Value Experiment 1, Experiment 3[ .324 I 101 I 253l .324 I < 0001 I I Group Info for Total Wt Viable Seeds (mg) Grouping Variable: Experiment ID

I Count Mean Vadance Std. Dev. Std. Err I Experiment 31 254102 3.5861.994 11.6933.791 I 1.9473.420 ..215193 Descflptlve

I SMeantatistics Exp3 Total Wt Viable Seeds3.586... Exp 1 Total Wt VlabteSeeds1.994... Std. Day. 3.420 1.947

I Std.CountError .215254 .193102 Minimum 0 0

VadancMaximume 11.69313.560 3.7917.540 Coef. Var. .954 .976

I SumRange 910.80013.560 203.4307.540 Sum Squares 6224.390 788.632 I I I I I I 162

I Table 3.1.4. Results of t-test comparing the mean number of aborted seeds per fruit between hermaphrodite plants (Experiment 1) and male-sterile

I plants (Experiment 3).

Grouping Variable: Experiment ID i Unpaired t-test for Number of Aborted Seeds Hypothesized Difference = 0 Mean Diff. DF t-Value P-Value

I Experiment 1, Experiment31 -80713581-21771 030t I

I F Test for Number of AbortedSeeds Grouping Variable: Experiment ID Hypothesized Ratio : 1

I Var. Ratio Num.DF Den. DF F-Value P-Value Experiment 1, Experiment 3[ .6471 103 I 255 t "6471 '00891

I Group Info for Number of Aborted Seeds Grouping Variable: Expedment ID

I Count Mean Vadance Std. Dev. Std. Err Experiment 1 104 3.010 7.311 I 2.704 .265 I Experiment 3 256 3.816 11.303 I 3.362 .210 I ! Descriptive

I StatMeanistics Num. of Abort.Seeds, EXp3.816. 3... Num. of Abort. Seeds, Exp.3.0101... Std. Dev. 3.362 2.704

I Std.CountError .210256 .265104 Minimum 0 0

I VadancMaximume 11.30312.000 10.0007.311 Coef. Var. .881 .898

I SumRange 977.00012.000 313.00010.000 Sum Squares 8611.000 1695.000 I I I I I I 163

I Table 3.1.5. Results of t-test comparing the aresine transformed proportion of aborted seeds per fruit between hermaphrodite plants

I (Experiment 1) and male-sterile plants (Experiment 3).

Unpaired t-test for Acrsine transformed proportion of aborted seeds I Grouping Variable: Experiment ID Hypothesized Difference = 0 Mean Diff. EF t-Value P-Value

I Experiment 1, Experiment 3] .0031'9'1 .0891 ,9,531

I F Test for Acraine transformed proportion of aborted seeds Grouping Variable: Experiment ID Hypothesized Ratio = 1

I Var. Ratio Num.DF Den. DF F-Value P-Value Experiment 1, Experiment 3 I .746 I 651 t291 .7461 .1751 I

I Group Info for Acralne transformed proportion of aborted seeds Grouping Variable: Experiment ID

I Experiment1 Count Mean Vadanc.061e Std. Dev, Std..030Err Experiment 3 I I I I I I I I I I ! 164 l Summary of Section 3.1 I

I Effect of gender Male-stefiles used in Experiment 3 VS. i on seed traits Hermaphrodites used in Experiment 1

I Number of mature seeds per fruit * * * * MS > Herm. Mean individual seed weight * * * * MS > Herm.

I Total weight of mature seeds * * * * MS > Herm. Number of aborted seeds per fruit * MS > Herin.

I Proportion aborted seeds per fruit ns MS = Herm.

I * * * * = p<.0001 • = p< .05 !

I This table summarizes the results of the ANOVAs conducted to detect a significant difference between male-sterile and hermaphroditic greenhouse grown Eremalche kernensis with respect to fruit and seed traits. Asterisks indicate a significant difference between I genders with respect to the mean of a given trait. MS = male-steriles; Herm. = Hermaphrodites. ! I II I II ! I ! 165

I Section 3.2. The effect of pollen donor and recipient on reproductive I components 2. What is the effect of pollen donors (paternal effects) and of individual recipient plams

I (maternalweight pereffects)fruit, totalon thseede numbweighter ofpermatufruitre, seedsnumberproduof abortedced, meanseedsindperividualfruit,seeandd the proportion of aborted seeds perfruit ?

I Two-way ANOVAs Wereperformed to detect the effects that pollen donors and mammal parent have on the number of mature seeds per fruit (mature seeds are labeled

I "viablenumber seeds"of abortedin ANOVAseeds pertables)fruit,, andthe meanthe proportionindividualofseseedsed weithatght,aretotalaborted.seed wTheeight,results are presented in this order by experiment. Fisher's PLCD post hoe test was used to determine which means were different from each other for all combinations of crosses. means, I combinationANOVA tablesareandshown. Barstandardgraphs displaydeviationsthe andmeansstandardand standarderrors oferrorseach ofcrosmatures seeds produced for pollen donors and recipient plants, and for the interaction between donors and I recipients. Summary tables are provided to show the proportion of pollinations for each donor- i recipient combination that did not set seed. 3.2.1 The effect of pollen donor and recipient on the number of mature I seeds per fruit. In Experiment 1 five hermaphroditic E. kernensis plants were crossed in all possible

I combindifferentationswith (arespectclassicto"diallelthe numbercrossof"). viablePollenseedsdonoperrs werefruit s(Tableignificantl3.2.1.1.,y (13=.0237)Figure 3.2.1.1.). Recipient plant effects were also significant (p=.0214).

I cExperimentalculation of2 ancroF-statisticssed E. kernensisfor the effectand E.ofparryipollen. donorMissinong valuethe numbers did nooft amaturellow theseeds per fruit. Pollen recipient is observed to have a significant (p=.0001) on seed number per fruit

I (Tableexperiment3.2.1were.2., FigureEremalche3.2.1.2.kernensis) in thisandexperimentall recipient. SinceplantsallwerepolleEn. parryidonors thesein thisresults show that hybridization between these species is possible.

show effect of plant on number of I Experiment 3 results a significant (p=.0003) recipient seeds but no effect of pollen donor (Tables 3.2.1.3, Figure 3.2.1.3). This experiment used the same E. kernensis pollen donors as the above experiments, but used seven male- I sterile E. kernensis recipient plants. Summary of parental effects

I Paternal effects Mammal effects Num. mature seeds per fruit * * Herin. x Herin. Exp. l • Herin. x MS Exp. 2

I ns * * Herin. x MS Exp. 3 ! ! ! 166 ! 3.2.2 The effect of pollen donor and recipient on mean individual seed

I weight. Results from Experiment 1 show that pollen donors did not differ significantly with respect i toindividualthe meanseedindividualweight seedwere weifoundght,betweenhoweverrecipient, significantplantsdifferen(Tableces3.2.(p<2.1,.0001Figur) ine mean 3.2.2.1). The significant term indicates that maternal effects are stronger than paternal effects on seed weight.

I The analysis of variance of Experiment 2 detected no significant effect on mean individual seed weight due to pollen donor. However, the identity of the recipient plant had a

I signi3.2.2.2).ficant (p<.0001) effect on mean individual seed weight (Table 3.2.2.2, Figure Experiment 3 results show no effect of pollen donors on mean individual seed weight, but I a significant (p=.0001) effect of recipient plant (Table 3.2.2.3, Figure 3.2.2.3). Summary of parental effects

I Paternal effect Maternal effect Meanindividualseedweight ns * * * * Herin.x Herm. Exp. t ns * * * * Herin.x MS Exp.2 ns x I * * * * Herin. MS Exp.3

I 3.2.3 The effect of pollen donor and recipient on total seed weight per fruit.

I Results from Experiment 1 (Table 3.2.3.1., Figure 3.2.3.1) show that the recipient plant has a significant (p=.0007) effect on the total weight of viable seeds, and that pollen donor does not (p=.0655). However, the effect of pollen donor is significant between plant 1 and I plant 2 and plant 3 combinations as shown by Fisher's PLCD post hoe test. Experiment 2 results show that pollen donor had no significant effect on the total weight of

I viable3.2.3.2,seedsFigureper fruit,3.2.3.2).but that the recipient plant had a significant (p<.0001) effect (Table

Results from Experiment 3 show that pollen donor effect on the total weight of seeds per was to being significant (p=.0533), I fruit close and that the effect of recipient was highly significant (p=.0001) (Table 3.2.3.3, Figure 3.2.3.3).

I Summary of parental effects Paternal effect Maternal effect Total seed weight per fruit ns * * * * Herin. x Herin. Exp. I 2 I ns Herin.x MS Exp. 0.0 $3 * * * * Herin.x MS Exp.3 ! ! ! ! 167 ! 3.2.4 The effect of pollen donor and recipient on number of aborted seeds I per fruit. Experiment I results show that pollen donor has a significant effect (p=.0132) on the number of aborted seeds, while recipient does not have a significant effect (p=.4002) I (Table 3.2.4.1, Figure 3.2.4.1). Experiment 2 results show that both pollen donor (p=.0149) and recipient plant (p=.0001)

I Figurehave sig3.2.4.2).nificant eTheseffects crosson thees narumbere betweofeabortn fivede Ese. kernensiseds producsiresed perandplantfive (TE.abpalerryi3.2.4.2, hermaphrodites.

I Experiment 3 results (Table 3.2.4.3, Figure 3.2.4.3) show that no significant effect (p=.3770) of pollen donor is observed, but that the recipient plant has a significant effect (p=.0004) on the number of aborted seeds produced. I Summary of parental effects

I Numbeofr abortedseeds Paternal* effect Maternalns effect Herin.x Herin. Exp.1 • * * * * Herin.x MS Exp.2

I ns * * * Herin.x MS Exp.3

I 3.2.5 transformThe effected)of ofpolleabortn donored seeandds. recipient on the proportion (arcsine

I Eeffectxperimentof pollen1 resultsdonorshowon thea significantproportion effectof aborted(p=.0152)seedsof(Tablerecipient3.2.5.1,and aFigurenon-signifi3.2.5.1).cant

Missing values did not allow an F-statistic to be calculated for the effect of pollen donor on proportion Experiment I the of aborted seeds in 2. A highly significant (p<.0001) difference exists in the effect of recipient plants on proportion of aborted seeds (Table 3.2.5.2, Figure 3.2.5.2).

I In Experiment 3, no significant differences in recipient plants was detected (p = .5278). The F-statistic could not be calculated for pollen donor effect due to missing values (Table

I 3.2.5.3, Figure 3.2.5.3). Summary of parental effects

I Proportofioaborten sededs Paternnsaelffect Maternal* effect Herinx.Herin. Exp.I • * * * Herin.x MS Exp. 2

I us Herin.x MS Exp.3

I A summary table of all of these results can be found at the end of this chapter. ! ! ! 168

I 3.2.6 For each recipient-donor combination what proportion of pollinations did not set fruit?

I Summary tables for the observed fruit set by recipient plants and by pollen donors are presented below.

I Variation in the level of successful fruit set among maternal parents and among pollen donors is shown in Tables 3.2.6.1 and 3.2.6.2. The proportion of pollinated flowers that set fruit ranged from 0.782 to 1.0 among mammal plants, and from 0.865 to 0.948 among

I fruitpollensetdo(Tablenors. 3.2.6.2.).Pollen donoMaternalrs did noplant difftse(recipients)r significantldiffery (Chisignificantly-square p-valu(Chi-squaree = .2740)p-in value <.0001) in fruit set.

I Table 3.2.6.3. is a summary of the percent of fruits contributed by each combination of parent plants in all three experiments. ! II I II ! I I I ! I ! I I I t69

I DetailedTabulatedResults

I 3.2.1 The effect of pollen donor and recipient on the number of viable seeds per fruit. I Table 3.2.1.1 Two-way ANOVA results for the effect of pollen donor and

I crossingrecipient tonhe numbersame fiveof planmaturets of(viable)Eremalcheseeds kernensisper fruit. in Experiment 1

I ANOVA Table for Number of Viable i SeedsPolle/nSaDonormple Category E4lF Sum of Squares56.896 Mean14.224Square F-Value2.990 P.0237-Value 1 Recipient Category 4 58.223 14.556 3.060 ,0214

I PollenResidualDonorCategory"Rec... 1678, 371.06766.973 4.1864.757 .880 .5937 60 cases were omitteddue to missingvalues. I

Seeds/Sample I EffMeansect: TablePollenforDonorNumberCategoryof Viable Count Mean Std. Day. Std. Err.

I Plant 21 2219 ! 2.2634.182 2.81.99106 ..425644 Plant3 21 2.714 2.171 .474

I Plant5Plant4 2219 3.1363.158 2.3151.922 .494.441

I Means Table for Number of Viable Seeds/Sample Effect: Recipient Category

I Plant1 Coun19t 2.421Mean Std.2.Dev.168 Std..497!Err. Plant 2 25 4.280 2.441 .488

I Plantant34 2415 2.9332.500 2.3411.981 .511.478 Plant5 20 3.200 2.042 .457 I I i ! I 170 I Means Table for Number of Viable Seeds/Sample

I Effect: Pollen DonorCountCategoryMean* RecipientStd. Dev.CategoStd.ry Err. Plant 1, Plant 1 5 2,400 1.517 .678

I Plant 1, Plant 32 54 5.2005,500 2.0491.291 .917.645 Plant 1, Plant4 4 4.250 .957 .479 i Plant 1,2, Plant 51 43 31.333.750 2.6302.309 1.315t.333 Plant 2, Plant 2 5 4.600 3.130 1.400

' Plant 2, Plant 43 24 0.000.500 0.0001.000 0.000,500 Plant 2, Plant 5 5 2.800 2.950 1.319 i Plant 3, Plant 21 54 31.250,400 2.7021.893 1,208,946 Plant 3, Plant 3 6 2.667 2.251 .919

I Plant 3, Plant 4 3 3,000 2,646 1.528 Plant 3, Plant 5 3 3,333 1.155 .667 Plant 4, Plant 1 2 4.000 2.828 2.000

I Plant4, Plant2 6 4.000 2.191 .894 Plant 4, Plant 3 5 1.400 1,517 .678 Plant4, Plant4 2 3.500 .707 .500 3.500 I Plant 4, Plant 5 4 1.000 .500 Plant 5, Plant 1 5 3.400 2.808 1.168 Plant 5, Plant 2 5 4.200 2.950 1.319

I Plant5, Plant3 4 2.250 2.062 1.031 Plant 5, Plant 4 4 2.750 2.062 1.031 i Plant 5, Plant 5 4 2.750 2,217 1.109 I I I I I i ! I 171 I Flsher's PLSD for Number of Viable Seeds/Sample i SignificanceEffect: PollenLevel:Donor5Category% Mean Diff. Crit. Diff P-Value

I PPlantlant 1, PPlantlant 23 1.9191.468 1.3601.325 .0063.0304 S Plant 1, Plant 4 1.024 1.360 .1379

I Plant 2,1, PPlantlant 53 1.045-.451 1.3091.375 ..51551169 Plant 2, Plant 4 -.895 1.409 .2099

I Plant 3,2, Plant 45 -..873444 1.3751.360 .5225.2049 Plant 3, Plant 5 -.422 1.325 .5277

I Plant 4, Plant 5 ! .022 1.360 .9749 iB Flsher's PLSD for Number of Viable Seeds/Sample iu' Effect: Recipient Category Significance Level: 5 % Mean Diff. Crit. Diff P-Valua

I Plant 1, Plant 32 -1.859-.079 1.3331.322 .9065.0064 S lib Plant 1, Plant 4 -.512 1.500 ,4985 I! Plant 1, Plant 5 -.779 1.391 .2684 IB Plant 2. Plant 3 1,780 1.241 .0055 S Plant 2, Plant 4 1.347 1.418 .0624 2, i Plant Plant 5 1.080 1.303 .1029 Plant 3, Plant 4 -.433 1.429 .5478 Plant 3, Plant 5 -.700 1.315 .2924

I Plant 4, Plant 5 -.267 1.483 .7214 I ! ! i ! ! ! ! 172 ! InteractionBar Plotfor Numberof ViableSeeds/Sample

I ErrorEffect:Bare:Pollen+ 1DonorStandardCategoryError(s) 5 I I I I I I ,.5 T 4 II _.5 T T =_ T _"2.5 T w 2

I 1.5 1

I .5

Cell I Plant1 Plant2 Plant3 Plant4 Plant5

I a.

Figure 3.2.1.1,, a,b.e. Bar graphs Indicating the mean number of viable

I fiveseeds pollenper fruitdonors,(+ 1 (b)std. eacherror)of producedfive recipientin Experimentplants., and1 (e)by each(a) eachpollenof the donor x recipient combination. I I t t I 1 t I I 173 I

Effect:RecipientCategory I ErrorInteractionBare: Bar+ 1 StandardPlot for NumberError(e)of Viable Seeds/Sample 5 I I I I I I 4'2t T T T

I I'll I b. Plant1 Plant2 PIaC_3tl Plant4 Plant5

I InteractionBar Plotfor Numberof Viable Seeds/Sample

Error Bare: + 1 Standard Error(e) 7 ' I I I I I Effect: PollenDonorCategory* RecipientCategory

I _: ' T B=::Plant::2 ::

I o Plant;;I1 PIlant2 Plant3 Plant4 Plant5 Cell i C. Recipients are grouped together on x-axis. Within each recipient, i pollen donors are distinguished according to key at the right. I I 174 ! Table 3.2.1.2. ANOVA tables from Experiment 2 showing the effect of

I recipientkernensis plantpollenon donorsthe numbander Eof. parrviabyile seedsrecipients.per fruitMissingproducvaluesed crossingfor someE. donor x recipient combinations did not permit the computation of the F- I statistic for pollen donor.

t ANOVA Table for Number of ViableE;FSeedsSum/Sampleof Squares Mean Square F-Value P-Val... Pollen Donor Category 0 .4..842 • • •

_1 _ PollenRecipientDonorCategoryCategory ° Rec,.. 92 27920.159,099 139.5492.240 11.020.177 ..00019955 Residual 43 544.506 12.663

I 25 cases were omitteddue to missingvalues.

I' Means Table for Number of Viable Seeds/Sample Effect: Pollen Donor Category

I Plant1 I Count14 7.Mean000 Std4.206. Dev. Std.1.124Err. Plant2 ; 9 6.889 4.167 1.389

I Plant43 1215 6.3336.400 4.7932.947 1.384.761 Plant5 11 6.818 3.868 1.166 1 Means Table for Number of Viable Seeds/Sample

Co... Mean Std. Dsv. Std. Err. i Effect: Recipient Category Plant 6 1 0,000 * •

Plant8 20 5.850 3.133 : ,701 i Plant7 4 3.750 2.986 1.493 Plant9 22 5.409 3.034 ,647

I Plant10 14 10.786 3.599 .962 I I I I I 175 I Means Table for Number of Viable Seads/Sampla

I Effect: Pollen Donor CategoryCo... Mean* RecipientStd. CategoDay. ryStd. Err. Plant 1, Plant 6 O , • •

I Plant 1, Plant87 23 5.5002,667 3.5362.517 2.5001.453 Plant 1, Plant9 5 6.200 3.114 1.393

I PlantPlant 21,, Plant 610 04 12.000• .818• .408° Plant 2, Plant 7 0 • •

I Plant 2, Plant 98 34 6.2503.333 1.5281.500 .882.750 Plant 2, Plant 10 2 13.500 .707 .500

I Plant 3, Plant 6 1 5.000 ° ° Plant 3, Plant 7 O • • • Plant 3, Plant 8 8 6,500 2.739 1.118

I Plant 3, Plant910 35 8.6675.200 4,5092.168 2.603.970 Plant4, Plant6 0 • ° ° 4, I Plant Plant 7 0 • ° • Plant 4, Plant 8 5 4.400 4.037 1.806 Plant 4, Plant 9 4 6.500 4.438 2,217 9.333 6.429 3.712 I Plant4, Plant10 3 Plant 5, Plant 6 0 ° ° °

Plant 5, Plant 8 3 6.667 4.933 2,848 . Plant 5, Plant 7 1 7.000 ° • Plant 5, Plant 9 5 5.200 3,564 1,594

i i Plant 5, Plant 10 2 11.000 1,414 1.000 I ! ! ! I I i I 176 I Flsher's PLSD for Number of Viable Seeds/Sample

I SignificanceEffect: PollenLevel:Donor5Category% Mean Diff. Crit. D... P-Val......

I Plant 1,1, Plant 32 .600.111 2,6673.066 .6523.9421 Plant 1, Plant 4 .667 2.823 ,6363

I Plant 21,, Plant 35 ,489.182 3.0262.891 .7461.8997 Plant 2, Plant 4 .556 3.164 .7250

' Plant 3,2, Plant 45 .067.071 2.7793.226 .9616.9649 Plant 3, Plant 5 -.418 2.849 .7686

I Plant 4, Plant 5 -.485 2.996 .7457

i Effect:Flsher'sRePLSDcipientforCategoNumberry of Viable Seeds/Sample Slgniflcanca Level: 5 %

I Plant 6, Plant 7 Mean-3.750Diff. Crit8.023, Diff P-Valu.3512e Plant 6, Plant 8 -5.850 7.354 .1160

t Plant 6, PPlantlant 910 -10.786-5.409 7.3387.428 .1444.0054 S Plant 7, Plant 8 -2.100 3.931 .2873

I Plant 7, Plant 910 --7.0361,659 3.9014.069 .3958.0011 S Plant 8, Plant 9 .441 2.217 .6904

I Plant 8,9, Plant 10 -4.9365.377 2.5012.453 <..00030001 S ! I I I ! 1 I I 177 ! InteractionBar Plotfor Numberof ViableSeeds/Sample

I '. ErrorEffect:Bars:Pollen:l:1DonorStandardCategoryError(s) 9 I I I I I

! T T T T T II _°

I O , • , • ,

Cell I Plant1 Plant2 Plant3 Plant4 Plant5 a. t Figure 3.2.L2., a.b.c. Bar graphs indicating the mean number of viable

I seedsfive pollperen fruitdonors,(+ 1 (b)std. eacherror)of producfive reedcipieinnt Experimentplants, and2 (c)by (a)eacheachpolleofn the donor x recipient combination. I

| I I I ! I I 178 !

, InteractionEffect: RecipientBar PlotCategoryfor Number of Viable Seeds/Sample Error Bars: + 1 Standard Error(a) | ,2 10

I 8

|

' Plant6 Plant7 PlantCell8 Rant9 Plant10

I' b. Interaction Bar Plot for Number of Viable Seeds/Sample Effect: Pollen Donor Category ° Recipient Category

I Error Bars: ± 1 Standard Error(s)

12 is , ' ' ' ' LI

:_,8o !li Plant3

6 !il Plant 5

0 • _ • Plant6 Plant7 Plant Plant9 Plant10

C. Recipients are grouped together on x-axis. Within each recipient, pollen donors are distinguished according to key at the right. I I I 179 ! Table 3.2.1.3. Experiment 3 two-way ANOVA tables for the effect of recipient on the number of mature seeds produced per fruit. Missing values i_ for some donor x recipient combinations did not permit the F-statistic for pollen donor effect to be calculated. I ANOVA Table for Number of Viable Seeds/Sample El: Sum of Squares Mean Square F-Value P-Value Pollen Donor Category I 2 14.166 • • • Recipient Category 5 321.229 84.246 5,017 .0003

Residual # 1626.254 12.805 i Pollen Donor Category* Rec... 22 208.226 9.465 ,739 ,7916 50 cases were omitteddue to missingvalues. ! Means Table for Number of Viable Seeds/Sample

Co... Mean Std. D... Std. E... t Effect: Pollen Donor Category Plant 1 38 5.472 4.319 .720

PPlantlant 23 2834 4.0003.853 3.3673.491 .636.599 " " Plant 4 33 5.333 3.780 ,658

t Plant 5 29 4.828 3,694 .688

Means Table for Number of Viable Seeds/Sample

Effect: RecipientCountCategoMeanry Std. Dev. Std. Err. Plant 11 25 7.360 3.839 .788

I Plant1312 3218 2.5005.111 3.9352.447 ,696.577 Plant 14 27 4,111 3,479 ,870 ' Plant15 28 5.107 4.076 .770 /I Plant 16 25 5.200 2.814: ,523 " ! Plant 17 5 3,200 3.347 1.497 | ! ! i i I 180 I Means Table for Number of Viable Seeds/Sample

' Co,,. Mean Std. D... Std. E... i Effect: Pollen Donor Category * Recipient Category Plant 1, Plant 11 6 8.187 4.876 1.990

Plant 1, Plant 13 7 3,714 5.619 2.124 I Plant 1, Plant 12 4 4,500 3.416 1.708 Plant 1, Plant 14 6 4.167 2,229 .910

Plant 1, Plant 16 5 5.800 3.768 1.665 i Plant 1, Plant 15 6 7.833 4.070 1.662 Plant 1, Plant 17 2 1.500 .707 .500

Plant 2, Plant 12 2 6,000 1.414 1.000 I Plant2, Plant11 4 4.750 4.031 2.016 Plant 2, Plant 13 7 1.143 2.035 ,769

Plant 2, Plant 15 5 5.200 3.834 1.715 I Plant 2, Plant 14 4 3.500 4,041 2.021 Plant 2, Plant 16 5 4.800 2,168 ,970

I Plant 2,3, Plant 1711 16 9.0006.667 3,011• 1.229* Plant 3, Plant 12 5 6.000 2.449 1.095

I Plant 3, Plant 1314 75 11.800.571 4.1581.924 1,571.860 Plant 3, Plant 15 5 3,800 4,147 1.855

I Plant 3, PlantPlant 1617 60 3.667• 1.862• .760" Plant 4, Plant 11 5 8.200 4.658 2.083

I PPlantlant 4, Plant 1213 46 4.0003.333 2.9443,077 11.256.472 Plant 4, Plant 14 5 4.600 4,159 1.860

I Plant4, Plant1516 76 5.5716.167 4.2762,787 1.6161.138 Plant 4, Plant 17 0 • • °

I Plant5, Plant1112 43 8.7505.333 1.7081.155 .854.687 Plant 5, Plant 13 5 3.000 4.472 2.000

I PPlantlant 5, Plant 1145 57 2.4005.714 4.2713.050 t1.614.364 Plant 5, Plant 16 3 6.000 2.000 1.155

t Plant 5, Plant 17 2 2.000 1.414 1.000 I ! i i i

t 181 II 41

Flsher's PLSD for Number of Viable Seeds/Sample Effect: Pollen Donor Category dm Significance Level: 5 % Mean D... Crit.... P-Va... I

Plant 1, Plant 2 1,472 1.784 .1050 II1= Plant 1, Plant 3 1.619 1,693 .0607 i BI Plant 1, Plant 4 .139 1.707 .8723 Plant 1, Plant 5 .645 1.767 .4716 G,= Plant 2, Plant 3 .147 1.807 .8723 '_i, w Plant 2, Plant 4 -1.333 1,819 ,1495 Plant 2, Plant 5 -.828 1.876 _3844' . : i Plant 3, Plant 4 -1.480 1.730 ..0929 i Plant 3, Plant 5 -.975 1,790 .2833 Plant 4, Plant 5 .506 1.802 .5797 I Flsher's PLSD for Number of Viable Seeds/Sample Effect: Recipient Category 'in Significance Level: 5 % a Mean Diff. Crit. Diff P-Value Plant 11, Plant 12 2.249 2.189 .0441 S • Plant11,Plant13 4.860 1,890 <.0001 S | Plant 11, Plant 14 3.249 1.985 .0014 S Plant11,Plant15 2.253 1.948 .0238 S i Plant 11, Plant 16 2.160 2,003 .0348 S II Plant 11, Plant 17 4,160 3,489 .0191 S Plant 12, Plant 13 2,611 2.086 .0146 S iBm Plant 12, Plant 14 1.000 2,155 ,3802 II Plant 12, Plant 15 ,004 2.139 .9971 Plant 12, Plant 16 -.089 2.189 .9361 _l Plant 12, Plant 17 1.911 3.580 .2928 | Plant 13, Plant 14 -1.611 1.850 .0873 Plant 13, Plant 15 -2.607 1.832 .0056 S Plant 13, Plant 18 -2.700 1.890 .0055 S Plant 13, Plant 17 -.700 3.408 .6849 Plant 14, Plant 15 -.996 1,910 .3041 / Plant 14, Plant 16 -1.089 1.965 ,2750 8 Plant 14, Plant 17 .911 3,448 .6019 Plant 15, Plant 16 -.093 1.948 ,9250 I Plant 15, Plant 17 1.907 3.438 ,2744 i Plant 16, Plant 17 2.000 3.469 .2581 t I ! I ,82 I

Interaction Bar Plot for Number of Viable Seeds/Sample I Effect: Pollen Donor Category

7 ErrorBare:' +1Standard' Error(s)I I I ! T T I

5 "----I T _, _, T T I (.33 ! I 1 o • I PlantI Plant2 Plant3 Plant4 Plant5

a, Cell il

Figure 3.2.1.3., a.b.c. Bar graphs indicating the mean number of viable I seeds per fruit (+ 1 std. error) produced in Experiment 3 by (a) each of the donorfiVpollenxrecipientd°n°rS'combination.(b)each of seven recipient plants, and (e) each pollen I I I 1 ! I I i ! , ' 183 I Interaction Bar Plot for Number of ViableSeeds/Sample

Error Bars:+ 1 StandardError(s) i 9 Effect: RecipientCategory

I 7 i ' _ T T t !_ t

2

0 •

Cell | b. I I ! l ! i ! I i I 184 ! InteractionBar Plotfor Numberof ViableSeeds/Sample

I Effect:Error Bars:Pollen+ 1DonorStandardCategoryError(s)* RecipientCategory 12 ' ' ' ' ' ' ' | 10 I _ _.nt I _ ! ._c_ Plant_,3_n,, 4 i " [] Plant5

0 • • •

Cell I C. Recipients are grouped together on x.axis. Within each recipient, pollen donors are distinguished according to key at the right. I

| I i ! i I I I I 185

I 3.2.2 The effect of pollen donor and recipient on mean individual seed weight. I What is the effect of pollen donor and recipient on mean individaal seed weight?

I toResultthe smeanfromindividualExperimentseed1 sweight,how thathowever,pollen dosignificantnors did nodifferencest differ signi(p<.0001)ficantly wiinthmeanrespect individual seed weight were found between recipient plants (Table 3.2.2.1, Figure

I effects3.2.2.1). onTseedhe signiweight.ficant term indicates that maternal effects are stronger than paternal

I Theseed analysweightis dueof varianto pollence ofdonor.ExperimentHowever,2 detectethe didentityno signiofficantthe recipienteffect onplantmeanhadindaividual significant (t3<.0001) effect on mean individual seed weight (Table 3.2.2.2, Figure 3.2.2.2).

I Experiment 3 results show no effect of pollen donors on mean individual seed weight, but a significant (p=.0001) effect of recipient plant (Table 3.2.2.3, Figure 3.2.2.3). ! Table 3.2.2.1. ANOVA tables from Experiment 1 showing the effect of pollen donor and recipient plant on the mean individual seed weight.

I ANOVA Table for MeanIndividualneedCIF Sumwt. (mg.)of Squares MeanSquare F-Value P-Value PollenDonorCategory 3 .003 .001 .151 .9289

, PolRecipientlenDonorCategoryCategory"Rec... 153 1.327.112 .007.442 75.1641,270 <.0001.2497 Residual 60 .353 .005

99 caseswereomitteddueto missingvalues.

MeansTable for MeanIndividualseedwt. (rag.)

I Effect:.PolCountlen DonorMeanCategoryStd. Dev. Std. Err. Plant 1 21 .753 .158 .034

I Plant2 11 .761 .154 .046 Plant3 15 .763 .163 .042 Plant4 17 .776 .167 ,041

I Plant5 20 .761 .143 .032 I i I i I 186 ! Means Table for Mean individual seed wt. (mg.)

Count Mean Std. Day, Std. Err. i Effect: Recipient Category

Plant1 I 14 .670 .056 .015

Plant3 I 17 .586 .056 .014 i Plant2 I 24 .781 .098 .020 Plant 4 13 .780 .093 .026

I Plant8 16 .987 .070 .018

I MeansEffect: TablePollenforDonorMeanCategoryindividual* Recipientseed wt. (rag.)Category Count Mean Std. Day. Std. Err.

I Plant 11,, Plant 21 54 .857.630 .011.053 .005,032 Plant 1, Plant 3 5 .576 .063 .028

PlantPlant 1, PPllaant 54 43 .991.774 .059.057 .034.028 Plant 2, Plant 1 1 .712 • •

I PlantPlant 2, Plant 32 25 ,.590711 ..076007 .005.034 Plant 2, Plant 4 0 • • •

Plant3,2, Plant15 23 .720.976 .057.028 .040.016 Plant 3, Plant 2 4 .782 ,094 .047

PlantPlant 3, PlantPlant 43 24 .574.798 .,052045 .032.028 Plant3, Plant5 3 ,998 .086 .050

Plant 4, Plant 1 2 .892 .019 .013 Plant 4, Plant 2 5 .780 .124 .055 Plant 4, Plant 3 3 .626 .049 .028 4, Plant Plant 4 3 .688 .139 .080 Plant4, Plant5 4 ,993 .127 .083 Plant 5, Plant 1 5 .888 .051 .023 .044 I Plant 5, Plant 2 5 .768 ,099 Plant 5, Plant 3 3 .579 .088 .051 Plant 5, Plant 4 4 .846 .057 .029

Plant 5, Plant 5 3 .974 .020 .012 ! ! ! ! I 187 ! Flsher's PLSD for Mean Individual seed wt. (mg.)

I Effect:SignificancePollenLevel:Donor8Category% Mean Diff. Crit. Diff P-Value i Plant 1, Plant 23 -.009,011 ,057.052 ! .7605,6777 Plant 1, Plant 4 -.024 .050 .3491 i Plant 1,2, Plant 53 -.008.002 .048.061 .7423.9456 Plant 2, Plant 4 -.015 .059 .6181

I Plant 2,3, Plant 54 -..013001 .058.054 .9772.6396 Plant 3, Plant 5 .003 .052 .9118

I Plant 4, Plant 5 .016 ,051 .5373

Flsher'8 PLSD for Mean Individual seed wt. (mg.)

I SlgniflcanEffect: Recipientue Level:Cat6e%gory Mean Diff. Crit. Dlff P-Value

I PlantPlant 1,1, Plant 23 -.111.084 .,055052 <.0001.0036 S Plant 1, Plant4 -.110 .059 .0005 S

I Plant 2,1, Plant 35 -.317.195 .049.056 <.0001 S Plant 2, Plant 4 .002 .053 .9539 i Plant 3,2, Plant 45 -.193.206 ..050057 <<.0001.0001 S Plant 3, Plant 5 -.401 .053 <.0001 S

I Plant 4, Plant 5 -.207 .057 <.0001 S I I I ! ! ! ! I 188 I Interaction Bar Plot for Mean Individual seed wt. (rag.)

I Effect:Error Bars:Pollen+ 1DonorStandardCategoryError(s) ,9 I I I I I | .8 T T T T T .7 | .6 _.s :E II _.,

.3 " | .2: II .1 6 , , , Plant 1 Plant 2 Plant 3 Plant 4 Plant 5

I Cell a.

I Figure 3.2.2.1., a.b.c. Bar graphs indicating the mean individual seed weight per fruit (+ 1 std. error) produced in Experiment 1 by (a) each of

I donorthe fivex pollenrecipientdonors,combination.(b) each of five recipient plants, and (c) each pollen I I I I I I I I I 189 I Interaction Bar Plot for Mean individual seed wL (rag.)

I Effect: RecipientCategory 1 2 Error Bars:± 1 StandardError(e), , , ii '1 " I el • •

,,! iI IIiii I i • Plant 1 Plant2 PIc_II3 Plant4 Plant5

I IntersctlonBar Plotfor Meanindividualseedwt. (rag.) Effect: PollenDonorCategory* RecipientCategory

I ErrorBars:± 1 StandardError(a) 1.2_ I , , ' i

I =-;::::: [] Plant 5 I I Plant1 Plant2 Plant3 Plant4 Plant5

C. Recipients are grouped together on x.axis. Within each recipient, pollen donors are distinguished according to key at the right. I I I 190

I Table 3.2.2.2. ANOVA tables from Experiment 2 showing the effect of pollen donor and recipient plant on the mean individual seed weight per

I fruit.

ANOVA Table for Mean Individual seed wt. (mg.)

I 13= Sum of Squares Mean Squa... F-Value P-Value Pollen Donor Category 4 ,021 .005 .672 .6128 RecipientCategory 4 .445 .111 14.099 <.0001

I Pollen Donor Category * Rec... 16 .196 .012 1.550 .0948 Residual 113 .893 .008 i 48 cases were omitted due to missingvalues. I Means Table for Mean Individual seed wt. (rag.) Effect: Pollen Donor Category

I Count Mean Std. Dev. Std. Err. Plant 1 ; 32 .894 .091 .016 Plant2 23 .909 .103 .021

I Plant3 30 .877 .130 .024 Plant 4 23 ,898 .088 .018 i Plant5 30 .891 .117 .021 Means Table for Mean Individual seed wt. (rag.)

I Effect: RecipientCountCategoryMean Std, Dev. Std. Err. Plant6 27 ,959 .104 .020

I PlantPlant 78 1836 .821.825 .0.10284 .020.017 Plant9 29 .923 .073 .014

I Plant 10 28 .933 .083 .016 I I I I I I I L91 ! Means Table for Mean individual seed wt. (mg.)

I Effect: Pollen DonorCountCategoryMean* RecipientStd. CatD...egoStd.ry E... Plant1, Plant6 6 .991 .058 .024

I PlantPlant 1, Plant 78 49 .834.839 .060.081 ,0.02730 Plant 1, Plant 9 6 .962 ,066 .027

I Plant 2,1, PPlantlant 610 76 ,858.904 ; ..117055 .021.048 Plant2, Plant7 3 .815 .056 .032 i Plant2,2, Plant98 45 .941.887 .059.033 .029.015 Plant 2, Plant 10 5 .970 .161 .067 i Plant3,3, Plant 76 26 .928.758 ,161.120 .085.066 Plant 3, Plant 8 9 .771 .104 .035 i Plant3, PPlantlant 910 67 .952.940 .043.083 .018.031 Plant 4, Plant 6 3 1.036 .060 .034 i Plant4, PlantPlant 87 64 .832.877 .085.056 .035.028 Plant4, Plant9 5 .875 .061 .027 i Plant 4, Plant 10 5 .932 .046 .021 Plant 5, Plant 6 6 .974 .043 .018 Plant 5, Plant 7 5 .793 .117 .05; i Plant 5, Plant 8 7 .824 .151 .057 Plant5, Plant9 7 .894 .073 .027 ! Plant 5, Plant 10 5 .980 .016 ! .007 ! I ! I ! I I I 192 I Flaher'a PLSD for Mean individual seed wt. (rag.)

I Effect:SignificancePollenLevel:Donor5Category% Mean Diff. Crit. Diff P-Value

I Plant1,1, Plant23 -.015.017 .048.045 .5330.4602 Plant 1, Plant 4 -.004 .048 .8829

I Plant2,1, PlantPlant 53 .003.032 .045.049 .9011.1975 Plant 2, Plant 4 .012 .052 .6587

I Plant 2,3, PlantPlant 54 -.020.018 .049 .4663.4110 Plant 3, Plant 5 -.014 .045 .5452

I Plant 4, Plant 5 .006 J .049 .7955

Flaher'a PLSD for Mean Individual seed wt. (rag.)

I Effect: Recipient Category Significance Level: 5 % Mean Diff. Crit. Diff P-Value

I Plant 68 Plant87 .134.138 .045.054 <.0001 S Plant 8 Plant 9 .036 .047 .1288

I Plant 7e Plant 810 -.004.026 ..047051 .8742.2877 Plant 7 Plant 9 -.102 .053 .0002 S

I Plant ? Plant 10 -.113 .053 <.0001 S Plant 8 Plant 9 -.098 .044 <.0001 S Plant E Plant 10 -.109 .044 <.0001 S 9, I Plant Plant 10 °.011 .047 .6487 I I ! ! ! ! ! I 193 ! InteractionBar Plot for Mean Individualseedwt.(mg.)

I Effect:Error Bars:Pollen+ 1DonorStandardCategoryError(a) 1 I I I I I

I .9 "r v T "r T ,8 1 7

I °(9 _.4 1 3 .2 1 1 0 • " Plant 1 Plant2 Plant3 Plant4 Plant5 I Cell a. I Figure 3.2.2.2, a.b.c. Bar graphs indicating the mean individual seed weight per fruit (+ ] std. error) produced in Experiment 2 by (a) each of

dtheonorfivex pollenrecipientdonorcombinatis, (b) on.each of five recipient plants, and (c) each pollen I I I I I I I I I 194 ! Interaction Bar Plotfor Mean Individualseedwt. (rag.)

I Effect:RecipientCategory 1 Error Bars: + 1 Standard Error(s)

.8 !

| o.!'_

|' ":INo NN i Plant6 Plant7 Plant8 Plant9 Plant 10 b ° Cell

I InteractionBar Plotfor Meanindividualseedwt. (mg.) Effect:PollenDonorCategory* RecipientCategory Error Bars::t:1 StandardError(e)

I 12 , , , , , I

I .6 - :_ Plant2Plant3 o - Plant4 I - _ Plant5 I

I Plant6 Plant7 Plant8 Plant9 Plant10 Cell

I C. pollenRecipientsdonorsarearegroupeddistinguishedtogetheraccordingon x.axis.toWiththe ikeyn eachto therecipiright.ent, ! ! I 195

I Table 3.2.2.3. ANOVA tables from Experiment 3 showing the effect of pollen donor and recipient plant on the mean individual seed weight. !

I ANOVA Table for Mean Individual seedCIF wtSum. (mg.)of Squares Mean Square F-Value P-Value Pollen Donor Category 4 .080 .020 2.264 .0654

I Recipient Category 6 .890! .148 16.821 <,0001 Pollen Donor Category " Rec... 24 .321 .013 1.516 ,0719 Residual 138 1.217 ,009

I 109 cases were omitteddue to missingvalues. I Means Table for Mean individual seed wt. (rag.) Effect: Pollen Donor Category

I Count Mean Std. Dev. Std. Err. Plant 1 37 .922 ,112 ,0181 Plant2 27 ,926 .147 ,028

I Plant3 38 .964 .120 .019 Plant 4 38 .969 .110 .018

i Plant5 35 .951 .120 .020 Means Table for Mean individual seed wt. (mg.)

•I Effect: RecipientCountCategoryMean Std. Dev. Std. Err, Plant 11 27 ,890 .091 .017

I PPlantlant 1213 2312 .977.858 .099.144 .021.042 Plant 14 25 .882 ,058 .012

I Plant 156 2633 1.0621.020 .094.109 ..019018 Plant 17 27 .883 .098 ,019 I I I I I I I 196 I Means Table for Mean Individual seed wt. (mg.)

I Effect: Pollen DonorCountCategoryMean* RecipientStd. DCatay.egoryStd. Err. Plant 1, Plant 11 6 .829 .089 .036

I PPlantlant 1, PPlantlant 1213 43 .989.798 .107.151 .054.093 Plant 1, Plant 14 7 .899 ,039 .015

I PPlantlant 1,, PPlantlant 1516 56 .026.024 .076.033 .034.013 Plant 1, Plant 17 6 .870 ,083 ,034

I PPlantlant 2,2, PPlantlant 1112 32 ..800902 .0.19649 .029.138 Plant 2, Plant 13 2 .707 ,180 .127

I PlantPlant 2, PlantPlant 1814 4 1,110.875 .093,069 .035.046 Plant 2, Plant 18 7 ,978 .074 .028

I Plant 3,2, Plant 1117 75 .954.900 _ .171.048 .018.076 Plant 3, Plant 12 7 .998 .060 .023

I Plant 3, PPlantlant 1413 51 .853.925 .092• .041• Plant 3, Plant 15 6 1.026 .108 .044

I Plant 3, Plant 16 7 1.059 .144 .054 Plant 3, Plant 17 5 .844 ,109 .049 Plant 4, Plant 11 5 .849 .044 .020

I Plant 4, Plant 12 5 .978 .079 .035 Plant 4, Plant 13 4 .904 ,124 .062 Plant 4, Plant 14 4 .919 .055 ! .028

I Plant4, Plant15 6 1.057 .114 .047 Plant 4, Plant 16 7 1,076 .049 .019 Plant 4, Plant 17 5 .922 .072 .032

.132 D054 5 Q903 I Plant 5, Plant 11 Plant 5, Plant 12 5 1.012 .078 .035 Plant 5, Plant 13 2 .976 .012 .008

lOG7 I Plant 5, Plant 14 5 .885 .017 Plant 5, Plant 15 5 1.107 .058 .026

Plant 5, Plant 17 6 ,880 .030 .012 i Plant 5, Plant 16 6 .955 .164 .067 I ! I I I 197 I Flsher'a PLSD for Mean Individual seed wt. (mg.)

I Effect:SignificancPollene Level:Donor5Catego% ry Mean Diff, Crit. Diff P-Value

I PlantPlant 1, Plant 23 -.004-.042 .047.043 .8600.0527 Plant 1, Plant 4 -.047 .043 .0331 S

I Plant 2,1, Plant 53 o.029-.038 .044.047 ,.10851874 Plant 2, Plant 4 -,043 ,047 .0735

I Plant 23,, Plant 54 -.-.005025 .048.043 .2978.8214 Plant 3, Plant 5 .013 .044 _ .5542

I Plant4, Plant5 .018 .044 ,4212

Flsher'a PLSD for Mean Individual seed wt. (rag.)

I Effect: Recipient Category Significance Level: 5 % Mean Diff. Crit. Diff P-Value

I Plant 11, PlantPlant 1312 -.088.032 .064,053 .3332.0013 S Plant 11, Plant 14 .008 .052 .7738

I Plant 11, Plant 15 -.172 .051 <.0001 S Plant 11, Plant 16 -.130 .048 <.0001 S Plant 11, PIant 17 .007 .051 .7760 i Plant 12, Plant 13 .119 .088 .0005 S Plant 12, Plant 14 .095 ,054 .0008 S Plant 12, Plant 15 -.084 ,053 .0021 S

I Plant 12, Plant 16 -.043 .050 ,0961 Plant 12, Plant 17 .095 .053 .0005 S Plant 13, Plant 14 -.024 .085 .4655 i • 0_5 <.0001 S I Plant 13, Plant 15 -.203 Plant 13, Plant 16 -.162 ,063 <.0001 S Plant 13, Plant 17 -.024 .084 .4561

I Plant 14, Plant 15 -.179 .052 <.0001 S Plant 14, Plant 16 -.138 ,049 <.0001 S

Plant 15, Plant 16 .041 .049 ! .0950 i Plant 14, Plant 17 -2.179E-4 .052 .9933 Plant 15, Plant 17 .179 .051 <.0001 S

I Plant 16, Plant 17 .138 .048 <.0001 S ! I I 1 198 I Interaction Bar Plot for Mean Individual seed wL (rag.)

EffErroroct:Bars:Pollen:i: 1DonorStandardCategoryError(s) 1,2

1 T T T T T

I i i ,6 I .2 I 0

Cell Plant 1 Plant 2 Plant 3 Plant 4 Plant 5 a.

Figure 3.2.2.3., a.b.c. Bar graphs indicating the mean individual seed weight per fruit (+ 1 std. error) produced in Experiment 3 by (a) each of the five pollen donors, (b) each of seven recipient plants, and (e) each pollen donor x recipient combination. I I I I I I I I ! 199 ! Interaction Bar Plot for Mean Individual seed wt.

I (mg.)Effect: Recipient Category Error Bars: + 1.2 ! 1

I | .8 T. I I c I

=_ .6 I

I I .4 I I | "_ o

- _- E E _. _- b. I I ! ! I I I I I I l 200 InteractionBar Plotfor Mean Individualseedwt.

I E(mg.)ffect: PolJenDonorCategory"RecipientCategory Error Bars: ± 1 $ i 1,2 1 I .8 [_ Plant1

Plant3 I _ .6 []Plant2Plant4 i ¢3 .4 [] Plant5 m .2

m o E _ E E E _ m E. _- E. E. E. E. o. C. Recipients are grouped together on x-axis. Within each recipient,

I pollen donors are distinguished according to key at theright. m i I I I m

m I I 201

I 3.2.3 The effect of pollen donor and recipient on total seed weight per fruit.

I What are the effects of pollen donor and recipient on total seed weight per fruit?

Results from Experiment 1 (Table 3.2.3.1., Figure 3.2.3.1) show that the recipient plant I has a significant (p=.0007) effect on tile total weight of viable seeds, and that pollen donor does not (p=.0655). However, the effect of pollen donor is significant between plant 1 and plant 2 and plant 3 combinations as shown by Fisher's PLCD post hoe test.

U Experiment 2 results show that pollen donor had no significant effect on the total weight of viable seeds per fruit, but that the recipient plant had a significant (p<.0001) effect (Table

I 3.2.3.2, Figure 3.2.3.2). Results from Experiment 3 show that pollen donor effect on the total weight of seeds per fruit was close to being significant (p=.0533), and that the effect of recipient was highly

I significant (p=.0001) (Table 3.2.3.3, Figure 3.2.3.3).

I Table 3.2.3.1. ANOVA tables from Experiment 1 showing effect of pollen donor and recipient on the total weight of viable seeds per fruit.

I ANOVA Table for Total Wt ViableSeeds(mg) ElF Sum of Squares MeanSquare F-Value P-Value i PollenRecipientDonorCategoCaterygory 4 29.68068.217 177.420.054 2.2895.261 .0655.0007 : PollenDonorCategory° Rec... 16 28.830 1.802 .556 .9085 Residual 94 304.691 3.241 I 64 caseswereomitteddueto missingvalues. I

I MeansTablefor TotalWt ViableSeeds(mg) Effect: Pollen Donor Category Count Mean Std. Dev. Std. Err.

I Plant1 25 2.850 1.821 .364 Plant2 22 1.635 2.156 .460 Plant3 24 1.811 1.750 .357 I Plant4 24 1.997 1.728 .353 Plant5 24 2.226 1.937 .395 I I I I I 202 I Means Table for Total Wt Viable Seeds (mg)

I Effect: RecipientCount CategoryMean Std. Dev. Std. Err. Plant 1 25 1.253 1.484 .297

I PlPlantant 23 2725 3.2341.438 2.0551.316 .396.263 Plant 4 16 2.189 1.574 .393

I Plant5 26 2,401 2.159 .423 I

I MeansEffect: TablePollenforDonorTotalCWtategoryViable* RSeedecipients (mg)Category Count Mean Std. Day. Std. Err.

I Plant1, Plant12 65 4.1681.283 = 1.1251.676 .459.749 Plant 1, Plant 3 5 2.946 1.145 .512

I Plant1, Plant45 45 3.3072.952 2.743.881 1.227.440 Plant 2, Plant 1 4 .712 1.425 .712

I Plant2, Plant32 56 2.865.472 2.361.846 .289.964 Plant2, Plant4 2 0 0 O

I Plant 3,2, PPlantlant 15 5 2.712.744 1.3172.810 1.257.589 Plant 3, Plant 2 5 2.728 2.250 1.011

I Plant 3, Plant 43 36 2.3831.528 2.0801.296 1.201.529 Plant 3, Plant 5 5 1.958 1.905 .852

I Plant 44,, PlPlantant 21 65 3.1401.096 1.8511.771 .792.758 Plant 4, Plant 3 5 .882 .967 .433 m Plant 4, Plant 4 3 1,870 1.307 .754 gB Plant 4, Plant 5 5 2.718 1,665 .745 Plant 5, Plant 1 5 2.314 1.785 .798

I Plant 5, Plant 2 5 3.360 2.577 1.153 Plant 5, Plant 3 4 1.322 1.264 ,632

Bib Plant 5, Plant 4 4 2.260 1.605 .802

I Plant 5, Plant 5 6 1.787 2.169 .886 I ! I I 203 I FIsher's PLSD for Total Wt Viable Seeds {rag)

I Effect:SignificanPollence LDonorevel: 5Cat% egory Mean Diff. Crit. Diff P-Value

I Plant 1, Plant 23 1.2161,039 11.022,045 .02310483 S Plant 1, Plant 4 ,853 1.022 .1005

I Plant 1,2, Plant 53 -.177.625 1.0221,055 1 ,.22787402 Plant 2, Plant 4 -.363 1.055 .4968

I Plant 2,3, Plant 54 -.591186 1.0551.032 .2687.7215 Plant 3, Plant 5 -.415 1.032 .4271

I Plant 4, Plant 5 -.229 1,032 ,6608

Fieher'e PLSD for Total Wt Vlable Seeds (rag)

I Effect: Recipient Category Significance Level: 5 % Mean Diff. Crit. Diff P-Value

I Plant 1, PlantPlant 23 -1.981-.186 1.011.992 .7163.0001 S Plant 1, Plant 4 -.937 1.144 .1075

I Plant 2,1, Plant 35 -11.,148795 1.001.992 ,00050251 S Plant 2, Plant 4 1.044 1.128 .0691

I Plant2, Plant5 .833 .982 .0955 Plant 3, Plant 4 -.751 1.144 .1958 Plant 3, Plant 5 -.962 1.001 .0594

I Plant 4, Plant 5 -.211 1.136 .7126 ! I I

| ! I I I 204 I InteractionBar Plotfor TotalWtViableSeeds(mg)

I Effect:Error Bars:Pollen+ 1DonorStandardCategoryError(s) 3.5 t

I s 2.5 2

O3 I O°1.5 | 1 II 5 0

Cell i Plant1 Plant2 Plant3 Plant4 Plant5 a.

I Figure 3.2.3.1., a.b.c. Bar graphs indicating the total weight of mature (viable) seeds per fruit (+ 1 std. error) produced in Experiment 1 by (a)

I eachach pollenof the donorfive polxlenrecipientdonors, combination.(b) each of five recipient plants, and (c) I I I

| I i I I I 205

I InteractionBarPlotfor TotalWt ViableSeeds(mg)

Effect.Error Bars:Recipient± 1 StandaCategoryrdError(e) 4 i i I I , I I I _°1 T I ,,_ T

1 Plant2 Plant3 Plant4Plant Plant5 ,' :ili'lilCelli'll I b. i InteractionBar Plotfor Total WtViableSeeds(mg) Effect:PollenDonorCategory* RecipientCategory

I 6 Error Bare:+ 1 StandardError(s), , ,

4 Plant1

_ Plant4

|I' _i i ' _ Pla,nant5 ,_ I o , : Plant1 Plant2 iPlant 3 llPlant4 Plant f 'i Cell C. Recipients are grouped together on x-axis. Within each recipient,

I pollen donors are distinguished according to the key to the right. i i ._ . 206

I Table 3.2.3.2. ANOVA tables from Experiment 2 showing effect of pollen donor and recipient on the total weight of viable seeds per fruit. i ANOVA Table for Total Wt Viable Seeds (m9)

I CF Sum of Squares Mean Square F-Value P-Value Pollen Donor Category 4 24.248 6.062 .959 ,4323 Recipient Category 4 483.522 120.881 19.131 <.0001

I Pollen Donor Category" Rec... 16 80,835 5.052 .800 .6838 Residual 125 789.816 6.319

I 36 cases were omitteddue to missingvalues. I Means Table for Total Wt Viable Seeds (rag)

' Count Mean Std. Dev. Std. Err. i Effect: Pollen Donor Category Plant 1 34 4.647 3.171 .544 Plant2 28 3.550 3.147 .595

I Plant3 31 4.256 2.731 ,491 Plant4 26 4.443 3.404 .668 i Plant5 31 4.771 3.064 .550 Means Table for Total Wt Viable Seeds (rag)

_ Effect: RecipientCountCategoMeanry Std. Day. Std. Err. Plant6 27 2.941 1.550 .298

Plant 78 2041 2.6583.764 1.7202.430 .385.380 Plant 9 34 4.086 2.771 .475

I Plant 10 28 8.104 3,284 .821 I i I I I I 207

Means Table for Total Wt viable Seeds (rag) Effect: Pollen Donor Category * Recipient Category Count Mean Std. Dev. Std. Err. Plant 1, Plant 6 6 2.262 1,091 .445 Plant 1, Plant 7 5 2.522 1,627 .728 Plant 1, Plant 8 9 3.772 1.507 .502 Plant 1, Plant 9 7 4.543 3.195 1,208 Plant 1, Plant 10 7 9,437 1,383 .523 Plant 2, Plant 6 8 _2.447 1,132 .462 Plant 2, Plant 7 3 3,787 2.105 1.215

Plant 2, Plant 8 8 2.970 2.859 1.011 Plant 2, Plant 9 6 _2,015 1.767 .722 Plant 2, Plant 10 5 7.504 4.384 1.960 Plant 3, Plant6 6 2,560 1.688 .689 Plant 3, Plant 7 3 1.517 1.338 .772 Plant 3, Plant8 9 4.330 2.284 .751 Plant 3, Plant9 7 4.531 2.243 .848 Plant 3, Plant 10 6 6.888 3,227 1.317 Plant4, Plant6 3 5.180 .298 .172 Plant 4, Plant 7 4 2.005 .906 .453 Plant 4, Plant 8 8 3.401 2,825 .999 Plant 4, Plant 9 6 4,793 3.725 1.521 Plant 4, Plant 10 5 7.200 4.717 2.110 Plant 5, Plant 6 6 3.378 1,696 .892 Plant 5, Plant 7 5 3.326 2.175 .973 Plant 5, Plant 8 7 4.350 2,941 1,112 Plant 5, Plant 9 8 4.319 2.535 .896 Plant 5, Plant 10 5 9,198 2.670 1.194

Fleher'e PLSD for Total Wt Viable Seeds (rag) Effect: Pollen Donor Category Significance Level: 5 % Mean Diff. Crlt. Dlff P-Value Plant 1, Plant 2 1,096 1.270 .0899 Plant 1, Plant 3 .391 1.235 .5323 Plant 1, Plant 4 .203 1.296 .7567 Plant 1, Plant 5 -.124 1.235 .8430 Plant 2, Plant 3 °.705 1.297 .2838 Plant 2, Plant 4 -.893 1.355 .1944 Plant 2, Plant 5 -1.220 1.297 .0649 Plant 3, Plant 4 °.188 1.323 .7794 Plant 3, Plant 5 -.515 1.264 .4216 Plant 4, Plant 5 -.327 1.323 .6254 I 208 ! Flaher'e PLSO for Total Wt Viable Seeds (tag)

I SignEffect:ificanRecipientce Level:CaSte%gory Mean Diff. Crit. Diff P-Value

I PlPlantant 6, Plant 78 -.823.283 1.4681.233 .7034.1890 Plant 6, Plant 9 -1.144 1.282 .0798

I Plant 7,6, Plant 810 -5.162-1.106 1.3571.342 <.0001.1093 S Plant 7, Plant 9 -1.427 1.402 .0460 S

I Plant 8,7, PlantPlant 910 -5.445-.321 1.4561.154 <..58230001 S Plant 8, Plant 10 -4.339 1.220 <.0001 S

I Plant9, Plant10 -4.018 1.270 <.0001 S

I Interaction Bar Plot for Total Wt Viable Seeds (rag) Effect: Pollen Donor Category Error Bare: + 1 Standard Error(s)

I 6 ' ' ' ' ' I T T T T i T _3 I _2 I I

I 0 Plant.....1 Plant 2 Plant 3 Plant 4 Plant 5 Ceil II a.

I ' (viable)Figure 3.seeds2.3.2. pera.b.fruitc. Bar(+ 1 gstd.raphs error)indicatingproduced the intotalExperimentweight of2 matureby (a) each of the five pollen donors, (b) each of five recipient plants, and (c) i each pollen donor x recipient combination. I I I 209

I Interaction Bar Plotfor Total Wt Viable Seeds (mg)

I Effect.Error Bars:Recipient+ 1 StandardCategoryError(s) !

C :,.

a : 0

i Plant6 Plant7 Plant8 Plant9 Plant10 b, Cell

I Interaction Bar Plotfor Total Wt Viable Seeds(mg) Effect: Pollen Donor Category * Recipient Category Error Bars: + 1 Standard Error(e) 12 I , , , , ,

| _°

1 | 8 . _ P,an,Plant 21

' _ 4 _ ,_ rT.t _T_T_! ! ! _ .: PlantPlant3plant45 - I , _,T_T_I ii_T_li_l_ :_I_H I 0 Plant6 Plant 7 Plant 8; ::Plant-9 Plant 10 C4dl

i C. Recipients are grouped together on x-axis. Within each recipient, pollen donors are distinguished according to the key to the right. ! I I 210

I Table 3.2.3.3. ANOVA tables from Experiment 3 showing effects of pollen donor and recipient on the total weight of viable seeds per fruit. I

I ANOVA Table for Total Wt Viable SeedsElF (rag)Sum of Squares Mean Square F-Value P-Value Pollen Donor Category 4 96,246 24,061 2.377 .0533

I ReciPollenpientDonorCategoCategory ry ° Rec... 246 295.413248.509 49.23610.355 4.8641.023 .0001.4389 Residual 196 1984.069 10.123

I 51 cases were omitteddue to missingvalues. I Means Table for Total Wt Viable Seeds (mg)

I Effect: PollCounten DonorMeanCategoryStd, Dev. Std. Err. Plant 1 46 4.787 3.959 .584

I Plant 32 4745 3.5932.887 32.087905 .450.433 Plant4 46 4.613 3.580 .528

I Plant 5 47 3.821 3.063 .447

Means Table for Total Wt Viable Seeds (mg) I Effect: Recipient Category Count Mean Std. Dev. Std. Err. Plant 11 35 5.155 3.595 ,608

I Plant 12 35 3.108 2.747 ,464 Plant 13 33 2.162 3.589 .625 Plant 14 32 3.315 2.866 .507

I Plant15 33 5.172 4,150 .722 Plant 16 35 5.050 2.985 ,505 i Plant17 28 3.456 2.143 .405 I I I I I I 21t ! Means Table for Total Wt Viable Seeds (mg)

I Effect: Pollen Donor CountCategory"MeanRecipientStd. DayCategory. Std. Err. Plant 1, Plant 11 7 6.727 3.599 1.360

I Plantant 11,, PlantPlant 1312 76 3.1233.417 3.4875.027 1.9001.424 Plant 1. Plant 14 7 3,297 2.037 .770

I Plant 1,1, Pllantant 1615 76 i 8.0406.883 3.6054,228 1.3631.726 Plant 1, Plant 17 6 1.875 1.028 .420

I Plant 2, Plant 1211 7 21.331.423 23.391,274 1.282.859 Plant 2, Plant 13 7 ,844 1,603 .606

I Plant 2, Plant 14 6 3.008 2.612 1.066 Plant 2, Plant 15 6 4.698 4.209 1.718 Plant 2, Plant 16 7 4,390 2.059 .778

I Plant2, Plant17 5 4.154 2,039 .912 Plant 3, Plant 11 7 5.486 2.995 1.132 Plant 3, Plant 12 8 4.474 2,845 1.006

3,848 1 ,454 I Plant3, Plant13 7 1.454 Plant 3, Plant 14 6 1.623 1.640 .870 Plant 3, Plant 15 7 3.940 3.809 1.440

I Plant 3, Plant 16 7 3.513 2.176 .822 Plant 3, Plant 17 5 4.520 2.138 .956

Plant 4, Plant 12 7 3,149 2.347 .887 I Plant4, Plant11 7 5.581 4.213 1.592 Plant 4, Plant 13 6 3.132 3.031 1.237 i Plant4, Plant1415 67 3.4376.083 3.5774.882 1.4601.845 Plant 4, Plant 15 7 6.586 2.773 1,048

I Plant 4,5, Plant 1711 67 35,835557 3.1313.154 1.2781.192 Plant 5, Plant 12 7 3,017 2.494 .943

I Plant5, Plant1314 67 2.4324.941 4.0563,692 1.8581.396 Plant 5, Plant 15 7 3.443 3.028 1.144

I Plant5, Plant1817 76 3.8773.190 3,0461.441 ! 1.151.588 I ! ! ! I 212 ! Flsher's PLSD for Total Wt Viable Seeds (mg)

I Effect:SignificancePollenLevel:Donor5Category% Mean Diff. Crit. Diff P-Value

i Plant 1, Plant 23 1.9001.194 11.301,316 .0049.0720 S Plant 1, Plant 4 .174 1,308 .7937

i Plant 1,2, PPlantlant 53 °.706.966 11.309.301 .1448.2888 Plant 2, Plant 4 -1.726 1.316 .0104 S

I PPlantlant 23,, PPlantlant 54 -1.020-.934 1.3091.301 .1611.1238 Plant 3, Plant 5 -,228 1.294 .7291

I Plant 4, Plant 5 .792 1.301 .2313

Flsher's PLSD for Total Wt Viable Seeds (mg)

I SignificanceEffect: RecipientLevel:Catego5 % ry Mean Diff. Crit. Diff P-Value

I Plant11, Plant 1213 2.9932.047 1.5221.500 .0001.0077 S Plant 11, Plant 14 1.840 1.535 .0190 S

I Plant 11, PlantPlant 1615 -.018.105 1,5001,522 ..98198902 Plant 11, Plant 17 1.699 1,591 .0365 S

I PlantPlant 12, Plant 1413 -.207.946 1.5351.522 .7902.2218 Plant 12, Plant 16 -2.065 1.522 .0081 S

I Plant 112,2, PlantPlant 1716 -1.942-.348 1.5001.591 .6663.0114 S Plant 13, Plant 14 -1.153 1.657 .1455

I Plant 13, Plant 15 -3.011 1.545 .0002 S Plant 13, Plant 16 -2.888 1,522 .0002 S Plant 13, Plant 17 -1.295 1.612 .1149 1.567 .0196 S I Plant 14, Plant 15 -1.857 Plant 14, Plant 16 -1.735 1.535 .0269 S Plant 14, Plant 17 -.141 1.624 .8641

I Plant 15, Plant 16 .123 1.522 .8739 Plant 15, Plant 17 1.716 1.612 .0370 S

i Plant 16, Plant 17 1.594 1.591 .0496 S I ! ! I 213 I Interaction Bar Plot for Total Wt Viable Seeds (mg)

I Effect:Error Bars:Pollen+ 1DonorStandardCategoryError(s) 6 I I I I i I _ T I , T -- T I o_3 T I 1 I 0 Plant1 Plant2 Plant3 Plant4 Plant5 I Cell a. I Figure 3.2.3.3. a.b.c. Bar graphs indicating the total weight of mature

I each(viable)of seedsthe fiveper pollenfruit (+donors,1 std. (b)error)each producof sevened inrecipiExpenterimeplants,nt 3 byand(a)(c) each pollen donor x recipient combination. I I I I I I I I I 214 I Interaction Bar Plot for Total WI Viable Seeds (rag)

I Effect:Error Bars:Recipient+ 1 StandardCategoryError(a) 7 I 0 I _ T T T _4C I '_ T T m I T I 1 0 I = _" _ :_ _ ° _ n.. ,', n.. _" ,', _. _" Cell it b. i I I I I I I I I I 215 ! Interaction Bar Plot for Total Wt Viable Seeds (mg)

I Effect:Error Bare:Pollen± 1DonorStandardCategoryError(s)* RecipientCategory 10 I

I [] Plant1 6 [] Plant2

I _ PlanPlantt34 ¢") 4 Plant5

I 2 I O • , . , • . • I Cell

I C. Recipients are grouped together on x-axis. Within each recipient, pollen donors are distinguished according to the key to the right. I 3.2.4 The effect of pollen donor and recipient on the number of aborted I seeds per fruit. What is the effect of pollen donor and recipient on the number of aborted seeds per fruit?

I Experiment i results show that pollen donor has a significant effect (p=.0132) on the number of aborted seeds, while recipient does not have a significant effect (13=.4002) i (Table 3.2.4.1, Figure 3.2.4.1). Experiment 2 results show that both pollen donor (p=.0149) and recipient plant (p=.0001) have significant effects on the number of aborted seeds produced per plant (Table 3.2.4.2,

I hermaphrodites.Figure 3.2.4.2). These crosses are between five E. kernensis sires and five E. parryi

I Experiment(p=.3770) of3pollenresults donor(Tableis 3.2.4.3,observed,Figurebut that3.2.4.3)the recipientshow thatplantno hassignificanta significeffectant effect (p=.0004) on the number of aborted seeds produced. I I I I 216

I Table 3.2.4.1. ANOVA tables from Experiment 1 showing the effect of pollen donor and recipient on the number of aborted seeds produced per

I fruit.

ANOVA Table for Number of Aborted Seeds

I ElF Sum of Squares Mean Square F-Value P-Value PollenDonorCategory 4 81.932 20.483 3.382 .0132 Recipient Category 4 24,812 6.203 1.024 ,4002

I Pollen Donor Category" Rec... 16 50,458 3.154 .521 .9287 Residual 78 472.417 6.057

i 60 cases were omitteddue to missingvalues. I Means Table for Number of Aborted Seeds

I Effect: Pollen Donor Category Count Mean Std. Dev. Std. Err, Plant 1 22 4,136 1.885 ,402

I Plant2 19 1.789 2.347 .538 Plant 3 21 3.714 2.493 .544 Plant4 19 3.526 2.695 .618

I Plant 5 22 4.000 2.449 ,522

I Effect:Means RecipientTable for NumberCategoryof Aborted Seeds Count Mean Std. Dev. Std. Err,

I PlantPlant21 1925 2.7893.200 2.1751.979 .499.396 Plant3 24 4,167 3.397 ,693

I Plant45 2015 4.2673.050 2.2821,959 .589.438 I I I I I I I 217 I Means Table for Number of Aborted Seeds

I Effect: Pollen DonorCountCategoryMean* RecStd.ipientDev.CategoStd.ry Err. Plant 1, Plant I 6 3.600 2.074 .927

I Plant 1, Plant 32 45 3.5005.400 2.0741,291 ..927645 Plant 1, Plant 4 4 4.500 .577 .289

I Plant 2,1, PlantPlant 15 34 1.3333.500 2.3092.646 11.323.333 Plant 2, Plant 2 5 2.800 1.924 :; _ ,860

I PPlantlant 2, PlantPlant 43 24 2.0000 4.0000 " 2.0000 Plant 2, Plant5 5 1.600 1,817 .812

I Plant 3, Plant 21 54 3.2002.250 I 2.6832.872 1.2001.436 Plant 3, Plant 3 6 3,667 3.011 1.229

I Plant 3, Plant 4 3 5.333 ,577 .333 Plant 3, Plant 5 3 5.000 1,000 .577 Plant 4, Plant 1 2 3.000 1.414 1.000

I Plant4, Plant2 6 3.000 2.000 .818 Plant 4, Plant 3 5 4.800 4.604 2.059 Plant 4, Plant 4 2 3.500 3.536 2.500 4, I Plant Plant 5 4 3.000 0 0 Plant 5, Plant 1 5 3.200 2,168 .970 Plant 5, Plant2 5 3.600 2.408 1,077

4.750 3.594 1 .797 I Plant 5, Plant 3 4 Plant 5, Plant 4 4 5.750 1,708 .854 i Plant 5, Plant 5 4 8.000 2.160 1.080 I ! I I ! ! ! I 218 I Fisher's PLSD for Number of Aborted Seeds

I SignificancEffect: Pollene Level:Donor5Category% Mean Diff. Crit. Diff P-Value

I Plant 1, Plant 23 2.347.422 11.495.534 .0032.5756 S Plant 1, Plant 4 .610 1.534 .4311

I Plant 2,1, Plant 35 -1.925.136 1.5511.477 .01578547 S Plant 2, Plant 4 °1.737 1.590 .0326 S

I Plant 3,2, Plant 45 -2.211.188 1.5341.551 .8100.0053 S Plant 3, Plant 5 -.286 1.495 .7046

I Plant 4, Plant 5 -.474 1.534 .5406

Rsher's PLSD for Number of Aborted Seeds I Effect: Recipient Category Significance Level: 5 % Mean D... Crit.... P-Va...

I Plant 1, Plant 2 -.411 1.491 .5852 Plant 1, Plant 3 -1.377 1.505 .0722 Plant 1, Plant 4 -1.477 1.692 .0862

D 570 .7420 I Plant 1, Plant 5 -.261 1 Plant 2, Plant 3 -.967 1.400 .1732 Plant 2, Plant 4 -1.067 1.600 .1884

I Plant 2, Plant 5 .150 1.470 ,9395 Plant 3, Plant 4 o.100 1.613 .9021 Plant 3, Plant 5 1.117 1.483 .1380

I Plant 4, Plant 5 1.217 1.674 .1518 I I I I ! ! ! ! 219 I Interaction Bar Plotfor Numberof AbortedSeeds

I Effect:Error Bars:Pollen+ 1DonorStandardCategoryError(s) 5 I I I I I

I 4_ ._.T T T T I 3.5 3 I '_°2.5 i I 1.5 1 I O , • , • •

Cell I Plant1 Plant2 Plant3 Plant4 Plant5 a. I Figure 3.2.4.1., a.b.c. Bar graphs indicating the number of aborted seeds i ppoller enfruidonors,t (+ 1 std.(b) erroreach ) ofproducedfive recipiinentExpplants,eriment and1 by(c) (a)eacheachpollofen thedonorfive x recipient combination. I I ! I I I I I ! 22O ! Interaction Bar Plot for Number of Aborted Seeds Effect: Recipient Category Error Bars: + I Standard Error(s) I 5 ' ' ' " ' , T X I T

! O • • • .

i PI t 1 PI t 2 Plant3 Plant 4 Plant 5 I | 7 • 6 I

_E_ Plant 1 I _4 Plant 2 _¢_ Plant 3 I _ 3 [] Plant 45 I

| o Plant 1 Plant Plant 3 Plant 4 Cell

I C. Recipients are grouped together on x-axls. Within each recipient, pollen donors are distinguished according to the key to the right. I I I 221

I Table 3.2.4.2. ANOVA tables of the effect of pollen donor and recipient on the number of aborted seeds produced per fruit in Experiment 2. I ANOVA Table for Number of Aborted Seeds

i Pollen Donor Category C4F Sum of Squares77.050 Mean19.262Squa... F-VaJue3.215 P.0149-Value Recipient Category 4 320.264 80.068 13.363 <,0001

I PollenResidualDonor Category * Rec... 12816 766.91791.410 5.7135.992 .954 .5111 33 cases were omitted due to missing values. 1 Means Table for Number of Aborted Seeds

I Effect: PollenCountDonorMeanCategoryStd. Dev. Std. Err. Plant 1 34 I 3.353 2.569 .441

I Plant2Plant 3 2392 3.3794.844 3,.133323 ..587582 Plant 4 27 I 2.556 2,063 .397

I Plant5 31 4.677 2.868 ,515

Means Table for Number of Aborted Seeds

I Effect: Recipient Category Count Mean Std. Dav, Std. Err. Plant6 29 5.241 3.055 .567

I Plant7 21 3.143 1.905 .416 Plant8 41 3,927 2.769 .433 Plant9 34 5.118 2.879 .494

I Plant10 28 1.000 1.247 .236 I I I I I I I I

i 222

Means Table for Number of Aborted Seeds Category I Effect: Pollen DonorCount Mean* RecipientSld. D...CategoryStd.E... Plant 1, Plant 6 6 3.167 1.472 .601

I Plant 1, Plant 7 5 3.800 2.775 1.241 Plant 1, Plant8 9 3.667 2.000 .667 Plant 1, Plant9 7 5.571 2.878 1.068

I Plant 1, Plant 10 7 .571 .787 .297 Plant 2, Plant 6 6 3.833 2.041 .833

Plant 2, Plant 8 8 3.750 3.882 1.373 i Plant 2, Plant 7 4 2.500 1.291 .645 Plant 2, Plant 9 6 4.833 4.262 1.740 Plant 2, Plant 10 5 1.200 1.643 .735

I Plant3, Plant6 7 6.714 3.946 1.491 Plant 3, Plant 7 3 3.333 2.887 1.667

. Plant 3, PlPlantant 89 97 46.857.889 31.089.018 1..404006 Plant 3, Plant 10 6 1.000 .894 .365

I PlanPlantt4,4, PPlantlant67 4 4.5003.000 1.9151,414 .957.707 Plant 4, Plant 8 8 2.750 2.605 .921

I PPlantlant 4, PlaPlantnt 910 65 2.333.600 1.388.548 .558.245 Plant 5, Plant 6 6 7.500 2.811 1.147

I Plant 5,5, PlantPlant 78 57 34.571.000 21.581.070 .707.782 Plant 5, Plant 9 8 5.500 2.563 .906

I Plant 5, Plant 10 5 1.800 2.049 .917 I I I I I I I I 223 I Flsher'a PLSD for Number of Aborted Seeds

I Effect:SignificancePollenLevel:Donor5Category% Mean Diff. Crit. DIff P-Value

I Plant 11,, PPlantlant 23 *1.491-.026 1.2241.193 ,.01479661 S Plant 1, Plant 4 .797 1,248 .2066

I Plant 2,1, Plant 53 -1.3241.464 1.2031.242 ..02120312 S Plant 2, Plant 4 .824 1.295 .2105

I Plantant 23,, PPlantlant 54 -1.2.288298 1.,251266 .0.0005421 S Plant 3, Plant 5 .166 1.221 .7879 t Plant 4, Plant 5 -2.122 1.275 .0013 S Flsher'a PLSD for Number of Aborted Seeds

I Effect: Recipient Category Significance Level: 5 % Mean Diff. Cdt. Diff P-Value

I PPlantlant 6, PlantPlant 87 2.0991.315 i 1,1751.388 .0286.0033 S Plant 6, Plant 9 .124 ; 1.224 .8418

I Plant6, Plant10 4.241 1.283 <.0001 S Plant 7, Plant 8 °.784 1.300 .2349 Plant 7, Plant 9 -1.975 1.344 .0043 S

I Plant 7, Plant 10 2.143 1.398 .0029 S Plant 8, Plant 9 *1.191 1.123 .0379 S Plant 8, Plant 10 2.927 1.187 <.0001 S Plant 9, 10 I Plant 4.118 1.236 <.0001 S I I I I I I ! ! 224 ! InteractionBar Plot for Numberof AbortedSeeds

I Effect:Error Bars:Pollen+ 1DonorStandardCategoryError(s) 6 I _ T I 4 T T

I °OJ

1 0

Ceil I Plant1 Plant2 Plant3 Plant4 Plant5 | a.

I Figureper fruit3.2.4.2.,(+ 1 std.a.b.c.error)Barproducgraphsed inindicatingExperimentthe 2numbby e(a)r eofachabortedof the sfiveedse pollen donors, (b) each of five recipient plants, and (c) each pollen donor x

I recipient combination. I ! I I I I I I

I 225

Interaction Bar Plot for Number of Aborted Seeds I Effect. Recipient Category Error Bars: + 1 Standard Error(s)

0 n I I I I I 5 T T , 4! TI

', 'ilmlII T ' iil II in in I Plant 0 Plant 7 Plant 8 Plant 9 Plant 10 b • Ceil

I Interaction Bar Plot for Number of Aborted Seeds Effect: Pollen Donor Category • Recipient Category

I 9 Error Bars:i + 1 Standardi Error(a) i l i 8

I m_. I ! i"I ."E_ Plant21

1 _4 ] ,TT _" :: "_ ii [] Plant5

mm n • m ?; - _1 _I - • 6( '= _t l I!,_.J rJ_T H - -L, - i' I o CH ._.. .__;JI Plant 6 Plant 7 Plant 8 Plant9 Plant 10 Cell

I C. Recipients are grouped together on x-axis. Within each recipient, pollen donors are distinguished according to the key to the right. i I I 226

I Table 3.2.4.3. ANOVA tables for the effect of pollen donor and recipient plants on number of aborted seeds per fruit in Experiment 3. I ANOVA Table for Number of Aborted Seeds

I [:F Sum of Squares Mean Square F-Value P-Value PollenDonorCategory 4 41.630 I 10.407 1.061 .3770

Pollen Donor Category* Rec.,. 24 308.880 12.870 1.312 .1595 i Recipient Category 6 251,957 41,993 4.281 .0004 Residual 196 1922.452 9.808

I 51 cases were omitted due to missingvalues.

I MEffect:eans TablePollen forDonorNumberCategoryof Aborted Seeds Count Mean Std. Dev. Std. Err.

I PPlant2lant 1 ! 4645 4.2613.333 2.8403.516 .419.524 Plant3 47 4.574 3.437 .501

_ Plant4Plant5 4647 4.4354.191 3.4623.281 .510.479

I Means Table for Number of Aborted Seeds Effect: Recipient Category Count Mean Std. Dev. Std. Err.

I Plaantnt 1211 35 4.3714.771 3.6873.309 ,623.559 Plant13 33 3.121 3.895 .678

I PlantPlant 1514 3332 4.4064.394 2.8822.722 .502.481 Plant 16 35 5.800 2.943 ,497

I Plant 17 28 2,036 2.472 .467 i I I i I I I 227 I Means Table for Number of AboMed Seeds

I Effect: Pollen DonorCountCategowMean* RecipientStd. Dev.CategoStdw . Err. Plant 1, Plant 11 7 4,571 3,259 1.232

I Plant 1, Plant 12 6 4.500 4,135 1.688 Plant 1, Plant 13 7 3.857 4,413 1,668 i Plant 1, Plant 14 7 5.286 1,380 .522 ,I Plant 1, Plant 15 6 4.833 1.169 .477 II Plant1, Plant16 7 3.429 1.718 .649 Plant 1, Plant 17 6 3.333 2.805 1,145

I Plant2, Plant11 7 2.857 3.625 1.370 Plant 2, Plant 12 7 2.000 3.464 1,309 Plant 2, Plant 13 7 2.143 3.388 1.280 .033 I Plant2, Plant14 6 3.000 2.530 1 Plant 2, Plant 15 6 4.667 4.274 1.745 Plant 2, Plant 16 7 6.857 2.854 1.079 Plant 2, Plant 17 I 5 1.400 1.573 .748 Plant 3, Plant 11 7 7,286 3.147 1.190

Plant3, Plant13 7 .714 1.890 .714 I Plant3, Plant12 8 5.500 3.338 1.180 Plant 3, Plant 14 6 5.500 1.871 .764

i Plant3, Plant1516 7 4.2866.571 2.4983.409 1.288.944 Plant 3, Plant 17 5 1,200 1.304 .583

I Plant 4, Plant 1112 7 3.5714.571 23.910,637 1,.997478 Plant 4, Plant 13 6 5.833 4.622 1.887

I PlanPlantt 44,, PPlantlant 1154 67 5.3334,571 4.4122.820 1.8011.066 Plant 4, Plant 16 7 5.143 2.673 1.010 i PlantPlant 4,5, Plant 1711 67 25.571.000 3.1622,699 11.020,291 Plant 5, Plant 12 7 5.143 3,671 1.388

I PlantPlant 55,, Plant 1314 67 3.5003.000 3.8882.160 1.586.816 Plant 5, Plant 15 7 3.714 3.592 1.358

I Plant 5, Plant 1617 76 62.000,000 3.2152.898 11.183,215 I ! I I I 228 ! FIsher'e PLSD for Number of Aborted Seeds

I Effect:SignificancePollenLeveOonorl: 8Cat% egory Mean Diff. Crit. Diff P-Value

_ Plant 1, PPlantlant 23 -.314.928 1.2951.281 .1594,6298 Plant 1, Plant 4 -.174 1.288 .7903

I Plant 1,2, PPlantlant 53 -1.241.069 11,288.281 .9150.0589 Plant 2, Plant 4 -1.101 1.295 ,0951

I Plant2,3, Plant48 -.858.140 1.2881.281 ,1905.8300 Plant 3, Plant 5 .383 1.274 .5540

I Plant 4, Plant 5 .243 1,281 .7084

Fleher's PLSD for Number of Aborted Seeds

SiEffegncifit:canRecipientce Level:Category5 % Mean Diff. Crit. Diff P-Value

I PlantPlant 11, PlantPlant 1312 1.400.650 11.476.499 .0311.5937 S Plant 11, Plant 14 .365 1.511 .6341

I Plant 11, Plant 15 ,377 1.499 .6199 Plant 11, Plant 16 -,829 1.476 .2698 Plant 11, Plant 17 2.736 1,566 .0007 S

I Plant 12, Plant13 1.250 1.499 .1015 Plant 12, Plant 14 -.035 1.511 .9638 Plant 12, Plant 15 -,023 1,499 .9764

-1.22g 1.478 ,1024 I Plant 12, Plant 16 Plant 12, Plant 17 ; 2.336 1.566 .0037 S Plant 13, Plant 14 -1.285 1.532 .0998

I Plant13, Plant15 -1.273 1.521 .1004 Plant 13, Plant 16 -2.479 1.499 .0013 S

Plant 14, Plant 15 .012 1.532 .9874 i Plant 13, Plant 17 1.085 1.587 .1789 Plant 14, Plant 18 -1.194 1,511 .1207 i Plant 115,4, Plant 1716 -1.2062.371 1.,598499 ..11410039 S Ptant 15, Plant 17 2.358 1.587 .0038 S

I Plant 16, Plant 17 3,564 1.568 <.0001 S ! | ! I 229 ! Interaction Bar Plot for Number of Aborted Seeds

I Effect:Error Bars:Pollen+ 1DonorStandardCategoryError(s) 6 I 0 T T I" T ° T I _;3° I 1 I 0 • • • • • Plant 1 Plant2 Plant3 Plant 4 Plant5 I Cell a.

I Figure 3.2.4.3., a.b.c. Bar graphs indicating the number of aborted seeds per fruit (+ 1 std. error) produced in Experiment 3 by (a) each of the five pollen donors, (b) each of seven recipient plants, and (c) each pollen donor x recipient combination. I I I I I i I I ! 230 I • Interaction Bar Plot for Number of Aborted Seeds

I Effect:Error Bars:Recipient+ 1 StandardCategoryError(s) 7 | 6 T | 6 T T T T §4

O) I _°3 T I 2 T I I 0

..R c. _ _. m (. Cell | b. I I I I I I I I I I 231 I Interaction Bar Plot for Number of Aborted Seeds

Error Bars::l:1 StandardError(s) I Effect: Pollen Donor Category * Recipient Category • 9 I 7

I 6 _r._ Plant1

I =_54 ' _ PlantPlant 243 I _ i D,,_ot_

0 I ,_. ....04 03 _r t._ CO_ r'- Cell

I C. Recipients are grouped together on x-axis. Within each recipient, pollen donors are distinguished according to the key to the right. I I I g I I I I I I I i 232 3.2.5 The effect of pollen donor and recipient on the proportion (arcsine transformed) of aborted seeds. I What is the effect of pollen donor and recipient on the proportion of aborted

I seeds ? Experiment 1 results show a significant effect (p=.0152) of recipient and a non-significant

I effect of pollen donor on the proportion of aborted seeds (Table 3.2.5.1, Figure 3.2.5.1). Missing values did not allow an F-statistic to be calculated for the effect of pollen donor on the proportion of aborted seeds in Experiment 2. A highly significant (p<.0001) difference

I exists3.2.5.2).in the effect of recipient plants on proportion of aborted seeds (Table 3.2.5.2, Figure

I InTheExF-statisticperiment could3, no signinot beficantcalculateddifferencesfor pollenin recidonorpienteffeplantsct duewastodetectedmissing(pvalues= .5278)(Table. 3.2.5.3., Figure 3.2.5.3). I

I Table 3.2.5.1. Two-way ANOVA tables for the effect of pollen donor and recipient on the proportion of aborted seed in Experiment 1.

I ANOVA Table for Acrelne transformed proportion of aborted seeds IF: Sum of Squares Mean Square F-Value P-Value

I Pollen Donor Category 3 .166 .055 1.225 .3091 Recipient Category 3 .512 .171 3.782 ,0152 Pollen Donor Category ° Rec... 15 .474 .032 .701 .7732

I Residual 57 2.571 .045 78 cases were omitteddue to missingvalues, I I I I I I I I 233 I Means Table for Acrslne transformed proportion of aborted seeds

I Effect: PollenCountDonorMoanCategoryStd. Dov, Std. Err. Plant 1 20 .787 .142 .032

I PPlantlant 23 169 .721.893 .224,238 .075.059 Plant4 16 .793 .205 .051

I Plant5 20 .855 ,258 .058.

Means Table for Acrsine transformed proportion of aborted seeds

I Effect: RecipientCount CategoryMean Std. Dev. Std. Err. Plant1 14 .836 .234 .062

I Plant2 22 .713 .185 .039 Plant3 16 .920 .190 .047 Plant 4 13 .908 .269 .075

I Plant 5 16 .773 .157 .039 I I I I I I I I I I I I

i 234

Means Table for Acreino transformed proportion of aborted seeds

I Effect: Pollen DonorCountCategoryMean* RecipientStd. Dev.CategoryStd. Err. Plant 1, Plant 1 4 .891 .052 .026

I Plant 1, Plant 2 4 ,669 .150 .075 Plant 1, Plant 3 5 .799 .198 .088 Plant 1, Plant 4 4 .803 .058 .029

I Plant 1, Plant 5 3 .762 .137 I .079 Plant 2, Plant 1 1 ,785 • • Plant 2, Plant 2 4 .667 .172 .086 Plant 2, Plant 3 I 1 1.107 • ° Plant 2, Plant 4 0 • • ° Plant 2, Plant 5 3 .644 .255 .147

I Plant 3, Plant 1 2 .948 .332 .235 Plant 3, Plant 2 4 .766 .197 .098

Plant 3, Plant 4 3 1.056 .438 .253 i Plant3, Plant3 4 .866 .112 .056 Plant 3, Plant 5 3 .891 .138 .080

I Plant 4, PPlantlant 21 25 .739.705 .305.142 ..063216 Plant 4, Plant 3 3 1.080 .163 .094

I Plant4, Plant45 24 .705.757 .256,086 .181.043 Plant5, Plant1 5 .795 .325 .147

I PPlantlant 5, Plant 23 53 .752.972 .286.210 .128.122 Plant 5, Plant 4 4 .996 .244 .122

I Plant 5, Plant 5 3 .818 .149 .086

Flshor'e PLSD for Acrsine transformed proportion of aborted seeds

I SignificaEffect: Recipientnce Level:Catego8 % ry Mean Diff. Crit. Oiff P-Value

I Plant 1, Plant 23 -.084.123 .145,156 ..28200964 Plant 1, Plant 4 o.072 .184 .3809

I Plant 2,1, PlantPlant 35 -..062207 .140.156 ..42550044 S Plant 2, Plant 4 -.195 .149 .0111 S

I Plant 2,3, PlantPlant 45 -.060.012 .1.14059 ..39088785 Plant 3, Plant 5 .147 : .150 .0556

I Plant 4, Plant 5 .1"35 .159 .0950 I I I 235 I Interaction Bar Plot for Acrsine transformed proportion of aborted seeds

I Effect:Error Bars:Pollen+ 1DonorStandardCategoryError(s) 1 ' ' I I I

| .o T T T o T T

_.6

.4

.2

0 ..... Plant 1 Plant 2 Plant 3 Plant 4 Plant 5

I Cell,

| a.

I Figure 3.2.5.1., a.b.c. Bar graphs indicating the proportion of aborted seeds per fruit (+ 1 std. error) produced in Experiment I by (a) each of the

I fivedonorpollenx recipientdonors, co(b)mbination.each of five recipient plants, and (e) each pollen ! I I I I ! ! 236 I Interaction Bar Plot for Acraine transformed proportion of aborted seeds

I Effect:RecipientCategory 1.2 Error Bars: ± 1 Standard Error(a)

I , T T

I .8 T

I O I, !

I Interaction Bar Plot for Acralna transformed proportion of aborted seeds

I

I Plant 1 Plant 2 Plant 3 Plant 4 Plant 5 Cell

I C. Recipients are grouped together on x-axis. Within each recipient, pollen donors are distinguished according to key at the right. I I I | 97 Table 3.2.5.2. Two-way ANOVA tables for the effect of pollen donor and

i recipient on the proportion of aborted seed in Experiment 2. I ANOVA Table for Acralne transformed proportion of aborted seeds ElF Sum of Squares Mean Square F-Value P-Value

I Pollen Donor Category 0 .188 • * • Recipient Category 2 2.902 1.496 23.805 <.0001

Residual 41 2.576 .063 i Pollen Donor Category ° Rec... 9 .146 .016 .257 .9825 22 cases were omitteddue to missingvalues.

I Means Table for Acralne transformed proportion of aborted seeds Effect: Pollen Donor Category

I Plant 1 Count14 Mean.673 Std. .446Dev. Std..119Err. Plant 2 9 .752 .305 .102

I Plant34 1511 .710.542 .303.313 .078.094 Plant 5 10 .714 .253 .080 I Means Table for Acrslne transformed proportion of aborted seeds Effect: Recipient Category

I Count Mean Std. Dev. Std. Err. Plant6 1 0 * • Plant7 4 .929 .494 .247

.236 Q0_ I Ptant 5 1 9 .766 Plant 9 21 .623 .187 .041

i Plant 10 14 .245: +187 .050 I ! I I ! I I i 238

Means Table for Acrsine transformed proportion of aborted seeds

I Effect: Pollen DonorCountCategoryMean* RecipientStd. Dev.CategoStd.ry Err. Plant 1, Ptant 6 0 • * •

I Plant 1, Plant 7 3 1.004 .875 .332 Plant 1, Plant 8 2 .812 ,202 ,143 Plant 1, Plant 9 5 .824 .248 .111

I Plant 1, Plant 10 4 .165 .196 .098 Plant 2, Plant 6 0 * • * Plant 2, Plant 7 O ° °

,348 ,072 I Plant2, Plant8 4 .806 Plant 2, Plant 9 3 1.002 .070 .040 Plant 2, Plant 10 2 .266 .007 .005

I Plant 3, Plant 6 1 .955 • • Plant 3, Plant 7 0 ° • * i PlantPlant 3, PPlantlant 89 65 .735.879 .251.121 .103.054 Plant 3, Plant 10 3 .295 .308 .178 i Plant 4, PPlantlant 67 O ,° °" °= Plant4, Plant8 4 .735 .322 .161

I PPlantlant 4, Plant 910 43 .820,181 ..131157 i .066.091 Plant5,Plant6 O * • *

I Plant5,Plant78 13 .702.787 .386° .211° Plant 5, Plant 9 4 .818 .139 .069

I Plant 5, Plant 10 2 .404 .023 .016 I I I I I I I I i 239

Interaction Bar Plot for Acrslne transformed proportion of aborted seeds

I ErrorEffect:Bare:Pollen:_1DonorStandardCategoryError(e) ,9 I I I I I I i_, l T , T T I I .° ! T i .5 I _.4 ,! I I II ! • 3 I I I .2 I I I .1 ! I I

0 .... , Plant 1 Plant 2 Plant 3 Plant 4 Plant 5 Cell

a,

Figure 3.2.5.2, a.b.c. Bar graphs indicating the proportion of aborted seeds per fruit (+ 1 std. error) produced in Experiment 2 by (a) each of the five pollen donors, (b) each of five recipient plants, and (c) each pollen donor x recipient combination. I 240 I Interaction Bar Plot for Acralne transformed proportion of aborted seeds

I Effect:Error Bars:Recipient+ 1 StandardCategoryError(s) 1,2 ' .;. ' ' '

I .8 T T

I _- .6

| "_ T .2 I 0 • , • • • Plant 6 Plant 7 Plant8 Plant 9 Plant 10 Cell | b. I Interaction Bar Plot for Acrslne transformed proportion of aborted seeds Effect: Pollen Donor Category * Recipient Category

I 1.4 ErrorBars:' + 1Standard' Error(s)' = '

I 1.2

1

I _ Plant 1 .8 F - Plant 2

.6 h_ _ Plant4 [] Plant 5 II " :!! ,2 _ | _ 0 • • Plant 6 Plant7 Plant8 Plant9 Plant 10 | Ce" C. Recipients are grouped together on x-axis. Within each recipient,

i pollen donors are distinguished according to key at the right. I I 241

I Table 3.2.5.3. Two-way ANOVA tables for the effect of pollen donor and recipient on the proportion of aborted seed in Experiment 3.

I ANOVA Table for Acraine transformed proportion of aborted seeds EF Sum of Squares Mean Square F-Value P-VaJue

I PollenDonorCategory 2 -.035 • - • Recipient Category 5 .341 .068 .835 .5278 Pollen Donor Category " Rec... 22 1.374 .062 .765 .7601

I 76Residualcases were omitted due to missing97values. 7.925 .082

Means Table for Acralne transformed proportion of aborted seeds Effect: Pollen Donor Category

I Plant 1 Count30 Mean.801 Std..325Dev. Sld..059Err. Plant2 20 .825 .306 .068

I Plant3 27 .900 .212 .041 Plant4 29 .831 .288 .054 ! Plant5 24 .818 .293 .060

I Means Table for Acrslne transformed proportion of aborted seeds Effect: Recipient Category

I Plant 11 Count22 Mean.705 Std. .218Day. Std..046Err. Plant 12 16 .853 .091 .023

I Plant1314 1246 .986.870 .373.358 .093.073 Plant 15 23 .802 .258 .054

I Plant 1617 254 ..647867 .219.497 .044.248 I ! I ! I I I 242 I Means Table for Acrslne transformed proportion of aborted seeds

Count Mean Std. Dev. Std. Err. I Effect: Pollen Donor Category * Recipient Category Plant 1, Plant 11 5 .583 .332 .148

I Plant1, Plant1213 34 .830.905 .079.467 .046.234 Plant 1, Plant 14 6 .862 .164 .067

I PPllantant 1, Plant 1516 65 .770,849 .402.409 .164.183 Plant 1, Plant 17 1 .955 * •

I PPlant_ant 2, PlPlantant 1112 32 .818.825 .179.009 .103.006 Plant 2, Plant 13 3 1.116 : ,425 .245

I PlantPlant 2, Plant 1415 24 .613.805 .048.221 ..110034 Plant 2, Plant 16 5 .921 .185 .083

I Plant2,3, Plant 1117 61 .8170 .219* .089* Plant 3, Plant 12 5 .864 .101 .045

I Plant 3, PlantPlant 1413 51 1.109.593 ,287 .128• Plant 3, Plant 15 4 .855 .209 .105

I PlantPlant 3, Plant1716 06 .920• .103* .042" Plant 4, Plant 11 4 .618 .066 .033

I Plant 4, Plant 1312 53 1.011.842 .321169 .144.098 Plant 4, Plant 14 5 ,937 .478 .214

I Plant 4, Plant 15 6 .762 .249 .102 Plant 4, Plant 16 6 .798 .192 .078 Plant 4, Plant 17 0 * ° *

I Plant5, Plant11 4 .693 ,082 .041 Plant 5, Plant 12 3 .890 .057 .033 Plant 5, Plant 13 3 1,057 .451 .260

,442 _ 180 I Plant 5, Plant 14 6 .710 Plant 5, Plant 15 3 .875 .112 .065 Plant 5, Plant 16 3 .835 .153 .088

I Plant 5, Plant 17 2 .815 .413 .292 I I I I I 243 ! Interaction Bar Plot for Acrslne transformed proportion of aborted seeds

I Effect:Error Bars:Pollen+ 1DonorStandardCategoryError(s) 1

I T T T T .8 I c.6 I _.°5

I I "_ .2 I .t

Cell I Plant1 Plant2 Plant3 Plant4 Plant5 I a.

I Figureseeds per3.2.5.3.,fruit (+a.b.c.1 std.Barerror)grapproducedhs indicatingin Experimentthe proportion3 by (a)of eachaborteofd the five pollen donors, (b) each of seven recipient plants, and (c) each pollen I donor x recipient combination. I I I I I I I I 244 ! Interaction Bar Plot for Acrslne transformed proportion of aborted seeds

Error Bars: + 1 Standard En'or(s) I Effect: Recipient Category 1,2 I t T , T T I .s T T ¢0 t _; .6

| .2

I 0

Cell I b. I I I I I I i I I I 245 I Interaction Bar Plot for Acrslno transformed proportion of aborted seeds

I Effect:Error Bare:Pollen+ 1DonorStandardCategoryError(s)* Recipient Category 1.4 ' ' ' ' ' ' '

I 1.2

.8 Plant 2

I _; .6 PPlanttant 43 Plant 5 | i .2 0 ii.

C_I I C. Recipients are grouped together on x-axis. Within each recipient,

I pollen donors are distinguished according to key at the right. I ! I l ! l ! l I 246

I Section 3.2.6.

I notFor seteachfruit?recipient-donor combination what proportion of pollinations did

I Summarypresented tables,below. for the observed fruit set by recipient plants and by pollen donors are Variation in the level of successful fruit set among maternal parents and among pollen

I dsetonofruitrs israngedshownfromin T0.782ables to3.21.0.6. Iamongand 3.maternal2.6.2. Theplanprtos,poandrtionfromof p0.865ollinatedto 0.948flowersamongthat pollen donors. Pollen donors did not differ significantly (Chi-square p-value = .2740) in

I fruitvalueset<.0001)(Tablein3.2fruit.6.2.set.). Maternal plants (recipients) differ significantly (Chi-square p-

Table 3.2.6.3. is a summary of the percent of fruits contributed by each combination of I parent plants in all three experiments. ! Table 3.2.6.1. Summary tables for maternal plants. The column "Proportion

I Sindividualet" shows plant.the proportionThe "Yesfruit" columnset of indicatesthe total flowersthe numbeporllinatedof pollinatedfor each flowers that developed into fruits with at least one mature seed. The "No" column indicates the number of pollinated flowers that did not develop any I mature seeds

I Observed Frequencies for Fruit Set, Recipient Category Yes No Totals

Plant 2 36 1 37 ProportionSat i Plant1 26 1 27 Plant 3 29 4 33 Plant1 .963

Plant3 .879 I PPlantlant 45 2717 110 2827 Pllanantt24 .973.607 Plant 6 35 1 36 Plant5 1.000 Plant6 .972

I Pllaantnt 78 2339 110 3439 Plalanntt78 1.6.0007fl Plant 9 30 1 31 PIon9t .968 Plant10 .732

I PPlanlantt 1110 3027 110 4127 PlRanantt1121 1..906000 Plant13 1.000 Plant 12 24 1 25 Plant14 .964

Plant 14 27 1 28 Plant16 .976 I Plant 13 12 0 12 PlPlantant1715 1..900007 • Plant15 26 0 26

I Pllantant 1617 4139 41 4243 Totals 488 48 536 I I I 247 I Summary Table for Recipient Category, Did Fruit Set?

I Num.DF Missing 16316

Chi Square

I GChi-SquaredSquare P-Value i <.000_____1 G-Squared P-Value Contingency Coef. .391 Cramer's V .425 I Expected chi-squared values for fruit set by recipients.

Expected Values Yesfor Fruit Set,NoRecipientTotalsCategory Plant 1 24,582 2.418 27,000

I Plant 2 33.687 3.313 37.000 Plant 3 30.045 2.955 33.000

Plant 5 24.582 2.418 27,000 I Plant 4 25.493 2.507 28.000 Plant 6 32.776 3.224 36.000

i Plant 78 30.95535.507 3.0453.493 34.39.000000 Plant 9 28.224 2.776 31.000

I Plant1011 37.32824.582 3.6722.418 41.00027.000 Plant 12 22.761 2,239 25.000

I PlantPTant1314 1025,493.925 21.,507075 128.2.000000 Plant 15 23.672 2.328 28.000

I Plant1617 38.23939.149 3.7613.851 42.00043.000 Totals 488.000 48.000 536.000 I ! I ! ! I I 248 l Percents of Overall Total for Fruit Set, Recipient Category

I Plant 1 4.851Yes ,187No T5.037otals Plant 2 6.716 .187 6.903

I Plant 43 3.1725.410 2.052.746 5.2246.157 Plant 5 5,037 0.00O 5,037

I Plant 76 48,.291530 2.052.187 6.3438.716 Plant 8 7,276 0,000 7.276

I Plant 910 5.597 2..187052 7.6495.784 Plant 11 5.037 0.000 5.037

l Plant 1312 24.478.239 0.000.187 24.664.239 Plant 14 5.037 ,187 5.224

I Plant 15 4,851 0.000 4.851 Plant 16 7.649 .187 7.836 Plant 17 7.276 .746 8.022

Totals 91.045 8.955 100.000 I

TaSetb"leshows3.2.6.2.theSuproportionmmary tablesfruit fsetor pollenof the totaldonors.floweThers pollinatedcolumn "Proportionfor each individual plant. t Observed Frequencies for Pollen Donor Category, Did Fruit

Set?Plant 1 ,! Yes91 No5 Totals96 ProportionPlant1 .948set Plant2 84 10 74 Plant2 ,965 i PPlant4lant 3 8582 1211 9793 PlPlant4ant3 .876882 Plant 5 87 7 94 Plant5 .926

i Totals 409 45 454 ! i ! I I 249 I Percents of Overall Total for Pollen Donor Category, Did Fruit Set?

I Yes No Totals Plant 1 _20.044 _ 21.145

I Plant 3 [ 18.722 21.366 Plant 4 | 18.062 20.485 Plant 25 | 14.09719.163 I iiili I 218.3000.705

I Totals 90.088 9.912 100.000

I SummaNum, MryissTableing for Pollen245Donor Category, Did Fruit Set? OF ; 4

I ChiChiSquareSquare P-Value _ 5.2740.133 G-Squared 5.475

I GConting-SquaredencyP-CoeValuf.e ,2420.106 Cramsr's V .106

I Expected chi-squared values for fruit set by donors.

I Expected ValuesYefors Pollen NoDonor TotCategory,als Did Fruit Set? Plant 1 86.485 9,515 96.000

I Plant 32 87.38566.665 9.6157.335 74.97.00000 Plant 4 83.782 9,218 93.000

I TotalsPlant 5 409.84.088300 45.0009.317 454.94.000000 I I I t I I I I 250

I Table 3.2.6.3. Summary table of the percent of fruit set among all plants in all three experiments. Recipient plants are listed on the vertical columns as

I plants I through 17, and pollen donors are listed horizontally as plants 1 through 5.

I Percents of OverallPlant 1 TotalPlantfor2RecipientPlant 3Category,Plant 4 PollenPlantDonor5 CategoTotalsry Plant 1 1.073 .716 .894 ,894 1.073 4.651

I Plant 32 .894 1.073.894 1.894.252 1.252 .894 5.1885.009 Plant 4 .894 .894 .894 .894 .894 4.472

I PlantPlant 65 1.252.894 1.252.894 1.431.894 1.,894252 11.073.073 6.2614.651 Plant7 1.252 1.252 1.252 1.252 ! 1.252 6.261

I Plant9Plant8 11.610,252 1.4311.252 1.2521.610 1.073!1.431 1.431 7.5136.261 Plant 10 1.431 1.431 1.431 1,431 1.252 6.977

I Plant 1211 1.252 1.252 1.4311.252 1.252 1.252 6.4406.261 Plant 13 1.252 1.252 1.262 1.073 1.073 5.903

I Plant14 1.252 1.073 1.252 1.262 1.252 6.082 Plant 15 1.073 1.073 1.252 1.252 1.252 5.903 Plant 16 1.252 1.252 1.252 1.252 1.431 6.440

, Plant 17 1.073 1.073 1.252 1.252 1.073 5.725 Totals 19.857 19.320 20.751 20.215 19.857 100,000 I I I I I I I I I 251

I Summary of Section 3.2

I Effect of pollen donor (paternal effect) vs. recipient plant (maternal effect) on seed traits

I' patemal maternal Type of Cross effect effect Donor x Recipient Experiment l number

I Number of mature seeds * * Herin. x Herm. Exp. 1 per fruit

I as_ *** HHerinerm.. x MMSS EExpxp.. 23

I Mean individual seed ns * * * * Herin. x Herin. Exp. 1 weight ns * * * * Herin. x MS Exp. 2 I ns * * * * Herin. x MS Exp. 3 Total seed weight per fruit ns * * * * Herm. x Herm. Exp. 1 i 0.053ns * * * * Herin.Herm. x MSMS ExExp.. 32

I Number of aborted seeds •* * *n s* * HermHerm.. x xHMSerin. Exp.Exp. 21 ns * * * Herm. x MS Exp. 3

I Proportion of aborted seeds ns * Herm. x Herm. Exp. 1 _ * * * * Herm.x MS Exp.2

I _ n s Herm. x MS Exp. 3 • * * * = p<.0001; * * * = p= .0004; * * = p< .001; * = p< .05 I I

i I I I I , • 252

I Section 3.3

I 3. Whaton seedarenumberthe effectsand ofseedselfinmass?g, and within population vs. bet_veen population crosses Do selfed vs. outcrossed fruits differ in seed characters? Is inbreeding depression I detectable in self-pollinated plants? Is there a significant correlation between the number of seeds per fruit versus the mean

I individual seed weight? Do seeds produced by apparent apomixis differ from seeds produced by outcrussing? ! 3.3.10utcrossing vs. selfing in Experiment 1.

I Do selfed vs. outcrossedfruits differ in seed characters? Is inbreeding depression detectable in self-pollinated plants? in all possible combinations I Experiment 1 used a diallel breeding design to produce crosses between 5 individual Eremalche kernensis plants. This design produced fruits that were either self-pollinated or outcrossed. The ANOVA tables (Table and Figure 3.3.1.1) show

seedsthat self-pthanollinatedoutcrossedplaplants.nts in thisThispopresultulatioisn contprodruarycedtosigniflcandythe expected(presult=.0087that) minbreedingore viable depression should occur in this species that is presumed to be adapted to insect pollination

I and outcrossing. However, the mean individual seed weight is lower (although not significantly so, it is close, p=.0883) in selfed groups than in outcrossed groups indicating that the larger i number of seeds is produced with a loss of seed quality (Table and Figure 3.3.1.2.). Total weight of viable seeds per fruit is very close to being significantly different (p=.0572) between selfed and outcrossed flowers(Table and Figure 3.3.1.3.). The number of aborted i seedaborstedperseedsfruit perdoesfruitnot(Tablediffer (Tableand Figanured F3.3.1.5.).igure 3.3.1.4.), nor does the proportion of

Table 3.3.1.6. shows that the pattern observed over all of the plants also occurs when calculated i by individual plant. Figure 3.3.1.6 displays a bar plot of the data that show this pattern.

I 3.3.2. Correlation between seed number and weight.

Is there a significant correlation between the number of seeds per fruitversus the mean individual seed weight? Correlation matrices were computed using the number of viable seeds per fruit and the I Ifmeanresourcesindividualare allocatedseed weiginhtatofixeddetermineamountiffora siegnificantach fruit withrelationshiprespect existsto the betweenproductionthem.of seeds per flower a strong negative correlation is expected.

I Correlation values between seed number and individual seed weight per fruit were very low and not significant for Experiment 1 and Experiment 2 (Table 3.3.2). Experiment 3 had a i correlation value of-. 162 (p=.0246). All experiments were pooled to determine if an I ! 253

I overall significant correlation existed, but the correlation was found to be very small (.023) and not significant (p=.6187). A negative correlation between seed number and seed

I weightpresentedis expectedhere suggestwhenthatresEremalcheources are limitingkernensisat theandlevelE. parryiof indidovidualnot diminishfruits. Theresourcesresults allocated to seeds as the number of seeds produced by a fruit increases in Experiments 1 and 2, and over all experiments under greenhouse conditions. Fisher's r to z test was used I to determine if correlations were significant. This result is in contrast to those presented in Chapter 2 for the field plants. Among plants I ofgromaturewing naturallseeds yperinftheruitfiandeld,meanthere individualis a signifiseedcant weight.negative correlation between the number

I 3.3.3. Apomixis in Experiment 3.

I Do seeds produced by apomixis differ from seeds produced by outcrossing? Experiment 3 crossed five pollen donors (plants 1 through 5) with seven recipients (plants i pollination11 through was17). performedNineteen floandwersthe inplantsplantswere16male-sterile.and 17 set seedAppaevenrently,thoughthesenoplantscross- produced seeds by apomixis. There is a very small possibility that ants in the greenhouse transferred some pollen to these flowers. Since the viability of any pollen carried by ants is

I wegreatlydo notreducedbelievebythatthe theformicseedacidset observedthat they einxude,theseandflowersants areresultednot efffromectivante pollpollination.en carriers, This result agrees with field studies where bagged male-sterile plants also produced seed.

I Theflowerscomparison plantson in11thethroughtables bel17.owApomicticare betweenflowersthe apparenare referredtly apomictieto in theantabld oeusteroas sse"Self".d Experiment 3 results show that between apomictic and outcrossed flowers, outcrossed (p<.OOOlmore) Figure I flowers have significantly mature seeds (Table and 3.3.3.1.). However, the mean individual seed weight was found to be significantly (p<.0001) greater in apomictic fruits (Table and Figure 3.3.3.2., seeds produced by apomixis am referred to

I beingas "selfed"significantlyin the tabledifferentlegends).(p=.0535)The probetweenportion apomicticof abortedandseedsoutcrossedper fruit flowerswas closwithe to apomictic flowers having a higher mean (Table and Figure 3.3.3.3).

I Eremalche kernensis can produce seeds by apomixis, but they am fewer in number than those produced by hand-pollinated plants. However, individual seeds produced by ! apomixis were of higher quality (heavier). ! ! ! ! ! I 254

I DetailedTabulatedResults

I Section 3.3.1. Outcrossing vs. selfing in Experiment I. I Table 3.3.1.1 ANOVA tables detecting the effect of outcrossing vs. selflng I on the number of mature (viable) seeds produced per fruit in Experiment 1. ANOVA Table for Number of Viable Seeds/SampleModel II

I estimate of between component variance: Effect: Self vs. Outcross

Self vs. Outcross 1 37.224 37.224 7.052 .0087 Residual o855of.136 u-5.279 aMjPVuI I

I perMeAn_qmple_ table for number ofv_ble seeds

I Self Count Mean Std.2.202Dev. Std..251Err, Outcross 2,368 I I I I I I I I I I 255 ! Interaction Bar Plot for Number of Viable Seeds/Sample i Effect:Error Bare:Selfvs.+ 1 OutcrossStandard Error(e) 4.5j ' II 4. T 3.5 4 i II 3- T

OJ§2.s - I oJ 2 "

I 1.I5:"

I .5" 0 ' , Self Outcross

I Cell

I Figure 3.3.1.1. Bar graph of the effect of selling and outcrossing on the number of mature (viable) seeds per fruit produced in Experiment 1. I I I I I I I I I I 256

I. Table 3.3.1.2 ANOVA tables for the effect of outcrossing vs. selflng on mean individual seed weight per fruit in Experiment 1. I ANOVA Table for Mean Individual seed wt. (mg.) C:F Sum of Squares Mean Square F-Value P-Value

I Self vs. Outcross 2.951 Residual Model II estimate of between componentvariance: .001

I 1 cases were omitted due to missing values.

I Means Table for Mean individual seed wt. (rag.) Effect: Self vs. Outeroee

I SOutcrosself _ Count Mean Std. .160.152DOT. Std..020.019Err.] I

I Interaction Bar Plot for Mean individual seed wt. (mg.) Effect: Self vs. Outcrose Error Ears: ± 1 Standard Error(s) I 9 .8 1"

I .7 1"

.6 II _6

.3 I 2 .1

I 0 • • Self Outcrosa Cell I Figure 3,3,1,2, Bar graph of the effect of selflng and outerossing on the i mean individual seed weight per fruit in Experiment 1. I I I 257

I Table 3.3.1.3 ANOVA tables detecting the effect of outcrossing vs. selflng I on the total weight of viable seeds per fruit in Experiment 1. ANOVA Table for Total Wt Viable Seeds (mg)

I Self vs. Outcross ElF Sum of Squares Mean Square F-Value P-Value Residual 3.397

I Model15 casIIesestimatwere omitte of betweeneddue tocomponentmissingvaluesvarianc, e:,113

I Means Table for Total Wt ViableSeeds (mg) Effect: Self vs. Outcross

i OutcSelf ross _Count Mean Std.11.933.D718ev. t Std..204,200Err. I

I Interaction Bar Plot for Total Wt Viable Seeds (mg) Effect: Self vs. Outcross Error Bars: + 1 Standard Error(s)

I 3.5 ' , II 3 T 2.5 T

II 52(D

I _ts 1 I 8

I 0 Self Outcross Cell I Figure 3.3.1.3. Bar graph of the effect of selfing and outcrossing on the I total weight of viable seeds in Experiment 1. I I I , • 258

I Table 3.3.1.4 ANOVA tables detecting the effect of outcrossing vs. selfing on the number of aborted seeds produced per fruit in Experiment 1.

I ANOVA Table for Number of Aborted Seeds [:IF Sum of Squares Mean Square F-Value P-Value

I Selfvs.Outcross 1.702 Residual Model II estimate of between componentvariance: .055

I 15 cases were omitteddue to missingvalues.

, ,.. =.,

I MeansEffect: TableSelf vsfor. OutcrosNumbers of Aborted Seeds Count Mean Stcl. Dev. Std. Err.

I SelfOutcross 7193 3.7323.215 2.6742.293 .272.277 I ! Interaction Bar Plot for Number of Aborted Seeds

I Effect: Self vs. Outcross Error Bars: :t:1 Standard Error(s) 4.5 | ' T

| _3.5 T

C I _2_2.5

I 1.5 1 | ._

0 • •

I Self Ceil Outcross i Figurenumber 3.of3.1.4.abortBared segrapheds producof theedeffinectExpoferimselflngent and1. outcrossing on the I ! ! I 259

I Table 3.3.1.5 ANOVA tables detecting the effect of outcrossing vs. selfing on the proportion of aborted seeds per flower in Experiment 1. ! ANOVA Table for Acrslne transformed proportion of aborted seeds EF Sum of Squares Mean Square F-Value P-Value I Self vs. Outcross .105 Residual .057 1.853 ,1750

33 cases were omitted due to missing values. i Model II estimate of betweencomponentvariance: .001

I Means Table for Aerelne transformed proportion of aborted seeds Effect: Self vs. Outeross Count Mean Std. Day. Std. Err.

Outcross 65 .827 .230 .029 ! Interaction Bar Plot for Acralne transformed proportion of aborted seeds

I Effect:Error Bars:Self vs+ 1. OutcroStandardee Error(a) ,9 I I T

I .5 T .7 | .5 C "°.5 | _.,

| ,"_2 | .t 0 , , , Self Outcross

I Cell

I Figure 3.3.1.5. Bar graph of the effect of selfing and outcrossing on the proportion of aborted seeds per fruit in Experiment 1. ! ! ! I 260

I Table 3.3.1.6 ANOVA tables detecting the effect of outcrossing vs. selfing on the number of viable seeds produced per fruit by individual plant in I Experiment 1.

I ANOVA Table for Number of Viable Seeds/Sample EF Sum of Squares Mean Square F-Value P-Value Self vs. Outcross 1 32.165 32.165 6.274 .0133

I RecipientCategory 4 37.471 9.368 1.627 .1263 Self vs. Outcross " Racipien... 4 22.550 5.638 1.100 .3589 Residual 154 789.526 5.127

I 15 cases were omitteddue to missingvalues.

I Means Table for Number of Viable Seeds/Sample Effect: Self vs. Outcroas * Recipient Category

I Self, Plant 1 Count16 4.000Mean Std2.280. Dev. Std..570Err. Self, Plant 2 18 4.188 2.316 .579

I SSelf,elf, PlantPlant 34 167 3.6253.286 2,2772.289 .569.865 Self, Plant 5 16 3.375 2.062 .515

I Outcross,Outcross, Plant 21 2119 14.095.789 2.3232.322 ..507533 Outcross, Plant 3 20 2.450 2.305 .515

I Outcross,Outcross, PlantPlant 45 2013 2.6502.846 2..112775 .509.587 I I I I I I I I I

i 261

Fieher's PLSD for Number of Viable Seeds/Sample I Effect: Self vs. Outcross Significance Level: 5 % Mean Diff. Crit. Diff P-Value | se.,Outcroe_l9621 705100761S

I Flsher_s PLSD for Number of Viable Seeds/Sample Effect: Recipient Category Significance Level: 5 %

I Mean Diff. Crit. Diff P-Value Plant 1, Plant 2 -1,335 1.055 .0134 S Plant 1, Plant 3 -,172 1,062 .7491

I Plant 1, Plant 4 °.200 1,254 .7531 Plant 1, Plant 5 -.172 1.062 .7491 Plant 2; Plant 3 1,163 1.047 .0297 S I Plant 2, Plant 4 1.135 1.241 .0728 Plant 2, Plant 5 1,163 1.047 .0297 S

i Plant 3, Plant 45 -.0280 11..247054 .9650° Plant 4, Plant 5 .028 1.247 .9650 I I I I I I I I I I I 262 I Interaction Bar Plot for Number of Viable Seeds/Sample

I ErrorEffect:Bars:Self vs.±1 StandardOutcrossError(s)* RecipientCategory 5 I ,, T] ' T I 3.5 -i, T | 3 --'-- T _ T-T_ [] | ==m2.s _" . [] SelOutcrossf to 2 _i l

I 1.5 1 | 0

Cell I Plant 1 Plant2 Plant3 Plant 4 Plant5

I numbFigureer 3.of3.1.viabl6. eBarseegraphds producof ethed ineffectExpeofrimentselling 1 andas seeoutcrossingn by individualon the plant. I

I Section 3.3.2.

I Isindividualthere a significantseed weightco.rrelation between the number ofseedsperfruit versus the mean

i Candorrelatinot osignificantn values betweenfor Experimentseed number1 and Experimentand individual2 (Tseedablewei3.3.2).ght perExperimentfruit were 3veryhad laow correlation value of-.162 (p=.0246). All experiments were pooled to determine if an overall significant correlation existed, but the correlation was found to be very small (.023) i weightand not issigniexpectedficant when(p=.6187).resourAcesnegaatirevlimitinge correlatiatonthe levelbetweenof individualseed numberfruits.andTheseedresults presented here suggest that Eremalche kemensis and E. parryi do not diminish resources i allandocated2, andtooverseedsallasexperimentsthe number underof seedsgreenhouseproduced conditions.by a fruit increFisher'sases inr toExpzetestrimentswas used1 to determine if correlations were significant. ! I I I 263

I Table 3.3.2.1. Correlation tables for the number of viable seeds and the mean individual seed weight of each experiment and for all experiments

I combined. Experiment 1

I Correlation Matrix Number of Viable Seeds/Sa.,. Mean individual seed wt. (mg.)

I NumberMean individual°f ViableseedSeedswt/,Sa'(rag" .) I 10001.069 1"069l.O00 129 observations were usedin thiscomputation, I 67 cases were omitteddue to missingvalues. Fisher'a r to z

I Correlation P-Value Number of Viable Seeds/Sa... I .069 I .4357 I 129 observations were used in this computation.

I 67 cases were omitted due to missingvalues. ! Experiment 2

I Correlation Matrix Number of Viable Seeds/Sa... Mean individual seed wt. tmg.)

Mean individual seed wt, (mg.) I ,-, 100oooI 1.000,ooI I 140 observationswere used In thiscomputation. 65 cases were omitted due to missingvalues. I Flsher's r to z

I CorrelationP-Value Number of Viable Seeds/Sa... I -.100 I .2408 I 140 observationswere used in thiscomputation,

I 65 cases were omitted due to missingvalues. I I I I I I 264

I Table 3.3.2.1. (continued)

I Experiment 3

I Correlation Matrix Number of Viable Seeds/Sa... Mean individualseed wt. (mg.)

I NumberMean individuaof ViablleseSeededswt/.Sa(mg.)... 1-.162,000 1.000-.162 I 191 observationswere used inthiscomputation. 94 cases were omitteddue to missingvalues. I Flsher's r to x

I CorrelationP-Vatue Number of Viable Seeds/Sa... I -.162 I .0246 I 191 observationswere usedin thiscomputation.

I 94 cases were omitted due to missingvalues. I All experiments combined

I Correlation Matrix Number of Viable Seeds/Sa... Mean individual seed wt. (rag.)

I NumberMean individualof ViableseedSeedswt/.Sa...(rag.) 1.00.0230 I 1.000.023 I 460 observationswere usedin thiscomputation.

I 226 cases were omitteddue to missingvalues,

I Flsher's r to z Correlation P-Value NumbarofV,ab_aISead_023S16187a. 1

I 22660 observationscases were oweremitteduseddue Into thismissingcomputationvalues. . I I I I I I i 265 3.3.3. Apomixis in Experiment 3. I Experiment 3 results show that between apomictic and outcrossed flowers, outcmssed

I However,flowers havethe signimeanficantlyindividual(p<.000seed1)weightmorewasmaturefoundseedsto be(Tablesignificantlyand Figure(p<.0001)3.3.3.1.).greater in apomictic fruits (Table and Figure 3.3.3.2., seeds produced by apomixis are referred to

being significantly different (p=.0535) between apomictic and outcrossed flowers with i as "selfed" in the table legends). The proportion of aborted seeds per fruit was close to apomictic flowers having a higher mean (Table and Figure 3.3.3.3). I

I Tabloutcrossinge 3.3.3.1onANOVAthe numbtabler esof formaturthee e(viablffect e)of seeapomixisds per flow(self)er vs.in Experiment 3.

I ANOVA Table for NumberDF ofSumViablofe SquaresSeeds/SampleMean Square F-Value P-Value Realdual 140'1 1268.833 9.0oo63 oooooI , I Model II estimate of between componentvariance:7.924 2 cases were omitteddue to missingvalues. I Means Table for Number of Viable Seeds/Sample

I Effect: Self vs.CountOutcroeeMean Std. Dev. Std. Err. sa,, _ ,_j._ 37l, I Outcross 2.164 I "285/ I I I I I I I I 266 I Interaction Bar Plot for Number of Viable Seeds/Sample Effect:Self vs. Outeross

I 7 ErrorBars: ± 1 StandardError(s) I °

I c _4

0) I _3 I 1

I 0 Self Outcross

I Cell

I Figure 3.3.3.1. Bar graph showing the effect of apomixis (self) and outcrossing on the number of mature seeds per fruit. I I I I I I ! I I I

I 267 Table 3.3.3.2. ANOVA tables for the effect of apomixis (self) vs. i outcrossing on mean individual seed weight per flower in Experiment 3.

ANOVA Table for Mean individual seed wt. (mg.)

I Self vs. Outcross OF Sum of Squares Mean Square F-Value P-Value Residual 2,828 .015

I 97odcasesel II ewstimateere omittedof betweendue tocomponentmissingvalues.variance: .014

I Means Table for Mean individual seed wt. (mg.) Effect: Self vs. Outcross

I Count Mean Std. Dev. Std. Err. Self 19 1.118 .131 I .030 I Outcross 173 .948 .121 .009

I Effect:IntaractlonSelf vBars. OutcroPlot foresMean Individual seed wt. (rag.) Error Bars: + 1 Standard Error(e)

I 1.2 T, i I 1 .8

1 _; .6

I _ 4

I | 2

I 0 Self• Outcross• Cell

I Figure 3.3.3.2. Bar graph showing the effect of apomixis (self) and outcrossing on the mean individual seed weight. I I ! I 268

I Table 3.3.3.3. ANOVA tables for the effect of apomixis (self) vs. outcrossing on the proportion of aborted seeds per flower in Experiment 3.

I ANOVA Table for Acrelne transformed proportion of aborted seeds E:F Sum of Squares Mean Square F-Value P-Value i SelfResidualvs. Outcross Model II estimate of between componentvariance:,008 i 57 cases were omitteddue to missingvalues.

I MeansEffect: TableSelf vs.forOuterossAcrslne transformed proportion of aborted seeds Count Mean Std. Oev, Std. Err.

I SelfOutcross .097288 .022

I Effect:InteractionSelf Barvs. Outcros8Plot for Acralne transformed proportion of aborted seeds Error Bars: + 1 Standard Error(s)

I 1.2 i ,

I ' 1- 1" .8

o_ I "_°.6

I 8 .4

I 2

i 0 Self• Outcross• Cell I Figure 3.3.3.3. Bar graph showing the effect of apomixis (self) and

I outcrossing on the proportion of aborted seeds per flower. I I I ! i 269 Section 3.4.

I 4. Are Eremalche kernensis and E. Darrvi reproductively incompatible?

I 3.4.1. Experiment 2 test-crosses i Experimentparryi. The 2designaddressconsisteded the questiof 205on crossesof the cobetweenmpatibilityE. kernensisbetween Edonor. kernplaensisnts a1nthrd Eo.ugh 5 and Eremalche parryi recipient plants 6 through 10. All pollinations were performed by hand between 2 February 1993 and 5 March 1993.

I Eremalche kernensis and E. parryi are not incompatible. Mature seed was produced in all seven recipient plants, although plants 6 and 7 had low fruit set.

I One-way ANOVAs were performed to determine the effect of recipient plant on the production of viable seed, mean individual seed weight, total seed weight, number of aborted seeds per fruit, and proportion aborted seeds. Recipient plants had a significant

I Fisher'seffect (p=.0116)PLSD testonshowthe numbers the sourofcesviableof theseedsvariation.producedPlant(Table10'sandmeanFigurseede 3.4.1.numberI.).per fruit is significantly greater than that of all other plants. Note that plant 6 had only one

I flowerANOVA.set seed,Pollenhasdonorno vdidariance,not haveand thereforea significantis not(13=.0116)includedeffectwhenonconductingseed numberthe per fruit. (Table and Figure 3.4.1.2)

Was tO I Mean individual seed weight found be significantly (p=.0002) different between recipient plants (Table 3.4.1.3.), but no significant differences were found between pollen donors (Table and Figure 3.4.1.4.).

I Maternal plants differed significantly (p=.0057) in total seed weight per fruit (Table 3.4.1.5.), but this character did not vary significantly among pollen donors (Table and i Figure 3.4.1.6.). The effect of maternal parents on the total number of aborted seeds per fruit (Table and Figure 3.4.1.7.) was highly significant (p<.0001). Pollen donor also had a significant I (.p=.0062) effect on the number of aborted seeds per fruit (Table and Figure 3.4.1.8.). The mammal plant also had a highly significant effect (p<.0001) on the proportion of

I abortedaffect thesevariationeds per floinwerthis(Tablecharacterand(TableFigureand3.4.Figure1.9.). Polle3.4.1.10.).n donor did not significantly

I 3.4.2. Between experiment comparisons

I ExperimentAre the mean3 means?values for all recipients in Experiment 2 different from Experiment 1 or i cross.ExperimentExperimentI crossed2 usfiveed thehermaphroditesame five E. Eremalchekernensis individualskernensis individualas pollens donorsin a dialleland crossed them with E. parryi individuals. Experiment 3 used the same five E. kernensis pollen donors but outerossed them with male-sterile E. kernensis recipient individuals. I What is the effect of these different breeding designs on the maternal reproduction of these I ! 270

I individuals? Do E. parryi matemal plants produce the same amount and quality of seed as E. kernensis maternal plants?

I The number of mature (viable) seeds per fruit produced by maternal plants was not significantly different between the three experiments (Table 3.4.2.1). However, seed i wexperimentseight, an indi(p<.0001).cator of thExperimente quality of3theplantsseed,producdiffereded sithgeniheaviestficantly seeds,betweenExperimall ent 2 the next heaviest, and Experiment 1 (which included self-crosses) the lightest seeds (Table 3.4.2.2). Total seed weight per fruit was highest inExperiment 2 (which also had a higher

I experimentsnumber of see(Tableds, alth3.4.2.3).ough notThesigninumbficantlyer ofso)aborted, and wasseedssigniperficfruitantlydiddifnotferdifferent betwbetweeneealln experiments. However, the proportion of aborted seeds per fruit differed significantly between experiments with Experiment 2 having a lower proportion of aborted seeds than I the other experiments. ! ! ! I I ! I ! ! ! ! I ! I 271

I DetailedTabulatedResults

I 3.4.1. Experiment 2: test-crosses

I numberTable 3.4.1.of 1mature. ANOVA(viable)tablseedses showingproducedthe pereffectfruitof inrecipia test-crossent plant beontwethene E. kernensis and E. parryi.

I ANOVA Table for Number of Viable Seeds/Sample EF Sum of Squares Mean Square F-Value P-Value i RecipientResidual Category 215.574961.411 53.89415,260 3,532 .0116 Model II estimate of between componentvariance:3,241 i One case was omitteddue to missingvalues.

IBI Means Table for Number of Viable Seeds/Sample I Effect: Recipient Category Count Mean Std. Dev. Std. Err.

Plant 7 4 3.750 2.988 1.493 I Plant 6 1 5.000 • • Plant8 20 5,850, 3.133 .701 I Plant9 26 4.577 3.420 .671 II Plant 10 17 8.882 i 5.337 1.294

I Flshe#e PLSO for Number of Viable Seeds/Sample II! Effect: Recipient Category Significance Level: 5 %

I Plant 6, Plant7 Mean1.250Diff. Crit.8.728Diff P.7757-Value Plant 6, Plant 8 -.850 7.999 .8325

I Plant 6, Plant 910 -3.882.423 8.0337.955 .3378.9157 Plant 7, Plant 8 -2,100 4.276 ,3301

I Plant 7, Plant 910 -5.132-.827 4.3384.193 ..02126948 S Plant 8, Pfant 9 1.273 2.322 .2774

I Plant 9,8, Plant 10 -4.305-3.032 2.435575 .0008.0218 S I ! i i I 272 I Interaction Bar Plot for Number of Viable Seeds/Sample

i Effect:Error Bare:Recipient+ 1 StandardCategoryError(e) 12 | ,0 I C o_ (9

0 I 2

I 0 Plant 6 Plant 7 Plant 8 Plant 9 Plant 10 I n Figure 3.4.1.1. Bar graphs of the number of mature seeds per fruit produced by each E. parryi plant in the test cross. I I ! ! i I I I I I 273

I Table 3.4.1.2. ANOVA tables showing the effect of pollen donor on the number of mature seeds produced per fruit in a test-cross between E.

i kernensis and E. parryi. ANOVA Table for Number of Viable Seeds/Sample DF Sum of Squares Mean Square F-Value P-Value

I ResidualPollen Donor Category i Model II estimate of betweencomponentvariance:•

I 20 eases were omitteddue to missingvalues.

Seeds/Sample I Effect:Means PollenTable forDonorNumberCategoryof Viable Count Mean Std. Dev. Std. Err.

I Plant 1 14 7.0OO 4.206 1.124 Plant 2 9 6.889 4.167 1.389 Plant3 15 6.400 2.947 .761

I Plant 4 12 6.333 4.793 1.384 Plant5 11 6.818 3.868 1.166 !

Interaction Bar Plot for Number of Viable Seeds/Sample I Effect: Pollen Donor Category Error Bars: + 1 Standard Error(s) 9 I I I I I !' : I [ T l l | _6I11 _4

0 .....

Plant 1 Plant 2 PlantCell 3 Plant 4 Plant 5

I Figure 3.4.1.2. Bar graph of the effect of pollen donor on the number of viable seeds per fruit. I I I 274

I Table 3.4.1.3. ANOVA tables showing the effect of recipient plant on the mean individual seed weight per fruit in a test-cross between E. kernensis

I and E. parryi.

ANOVA Table for Mean Individual seed wt. (rag.)

I El= Sum of Squares Mean Square F-Value P-Value Recipient Category .040 6,674 Residual .006

I 21odelcasesII estimatewere omittedof betweendue to componentmissing values.variance: .003

I Means Table for Mean individual seed wt. (mg.) Effect: Recipient Category

I Plant6 Count1 M.950ean Std. Dev.• Std. Err.• Plant 7 3 .849 .014 .008

I PlantPlant89 2120 ,.812919 .088,081 .018.020 Plant 10 15 .925 ,060 .016 ! i Tablemean individual3.4.1.4. ANOVAseed weighttablespershowingfruit inthae test-crosseffect of pollbetweenen donorE. kernensison the and E. parryi.

I ANOVA Table for Mean IndividualEF SumseofedSquareswt. (rag.) Mean Square F-Value P-V_ue Pollen Donor Category

I ModelResidualII estimate of between componentvariance: • .009 23 cases were omitted due to missingvalues. ! Means Table for Mean Individual seed wt. (mg.)

I Effect: PollenCountDonorMeanCategoryStd. Day. Std. Err, Plant 1 13 .896 ,076 .021

I Plant 32 195 .876.912 ..051131 .034.017 Plant 4 11 .874 .088 ,027

I Plant 5 10 .659 .073 .023 ! ! ! I 275 I Interaction Bar Plot for Mean Individual seed wt. (mg.)

I Effect:Error Bars:Pollen+ 1DonorStandardCategoryError(s) 1 , , I i i

.9 r -r T T T .8

I .7

a)

I :_.5 0.4

I .3- .2 1 0 , , , , • Plant 1 Plant 2 Plant 3 Plant 4 Plant 5

Coil

I Figure 3.4.1.4. Bar plot of the effect of pollen donors on the mean individual seed weight per fruit. I I I I I I I I I I 276

I Table 3.4.1.5. ANOVA tables showing the effect of recipient plant on the total weight of mature seeds per fruit in a test-cross between E. kernensis

I and E. parryi.

ANOVA Table for Total Wt Viable Seeds (mg) £I= Sum of Mean I Squares Square F-Value P-Value Recipient Category Residual component I OneModelcaseII estimatewas omittedof betweendue to missing values.variance: 2.995

! Means Table for Total Wt Viable Seeds (mg) Effect: Recipient Category

I Plant 6 Count1 4Mean,750 Std. Dsv.• Std. Err.• Plant 7 4 3.198 2.573 1.287

I Plant8 20 4.760 2.5291 .568 Plant 9 26 4,168 3.054 .599 Plant 10 17 8.096 4.805 1.165 !

i Tabltotale weight3.4.1.6 of maturANOVAe seetablesds pershowingfruit inthae test-crosseffect of pollenbetweendonorE. kernensison the and E. parryi.

I ANOVA Table for Total WtDFViableSumSeeofdsSquares(mg) Mean Square F-Value P-Value PollenDonorCategory 4.875

I ModelResidualII estimate of between component712.078variance:° 20 cases were omitted due to missingvalues. ! Means Table for Total Wt Viable Seede Img)

I Effect: PollCounten DonorMeanCategoStd.ry Dev. Std. Err. Plant 1 14 6.173 3,646 .974

I PlantPlant23 159 5.8706.177 2.7153.655 1.218.701 Plant 4 12 5.483 4.244 1.225

I Plant 5 11 5.990 3,621 1.092 I I ! I 277 I Interaction Bar Plot for Total Wt Viable Seeds (mg)

i Effect:Error Bars:Pollen+ 1DonorStandardCategoryError(s) 8 i i i i i

I' i t T t T T

O)

3 I I 0 • , , , . Plant 1 Plant 2 Plant 3 Plant 4 Plant 5

I Figureof viable3.4.1.6.seeds Barper graphfruit. of the effect of pollen donor on the total weight I I I I I I I I I I 278

I Table 3.4.1.7 ANOVA tables showing the effect of recipient plant on the number of aborted seeds per fruit in a test-cross between E. kernensis and I E. parryi. ANOVA Table for Number of Aborted Seeds

I Recipient Category EF Sum of Squares Mean Square F-Value P-Value Residual 1322.020

I Model9 casesIIwerestimatee omittedof beduetweento missingcomponvalues.entvariance: 2.669

I Means Table for Number of Aborted Seeds Effect: Recipient Category

Plant 6 33 4.636 3,305 .575 i Count Mean Std. Dev. Std. Err. Plant 7 34 2.118 2.114 .363

i Plant8Plant9 4639 3.6524.462 ! 2.8853.194 .425.511 Plant 10 44 .727 1.208 .182

I Flshar'e PLSD for Number of Aborted Seeds Effect: Recipient Category

I Significance Level: 5Mean% Diff. Crit. Diff P-Value Plant 6, Plant 7 2.519 1.268 .0001 S

I Plant 6, PPlantlant 98 .175.984 1.2271.184 .7791.1027 Plant 6, Plant 10 3.909 1.195 <.0001 S

I Plant 77,, PPlantlant 98 -2-1.535.344 1.2181,174 .0.0107002 S Plant 7, Plant 10 1.390 1.185 .0217 S

I Plant 8, Plant910 2.925-.809 1.0941.130 <.0001.1592 S Plant 9, Plant 10 3.734 1.141 <.0001 S I I I ! ! I I 279 I

I InteractioEffect: Fleclpln BarentPlotCategoryfor Number of Aborted Seeds Error Bare: + 1 Standard Error(e) I ° 5 I 4

I _;3 I

I 1

I 0 Plant 6 Plant 7 Plant 8 Plant 9 Plant 10 Cell

I Figure 3.4.1.7. Bar plot of the effect of maternal (recipient) plants on the number of aborted seeds per fruit. I I I I I I I I I I 280

I Table 3.4.1.8 ANOVA tables showing the effect of pollen donor on the number of aborted seeds per fruit in a test-cross between E. kernensis and

I E. parryi.

ANOVA Table for Number of Aborted Seeds

I DF Sum of Squares Mean Square F-Value P-Value Pollen Donor Category 125.803 Residual 1452.841

I 28odelcasesII estimatewere omittedof betweendue tocomponentmissing values.variance:.65

I Means Table for Number of Aborted Seeds Effect: Pollen Donor Category

I Plant 1 Count37 3.081Mean Std.2.629Dev. Std..432Err. Plant2 35 2.800 3.123 .528

I Plant4Plant3 3338 2.0914,211 23.434,112 .368.557 Plant5 34 4.324 2.982 .511 I

Fleher's PLSD for Number of Aborted Seeds I Effect: Pollen Donor Category Significance Level: 5 % Mean Diff. Crit. Diff P-Value 1, I Plant Plant 2 .281 1.353 .6822 Plant 1, Plant 3 -1.129 1.325 .0943 Plant 1, Plant 4 .990 1,374 .1566

.353 ,0737 I Plant 1, Plant 5 -1.242 1 Plant 2, Plant 3 -1.411 1,344 .0398 S Plant 2, Plant 4 .709 1.392 .3161

I Plant 2, Plant 5 -1.524 1.381 .0308 S Plant 3, Plant 4 2.120 1.365 .0025 S

I Plant 3,4, Plant 5 -2.233-. 113 11.402.354 .8694.0020 S I I I I I I 281 I InteractionBar Plotfor Numberof AbortedSeeds

I Effect:Error Bare:Pollen+ 1DonorStandardCategoryError(s) 5 I I I | I

I 4 T T

_3 I CD T T m T

I 1 I 0 , , , , , Plant1 Plant2 Plant3 Plant4 Plant5

I Cell

i Figure 3.4.1.8. Bar plot of the effect of pollen donor on the number of aborted seeds per fruit. I I I I I I I I I I 282

I Table 3.4.1.9 ANOVA tables showing the effect of recipient plant on the proportion of aborted seeds per fruit in a test-cross between E. kernensis

I and E. parryi. ANOVA Table for Proportion aborted (Arcelne taransformed) EF Sum of Squares Mean Square F-Value P.Value

I ResidualRecipient Category 2,525 ".045801 t 17"753 t <'0001 t Model II estimate of betweencomponentvariance:.071

I One case was omitteddue to missingvalues.

I Means Table for Proportion aborted (Arcelne taransformed) Effect: Recipient Category Count Mean Std. Oev. Std. Err.

I Plant6 1 .955 • • Plant 7 3 .715 .301 .174 Plant8 20 .774 .234 .052

,191 ,041 I Plant9 22 .811 Plant10 15 .265 .196 .050

I Flsher_sPLSD for Proportion aborted (Arc$tne taransformed) Effect: Recipient Category

I Significance Level: 5Mean% Diff. Crit. Diff P-Value Plant 6, Plant 7 .241 .491 .3303

I Plant 8,6, Plant 89 ,181.145 .436.435 ,.40885084 Plant 6, Plant 10 .691 ,439 .0028 S

I Plant 7, Plant 89 -.060.096 ..262283 .6515.4645 Plant 7, Plant 10 .450 .269 .0015 S

I Plant 8, Plant 910 -,.510037 ..131145 <.0001.5796 S Plant 9, Plant 10 .546 .142 <.0001 S I ! I ! ! ! ! 283 !

I Effect:InteractionRecipientBar PlotCatforegoryProportion aborted (Arcslne tarensformed) Error Bare: + 1 Standard Error(e) 1

| .78

I §.6 (D

I 0. .34

.2 | 1

I 0 Plant 6 Plant 7 Plant 8 Plant 9 Plant 10 Cell

I Figure 3.4.1.9. Bar plot of the effect of maternal plants (recipients) on the proportion of aborted seeds per fruit. ! ! I ! I I I ! I I, 284

I Table 3.4.1.10 ANOVA tables showing the effect of pollen donor on the proportion of aborted seeds per fruit in a test-cross between E. kernensis

I and E. parryi. ANOVA Table for Proportion aborted (Arcalne transformed)

Pollen Donor Category 4 .337 .084 .842 .5049 I Residual 5EF3 SumofSq5.299uaresIMeanSqusrelF'ValueIP'Value.100 I Model II estimate of between componentvariance:

I values.4 caseswere omitteddue tomissing

Proportion (Arcsine I Means Table for aborted transformed) Effect: Pollen Donor Category Count Mean Std. Dsv. Std. Err,

I Plant 1 13 .603 .378 .105 Plant 2 9 .752 ,305 .102 Plant3 15 .710 ,303 .078 11 .542 .313 ,094 I Plant4 Plant 5 10 .714 .253 .080

I Intsraction Bar Plot for Proportion aborted (Arcsine transformed) Effect: Pollen Donor Category

I ,9 Error Bars:I :l:1 StandardI Errsr(s) I I I .8 T T T I o'° T _.5 I --_.4 .3 | .2 .1 | o • PlantI Plant2 Plant3 Plant4 Plant5 i Cell

I abortFigureed 3.s4ee.1ds.10. perBarfruit.plot of the effect of pollen donor on the proportion of ! I I 285

I 3.4.2. Differences between mean values between experiments

I fromAre theExperimentmeanvalues1 (Efo. rkernensisall recipientshermaphrodites)in Experimenort 2Experiment(E. parryi m3ale(E-.sterilekernensiss) differentmale- steriles) means? ! The number of mature (viable) seeds produced by maternal plants was not significantly

I weight,differentanbeindicatortween theofthreethe qualityexperimentsof the seed,(TablewasandsigniFigureficantly3.4.2.1).differentHowever,betweenseedall experiments (p<.0001). Experiment 3 recipient plants produced the heaviest seeds,

I Experimentseeds (Table 2andthe Figurenext he3.4.2.2).aviest, andTotalExperimentseed weight1 (whiperchfruitincluwasdedhighestself-crossesin Experiment) the lightest2 (which also had a higher number of seeds, although not significantly so), and differed

I signiseedsficdidantlynotbetwdiffereenbetweenall experimentsexperiments(Table(Tableand Figureand Figure3.4.23.4.2.4.)..3). The numberHowever,of abortedthe proportion of aborted seeds was significantly different between experiments with Experiment 2 having a lower proportion of aborted seeds than the other experiments (Table I and Figure 3.4.2.5.).

I Table 3.4.2.1 ANOVA tables of the effect of experiment on the number of mature (viable) seeds per fruit produced by maternal plants.

I Experiment 21 =ffi five hermaphroditicmale-sterile recipienrecipits entsof Eof. parryiE. kernensis; ; Experiment 3 = seven male-sterile recipients of E. kernensis;

I ANOVA Table for Number of Viable Seeds/Sample El= Sum of Squares Mean Square F-Value P-Value

i ExperimentResidual ID 141.989 Model II estimate of between componentvadanca: .159 ! One case was omitteddue to missingvalues.

Effect: Experiment ID I Means Table for Number of Viable Seeds/Sample Count Mean Std. Dev. Std. Err.

i ExpExpedmenteriment 21 17480 3.7635.275 10.0694.392 .763.491 Experiment 3 206 3.869 3.762 .262 I ! ! ! I 286 ! Interaction Bar Plot for Number of Viable Seeds/Sample

I Effect:Error Bare:Experiment+ 1 StandardID Error(s) 6 I T | , T § O)

II (:3_3 I 1 I 0 • Experiment 1 Experiment 2 Experiment 3

i_ Cell

I matureigure 3s.4.2.eedsi. prBaroducedgraphperoffruit.the effect of experiment on the number of I I I I I I I I I I 287

! Table 3.4.2.2. ANOVA tables of the effect of experiment on the mean individual seed weight per fruit.

I Experiment 1 = five hermaphroditic recipients of E. kernensis; Experiment 2 = five male-sterile recipients of E. parryi;

I Experiment 3 = seven male-sterile recipients of E. kernensis;

ANOVA Table for Mean individual seed wt. (mg.)

I DF Sum of Squares Mean Square F-Value P-Value Experiment ID 1.652 85.120 Residual .019 i 136ModelcasesII estimateware omitteof betweenddue tocomponentmissingvaluvariance:es. .018 Means Table for Mean Individual seed wt. (rag.)

I Effect:ExperimentID Count Mean Std. Dev. Std. Err. Experiment 1 125 .755 .158 .014

I Experiment 2 60 .882 .091 .012 Experiment 3 140 .978 .138 .012

I Flsher's PLSD for Mean individual seed wt. (mg.) Effect: Experiment ID

I Slgnlflcanoa Level: 5 % Mean Diff. Cdt. Dlff P-Valua Expsdment 1, Experiment 2 -.127 .043 <.0001 S

I ExperimentExperiment 2,1, ExperimExperimentent 3 -.224-.096 .034.042 <.0001 S I I I I I ! ! ! i 288 I Interaction Bar Plot for Mean individual seed wt. (mg.)

Error Bars: ± 1 Standard Error(s) i Effect:ExperimentID 1.2 J i | 1

I .8 I.

II _ 6 I .4 .2 I 0 • • , Experiment 1 Experiment 2 Experiment 3

I Cell

Figure 3.4.2.2. Bar graph of the mean individual seed weight from each I experiment. I I ! ! ! I ! I I I 289

I Table 3.4.2.3. ANOVA tables of the effect of experiment on the total weight of mature seeds per fruit.

I Experiment 1 = five hermaphroditic recipients of E. kernensis; Experiment 2 = five male-sterile recipients of E. parryi;

i Experiment 3 = seven male-sterile recipients of E. kernensis;

ANOVA Table for Total Wt Viable Seeds (mg)

I Expedment ID ElF Sum of Squares Mean Square F-Value P-Value Residual 4456.604 9,773

I 2ModelcasesI1wereestimateomittedof beduetweento missingcomponentvaluvariance:es. 1.178

Means Table for Total Wt Viable Seeds (mg)

I Effect: ExperimentCountID Mean Std. Dev. Std, Err. Experiment 1 173 2.285 1.903 .145

I Experiment 2 80 4.654 3.919 .438 Experiment 3 206 3.706 3.575 .249

I Flsher's PLSD for Total Wt Viable Seeds (mg) Effect: Experiment 10

i Significance Level: 5 % Mean Diff. Crit. Diff P-Value Experiment 1, Experiment 2 I -2.369 .831 <.0001 S i ExperimentExperiment 2,1, ExperimentExperiment 3 I -1.421.948 .634.609 <.0001.0218 S I I ! I I I I I I

i 290

Interaction Bar Plot for Total WI Viable Seeds (mg)

I Effect: Experiment ID Error Bars: + 1 Standard Error(s) 6 I I I I T I , T I _;3 T I 2 I

0 • • ,

I Experiment 1 ExperimCellent 2 Experiment 3

I Figure 3.4.2.3. Bar graph of the effect of experiment on the total weight of mature seeds per fruit. I I I I I I I I I I 291

I Table 3.4.2.4. ANOVA tables of the effect of experiment on the number of aborted seeds per fruit.

I Experiment 1 = five hermaphroditic recipients of E. kernensis; Experiment 2 = five male-sterile recipients of E. parryi;

I Experiment 3 = seven male-sterile recipients of E. kernensis;

ANOVA Table for Number of Aborted Seeds

I EF Sum of Squares Mean Square F-Value P-Value Experiment ID Residual 49729.794

'l Model II estimateof between componentvadance:•

Means Table for Number of Aborted Seeds

I Effect: ExperimentID Count Mean Std. Day. Std. Err. Expa0ml _en, 1_,__.'.2_ '--U-I I Experiment 2 3.270 I `353 I Experiment 3 I 20614.117 I 3,355 I .234l

I FIsher_s PLSD for Number of Aborted Seeds Effect: Experiment ID i Significance Level: 5 % Mean Diff. CAt. Diff P-Value Experiment 1, Experiment 2 .855 2.754 .5418 i ExExperimentperiment 12,, Experiment 3 -.524.332 2.1082.686 .7573.7016 I I I I I I i I I

i 292

Interaction Bar Plot for Number of Aborted Seeds

I ErrorEffect:Bars:Experiment+ 1 StandaID rd Error(s) 6 I I I I 5

I 4 T T

I °OJ O I

0 . . .

I Experiment 1 ExperimentCell 2 Experiment 3

I ' abortedFigure 3.4.2.4.seeds perBarfruit.graph of the effect of experiment on the number of I I I I I I I ! I I

i 293 Table 3.4.2.5. ANOVA tables of the effect of experiment on the proportion of aborted seeds per fruit.

I Experiment 1 = five hermaphroditic recipients of E. kernensis; Experiment 2 = five male-sterile recipients of E. parryi;

I Experiment 3 = seven male-sterile recipients of E. kernensis;

I ANOVA Table for Aor[:FslneSumtransformof Squaresed proportionMean Squareof abortedF-Valueseeds P-Value ExpedmentID .647 Residual .075

I odel II estimate of between componentvariance: .005 122 cases were omitted due to missingvalues. I Means Table for Acralne transformed proportion of aborted seeds • Effect: Experiment ID i Count Mean Std. Dev. Std. Err. Experiment 1 129 .506 .240 ,022 Experiment 2 61 ,679 .330 .042

' Experiment 3 149 .651 .272 .022

I EffeFisher'act: ExperiPLSDmforentAcIDralne transformed proportion of aborted seeds Significance Level: 5 %

_ Expedment 1, Experiment 2 ,127 .084 .0030 S i Mean Diff. Cdt. Diff P-Value Experiment 1, Experiment 3 -.045 .065 .1696 i Experiment 2, Experiment 3 -.173 .082 <.0001 S I I I I I I I I 294 I Interaction Bar Plot for Acrsine transformed proportion of aborted seeds

Error Bare: + 1 Standard Error(s) i Effect: Experiment ID .9

I' .8 .7 | 6

(b_.5

(_3).4 .3 | 2

I .1 0 • • Experiment 1 Experiment 2 Experiment 3

I Cell

Figure 3,4,2,5, Bar graph of the effect of experiment on the proportion of i aborted seeds per fruit.

| 1 I I I I I I I !

I 295 Chapter 4 ! SUMMARY AND RECOMMENDATIONS

I We examined components of reproduction in Eremalche kernensis under beth field and greenhouse conditions. The field work was done in Kern County in the vicinity of the i iindividuals,ntersection osamplingf Highwadates,y 33 andand/Loor kpopulationsem Road. Winetotalfoundovulcoensnumber,iderable thvariae numbertion amofong aborted seeds and the proportion of ovules aborted. In certain cases, the number of i. developiMostng ovuleof thes vvariaaried.tion in these components of reproduction is attributable to differences between male sterile and hermaphroditic individuals. There seemed to be little

I dflifferenower colorce betweenand genderthe pinkwereannotd whiteindependent.flower coMeanlor morphsvalues. ofHowemostver,componentsin certain cofases, reproduction also changed across the season. As flower production ended, there were

proportion of ovules aborted also increased. This may be evidence for increasing levels of i fewer developing ovules per fruit and higher numbers of ovules aborted in general. The resource limitation as the spring rains decrease and water becomes more limiting. However, seasonal changes in pollinator abundances or visitation rates cannot be ruled out

I. as the cause of a temporal change in the number and proportion of ovules aborted per fruit. The two study populations differed in total ovule number per fruit, the number of

I develvariableopings mayovulereflsectperthfruit,e initialanddifftheerencnumberes betwof abeenortepodpoulatiovulesnsperin fruithe tm. eThean nlatteumberr twofo ovules per fruit; since plants differed between populations in the baseline number of ovules per fruit, one would expect differences between populations in the mean number of ._, developing (and aborting) ovules per fruit given similar probabilities of ovule failure due to pollinator or resource limitation. The actual rate of ovule abortion did not differ between the two populations.

I Seed production in Eremalche kernensis is also significantly affected by the gender of the seed-producing parent. Male-sterile individuals produce more seeds per fruit than hermaphrodites. These results agree with the general theory of sex allocation that predicts produce as many offspring through as I that male-sterile individuals should female function a hermaphrodite does through both male and female function. Seed production per fi-uit is also influenced by the identity of the maternal patent in the field and in the greenhouse.

I In the greenhouse, we found significant differences among maternal parents with respect to mean seed number per fruit but no differences between male parents except when i compatible,the male parentcrosseswas amongEremalchethosepaindividualsrryi. Althoproduceugh E. parrsigniyificanantlyd E. fewerkemenseedssis arthae n crosses between just E. kernensis. When individuals ofE. kernensis are selfed in the greenhouse, they produced more seeds than when outcrossed.

I Seedling survivorship to maturity was low in 1993. Twenty-five percent of the individuals marked at the beginning of the season survived to reproduce. This high i mortalitystudies shouldcannotexaminebe attributedthe effectto droofugdifferentht becauformsse 199of3resourcehad considerablelimitationrainfaon thell. grFummowth and reproduction of Eremalche. ! I ! ' __...... : '.... 296

! Grazing by sheep had a significant effect on plant size in 1993. In 1992, we determined that plant size as measured by the number of branches and the average branch

i lengthnumberwasandsignificantlybranch lengthcorrelatedwere reducedwith bud,by sheepflowergrazing.and fruitTheproduction.detrimentalBotheffectbranchof sheep on Eremalche should not be overlooked.

I reproduction.In summary,Thoughpoindividualspulations ofarEremalchee not completelykernensislimitedhavebyconsipollinationderable sincevariatitheyon incan set seed without the benefit of pollinators, the decrease in genetic variation caused by

I sbeelfinga considerablemay be detrimseedentalbankto(detectablethe long-teinrmNovember)prospects forthatthismayspecontributecies. Thetorethedoesgeneticseem to variation in the population at any given time and allow Eremalche to survive through periods of low resources. However, for populations grazed by sheep, the loss of may year I toreproductionthe seed bankto thisandtypeaffectof theherbivorylong term survivalreduce ofthEremalchee amount ofkernensisseed contributed. Since weeachfound that soil sampled in April of 1992 germinated no seedlings of E. kernensis, while soil

I possiblesampled thatin Novembereither: 1992 contained many easily germinable seeds ofE. kernensis, it is

from which they do not easilyemerge,or i (1) seeds that do not germinate in the year following their dispersal enter a deep dormancy (2) seeds that do not germinate in the year following their dispersal do not remain viable.

I Longterm manipulations of seeds and soils into which known quantities of E. kernensis seeds have been placed are neccessary to evaluate which of these processes typically occurs

i in natural populations ofE. kernensis. i Recommendations One purpose of this study has been to provide information that will be useful in

I determiningpopulations. managementThis species pisractirestrictedces thattowillalkaliimprovefiats andthe reprodueroded chillsidestive succinessareasof Eremalcheof Kern and San Luis Opisbo counties, and within these sites grows in relatively small patches. m The major threat of extinction to Eremalche kernensis continues to be loss of habitat from 'i conversion of land to farming, by oil exploration and development, and from gra:tlng. Consideration should be given to protecting many different and separate

I therepopulmayationsberathhigher levthanelsa ofsinsellinggle largande area.possiblyOur greenlittle hougeneticse anvariationd field worwithink indipopulations.cated that Greenhouse experiments did not detect inbreeding depression in our study population, as

I smultipleelf-pollinatedpopulationsindividualsmay preserveproducedmoremoregeneticseeds vathanriationoutcrthanossedpreservingindividuals.one Preservinglarge population.

I considerAtttheemptsfact thatto reth-veegeleveltateoforseedto establishset withinnemale-sterilesw populationsandof hEe.rmaphroditeskernensis mustin the greenhouse was very low in the absence of hand-pollination. Unpollinated flowers rarely

I prnecessaryoduced fruits.in the fieldThis insuggestsorder tothatallowinsect-assistedmaie-sterile (plantsor possiblyto producewind-ba fullorne)complementpollination ofis seeds. Since we found that bagged flower buds from which insect visitors were excluded ! ! ! 297

I did nevertheless produce some fruits, it is evident that either apomixis or wind-pollination is occuring under field conditions.

I If new populations are established in the field, it would be desirable to be certain •that both male-sterile and pollen-producing hermaphrodites are present as adults during the early stages of colonization. However, it is not now possible to predict from the

i' Consequently,morphology ofana seedinvestigationthe genderofofthethetypicaladult sexindiviratiosdual ofintothewhichseeds it(thatwillis,detheveloadultsp. into which the seeds grow) produced by male-steriles and by hermaphrodites under field

cvegetationonditions wouldefforts allto oassurew onethatto predibothctgendershow towillsamplebe availableseeds of adultin futureplantsgenerations.during re- In addition, a detailed study of the abundances, diversity, inter-plant visitation behavior, and effectiveness of insect pollinators would be desirable to determine the population gender per per I ratio that assures the highest rate of seed production unit area or plant. Crosses between populations should be conducted using many populations to

divergencedetermine ifbetweenoutcrossingpopulations.depressioThen is isolationoccurringof. Ifpopulationsso, this mamayy contributepromote ttheo genetic development of significant phenotypic differences such as is seen between the subspecies

E. kernensisSurvivorshipand E. patorryadulthoodi. was only 25% among seedlings censused in forty 0.25- meter-square plots established in our two study populations in 1993. The cause of this

I level of mortality should be investigated. Our results have shown that grazing by sheep is very detrimental to the reproductive

i successfruits produced.ofEremalcheBecausekernensisEremalche. Grazingplantsreducesare presentplant sizefor mostand poofsthesiblyvowingthe numberseasonofof desirable forage (from January through May) any grazing may place this endangered species at risk. Additionally, we found no effects of competition from other plants on success, Eremalchereduction ofreproducompetitors.ctive therefore, grazing is not a benefit to Eremalche through

populationsApomiofcEremalchetic seed prokernensisduction .wasFurtherobservedstudiesin oushouldr greenhousebe undertakenstudies toandetermined in field the extent of apomixis occurring in field populations.

! Greenhouse crosses were only between E. kernensis hermaphrodites and E. parryi m male-steriles because no E. parryi hermaphrodites were produced from our collected seed. Further crosses between hermaphroditic E. parryi plants should be conducted to determine

I subspecies.if the effects observed in this study are similar in reciprocal crosses between these

I determineAdtheditionallsex ray,tiboyofraioffspringsing seedsof prhermaphroditeoduced in thisandgreenhomale-sterileuse studycrosses,one coubothld within a E. kernensis population and between E. kernensis and E. parryi populations. This would determine if E. parryi (male-sterile) and E. kernensis (hermaphroditic) crosses produce any I hermaphroditic plants, and if so what is the sex ratio. Seed predators are ubiquitous and their effect on the seed survival should be

I investigated.sites, but do notWeknowdid observeif they areseedattackingweevils these(Curculionids)seeds. within Eremalche kernensis ! ! ! 298

I Long-term monitoring of Eremalche populations is important in determining the effects of environmental conditions on survival and reproduction. Environmental

I cmeanonditionsannualof temperature,interest includthee meandates annualof fast rainfall,and last thefrosts,datesandofannualthe fu'standanddailylast rainfall,low and high temperatures. The last two seasons have seen substantial rainfall after six years of drought. The effects of drought on this species can only be determined through assessment i' over many drought and non-drought years. Eremalche grows in fairly small patches within areas that seem to be able to

I moisture,support a microclimatewider distributidifferences,on of theseandplantsecological. Envirofactorsnmentalsuchvariasabcompeles suchtition,as soilmutualism,type, and predation should be further investigated to determine their role in limiting the range of

1 Eremalche. ! | I I ! i I I I I I I ! !

I 299 Literature Cited

I Brown, J. S. and D. L. Venable. 1986. Evolutionary ecology of seed bank annuals in temporally varying environments. American Naturalist 127:31-47.

I' Charlesworth, B. and D. Charlesworth. 1978. A model for the evolution of dioecy and gynodioecy. American Naturalist 112:975-997.

I Darwin, C. 1877. The different forms of flowers on plants of the same species. Reprint, 1986. University of Chicago Press. Chicago, Ill.

I Hickman,California.J. C., ed. 1993. The Jepson Manual. University of California Press. Berkeley,

I Horovitz,plants.A. anHeredityd J. Hard29:ing.223-236.1972. The concept of male outcrossing in hermaphrodite higher

Jolls, C. L. and T. C. Chenier. 1989. Gynodioecy in Silene vulgaris (Caryophyllaceae): t p76:1360-1367.rogeny success, experimental design and maternal effects. American Journal of Botany

I, Kohn, J. R. 1988. Why be female? Nature 335: 431-433. Leck, M. A., V. T. Parker and R. L. Simpson. 1989. The ecology of soil seed banks. Academic i Press. San Diego, California. Lewis, D. 1944. Male sterility in natural populations of hermaphroditic plants. New Phytologist 40:56-63.

I Lloyd, D. G. 1975. The maintenance ofgynodioecy and androdioecy in angiosperms. Genetica 45:325-339.

I ...... 1976. The transmission of genes via pollen and ovules in gynodioecious angiosperms. Theoretical Population Biology 9:299-316.

I Maki, MChionographsijaponica. 1993. Outcrossing anvar.d fecukurohimensisndity advanta(Liliaceae).ge of femalAmes ienricangynoJournaldioeciouofs Botany 80:629-634.

I Ott, C. 1988. An introductiion to statistical methods and data analysis, 3rd. ed. PWS-Kent Publishing Co. Boston, Massachusetts.

Sakai, A., Karoly globosa I K. and S. Weller. 1989. Inbreeding depression in Schiedea and S. salicaria (Caryophyllaceae), subdioecious and gynodioecious Hawaiian species. American Journal of Botany 76:437 A.AA.. l Shykoff, J. A. 1988. Maintenance of gynodioecy in Silene acaMis (Caryophyll_ae): stage specific fecundity and viability selection. American Journal of Botany 75:_A.A,850.

I' Stanton, M., A. Snow and S. Handel. 1986. Floral evolution:attractiveness to pollinators increases male fitness. Science 232: 1625-1627. ! I ! 3OO

Sun, M. and F. R. Ganders. 1986. Female frequencies in gynodioecious populations correlated with selfing rates in hermaphrodites. American Journal of Botany 73:1645-1648.

I Wolff, K., B. Friso, and J. M. M. Van Damme. 1988. Outcrossing rates and male sterility in natural populations ofPlantago coronopus. Theoretical and Applied Genetics 76:190-196. I ! ! I I ! I ! I I I I I I I I _ _..!DANGEREDPLANTPROGRAM

AppendixA

Data from field pop_ations: 1992 and 1993 301

Appendix A

Data from field populations: 1992 and 1993 302

Eremalche kernensis_population 2: branch length and branch number for plants along grazed and ungrazed transects in 1993.

See text for sampling methods. 303

Transect Sex MS=,1 color w,=l branctl leng_ rengttl 2 _1, Type: Real Real ReaJ ReaJ Real _, Source: User Entered _User Entered User Entered User Entered User Entered b Class: Nominal i Nominal NominaJ Continuous Continuous k Format: Free Format R... Free Format R... Free Format R... Free Format Fi... Free Form... I' Dec. Places: 3 I 3 3 3 3 Mean: I • I • 15.476 14,030 i Std. Deviatton:l • 7.515 6.626 St(:l. Ermr:i • • .730 1.048 Variance:I • 58.473 43.902 Coeff. of Variation: * .486 .472 Minimum: 1.000 1,000 1,000 2.000 5.000 Maximum: 3.000 3.000 2.000 35.000 38.000 Range: 2.000 2,000 1.000 33.000 31.000 Count106 89 90 106 40 Missing Ceils: 1 18 17 1 67 Sum: 1640.500 561.500 Sum of Squares: 31318.750 9594.250 304

length 3 brencn# grazsd=l _varage branch,, size p Type: Real Real Real Real Real Source: User Entere_ User Entered User Entered Dynamic Form... Dynamic Form... ), Class: Continuous Continuous Nominal Continuous Continuous k' Format: Free Form.,. ; Free Format hi... Free Format hi., Free Format hi... Free Format R.., _. Dec. Places: 3 I 3 3 3 3 Mean: 14.979 i 1.858 15.047 28.965 Stcl. Deviation: 5,738 1.457 7.389 30.513 Std. Error:. 1.171 .142 , .718 2.964 Vadence: 32,902 2.123 54,581 931.050 Coeff. of Vadation: ,383 .784 .491 1.063 Minimum: 7.000 1.000 1.000 2.000 2.000 Maximum: 26.000 8,000 2.000 35.000 160.000 Range: 19,000 7.000 1.000 33.000 158.000 Count:.24 106 106 108 106 Missing Cells: 83 1 1 1 1 Sum: 359,500 197,000 1595.000 3070.333 Sum of Squares: 6141.750 589.000 29731.222 186693.667 305

Transect Sex MS==1 color w==l branctl length length 2 t 1,000 1,000 1.000 12.000 2 1,000 3.000 t ,000 9,000 3 1.000 3.000 1.000 6.500 4 1.000 3.000 1.000 2.000 5 1.000 3.000 1.000 3.000 6 1.000 3.000 1.000 4.000 7 1.000 3,000 1.000 7.000 11.000 8 1.000 3.000 1.000 6.500 9 1,000 3.000 1.000 26.500 10 1.000 1.000 1.000 24.000 23.000 11 1.000 1,000 1.000 11 .OOO 13.000 12 1.000 1,000 1.000 26.000 I 0.000 13 1.000 1.000 1.000 34.000 14 1.000 1.000 1.000 11.000 8.000 15 1.000 2,000 1.000 12.000 9.000 _ 1 6 1.000 15.000 9.000 17 1.000 2.000 1.000 6.000 8.000 1 8 1.000 19,000 21.000 19 1.000 25.000 17.000 20 1.000 1.000 1.000 26.060 22.000 21 1.000 1.000 1.000 25.000 27.000 22 2.000 1.000 1.000 15.500 23 2.000 1.000 1.000 36.000 24 2.000 1.000 1.000 16.000 13.000 25 2.000 1.000 t.000 11.000 26 2.000 1,000 1.000 20.000 27 2.000 1.000 1.000 12.500 28 2.000 1.000 1.000 18.000 29 2.000 1.000 1.000 29.000 30 2.000 1.000 1,000 20.000 31 2.000 1.000 t ,000 27.000 32 2.000 1.000 1.000 14.000 33 2.000 1.000 1.000 27.000 34 2.000 1.000 1.000 24.000 : 35 2.000 1.000 1.000 19.000 36 2.000 1,000 1.000 25.000 37 2.000 1.000' 1.000 14.000 36 2.000 1.000 1.000 18.000 9.000 39 2.000 1.000 1.000 20.000 40 2.000 1,000 1,000 28.500 19,500 41 2.000 1.000 1.000 24.000 42 2.000 1.000 1,000 15.000 6.000 43 2.000 13.000 44 2.000 1.000 1.000 17.500 19.000 45 2.000 1,000 1.000 12.500 10.500 46 2.000 1,000 4.000 47 2.000 1.000 1.000 9.000 8.000 48 2.000 1,000 1.000 8.000 49 2.000 5.500 50 2.000 1.000 1.000 14.500 10.000 51 3.000 2.000 1.000 t6.500 52 3.000 1.000 1.000 9.000 8.000 53 3.000 1.000 1.000 11.500 5,000 54 3.000 1,000 1.000 22.000 I 13.000 306

Transect Sex MS=I color w,=l branch length length 2 55 3.000 5.000 58 3.000 1,000 1.000 5.000 57 3.000 1.000 1.O00 5.000 58 3.000 10.000 6.000: 59 3.000 2.000 1.000 7.000 60 3.000 1.000 2.000 18.000 61 3.000 1.000 1.000 21.000 52 3.000 1.000 1.000 13.000 i 63 3.000 1.000 1.000 4.000 I 84 3.000 I 1.000 1.000 3.500 65 3.000 i 1.000 1.000 5.000 66 I 3.000 ; 1.000 1.000 5.500 671 3.000 1.000 1.000 4.500 681 3.000 1.000 1.000 10.000 89J 3.000 1.000 1.000 16.000 11.500 701 3.000 1.OOO 1,000 15.000 19.000 71 3.000 1.000 1.000 22.500 36.000 72 3.000 1.000 1.000 17.000 16,000 :'. 73 3.000 1.000 1.000 13.000 21.000 74 3.000 11.000 9.000 75 3.000 1.000 1.000 12.000 12.000 76 3.000 1.000 1.000 18.000 17.000 77 3.000 1.000 1.000 13.000 12.500 78 3.000 1.000 1.000 17.000 79 3.000 1.000 1.000 11.500 7.000 80 3.000 25.000 81 3.000 2.000 1.000 10.000 82 3.000 22.000 17.000 83 3.000 1.000 1.000 21.009 84 3.000 1.000 1.000 20.500 85 3.000 2.000 1.000 12.000 10.000 86 3.000 17.000 87 3.000 16.000 12.500 88 3.000 2.000 1.000 12.000 "_ 89 3.000 2.000 1.000 18.500

i:i 90 3.000 24.500 ._ 91 3.000 24.000 • " 92 3.000 1.000 1.0001 30.000 "" 93 3.000 1.000 1.000 13.000 : 94 3.000 1. O00 1.000 ' 13. 500 95 3.000 1.000 1.000 10.000 96 3.000 1.000 1.000 11.500 97 3.000 15.000 98 3.000 1.000 1.000 14.000 14.000 99 3.000 1.000 1.000 15.000 1OO 3.000 1.000 1.000 13.000 18.000 101 3.000 1.000 1.000 14.000 24.000 102 3.000 1.000 I 1.000 21.000 103 3.000 1.000 1.000 16.000 104 3.000 10.000 105 3.000 1.000 1.000 31.500 108 3.000 1.000 1.000 23.000 107 307

length 3 branch # grazed=; Average branch.., size 1 1.000 1,000 12.000 : 12,000 2 1.000 1.O00 9.000 9.000 3 1.000 1,000 8.500 6.500 4 1.000 1.000 2.000, 2.000 5 1.000 1.000 3.000 3.000 6 1.000 1.0O0 4.000 4.000 7 14,000 3.000 1.000 I0.687 32.000 8 1.O00 1.0O0 8.500 8.500 9 1.000 1.000 28.500 26.500 10 21.000 7,000 2.000 22.867 158.667 11 12.000 3.000 2.000 12.000 36°000 12 14,000 3.000 2.000 18.333 49.000 13 1.000 2.000 34.000 34.000 14 7.000 3.000 2.000 8.687 28.000 15 2.000 2.000 10.500 21.000 16 2.000 2.000 12.000 24,000 1 7 7.000 3.000 2.000 7.000 21,000 1 8 20.000 8.000 2.000 20,000 160.000 19 24,000 7.000 2.000 22.000 154.000 20 19,000 4.000 2.000 22.333 89.333 21 20.000 3.000 2.000 24.000 72.000 22 1.000 2.000 15.500 15.500 23 1.000 2.000 35.000 35.000 24 2.000 2.000 14,500 29.000 25 1.O00 2.000 11.000 11.000 26 1,000 2.000 20.000 20.000 27 1.000 2.000 12.500 12.500 28 1+000 2.000 18.000 18.000 29 1,000 2.000 29.000 29.000 30 1.000 2.000 20.000 20,000 31 1,000 2.000 27.000 27,000 32 1.O00 2.000 14.000 14.000 33 1.000 2.000 27.000 27.000 34 1.O00 2.000 24.000 24.000 35 1.000 2.000 19.000 19.000 36 1,000 2.000 25.000 28.000 37 1,000 2.000 14.000 14.000 38 8.500 3.000 2.000 11,833 35.500 39 " 1.000 2.000 20.000 20,000 40 15.000 3.000 2.000 21.000 63.000 41 1,000 2.000 24.000 24.000 42 2.000 2.000 10.500 21,000 43 1.000 2.000 13.000 13.000 44 26.000 6.000 1.000 20.833 125.000 45 10.500 4.000 1.000 11,187 44,667 46 1.000 1.000 4.000 4.000 47 9.000 3.000 1,000 8.867 26.000 48 1.000 1,000 6.000 6.000 49 1.000 1.000 5.500 5.500 50 2.000 1,000 12.250 24.500 51 1.000 1.000 16.500 18.500 52 2.000 1.000 8,500 17.000 53 2.000 1.000 8.250 16.500 54 2.000 1.000 17.500 35.000 3O8

length 3 branch # grazed=1 _verage branch., size 55 1.000 1.000 5.000 5.000 56 1.000 1.000 5,000 5.000 57 1,000 1.000 5.000 5.000 58 2.000 1.000 8.000 18.000 59 1.000 1.000 7.000 7.000 80 1.000 1.000 19.000 19,000 81 1.000 1.000 21.000 21,000 82 1.000 1.000 13.000 13.000 63 1.000 1.000 4.000 4.000 64 1.000 1.000 3.500 3.500 85 1.000 1.000 5.000 5.000 66 1.000 1.000 5.500 5.500 67 1.000 1.000 4,500 4.500 68 1.000 1.000 10.000 10.000 69 2.000 2.000 13.750 27.500 70 2.000 2.000 17.000 34,000 71 19.000 3.000 2.000 25.833 77.500 72 16.000 4.000 2.000 16.333 65.333 73 17.000_ 4,000 2,000 17,000 68,000 74 9.0001 4.000 2,000 9.667 38.867 75 7.500 5,000 2.000 10,500 52.500 76 13.000i 4.000 2.000 16.000 64.000 77 11.000 4,000 2,000 12.167 48.667 78 1,000 2.000 17.000 17.000 79 2.000 2.000 9.250 18.500 80 1.000 2.000 25.000 25.000 81 1.000 2.000 10.000 10.000 82 24.000 5.000 2.000 21.000 105.000 83 1.000 2.000 21.000 21.000 84 1.000 2.000 20.500 20.500 85 2,000 2.000 11.000 22.000 86 1.000 2.000 17.000 17.000 87 16,000 3,000 2.000 14.833 44.500 88 • 1.000 2.000 12.000 12.000 89 1.000 2.000 18.500 18,500 90 1,000 2.000 24.500 24.500 91 1.000 2.000 24.000_ 24.000 92 1.000 2.000 30.000= 30.000 93 1,000 2.000 13,000 13.000 94 • 1.000 2.000 13.500 13.500 95 1.000 2.000 10,000 10.000 96 1.000 2.000 11.500 11.500 97 1,000 2.000 15.000 15.000 98 2.000 2,000 14.000 28.000 99 1,000 2.000 15,000 15.000 100 2.000 2,000 15,5001 31.000 101 2.000 2,000 19,000 38.000 102 1.000 2.000 21,000; 21.000 103 1.000 2.000 16.000' 16.000 104 1.000 2,000 10,000 10.000 105 1,000 2.000 31,500 31,500 106 1,000 2.000 23,000 23.000 107 3O9

Eremalche kernensis populations I and 2: survival of seedlings in weeded and control plots in 1993.

See text for sampling methods.

"ii 310

Po_uladon quaclra! treatment 'fah 5 seedfing # Mar 7 seedling # Type: ReaJ Real Real ReaJ _. Source: User Entered User Entered User Entered User Entered User Entered k Class: Nee'real NominaJ Nominal Continuous Continuous k Format: Free Format Fi... Free Format R.. Free FormatF]... Free Fon_at R... Free Format R... k' Dec. Pieces: 3 3 3 3 3 Mean: • 48.875 28.000 Std. Deviation: • 39.460 I 25.787 Std.Error:.• 8.239 4.077 Variance: • 1557.087 664.974 Coeff.of Variation:• .807 .889 Minimum: 1.000 1.000 1.000 7,000 1.000 Maximum: _2.000 : 10.000 2.000 178.000 106.000 Range: 1.000 9.000 1,000 171.000 105.000 Count:. 40 40 40 40 40 MIssin_ Ceils: 0 0 0 0 0 Sum: • 1955.000 1160.000 Sum of Squares: ,, 156277.000 59574".000 311

A'pr 7 # fl ind. = flowers ;enesced flower.' developing frl Repro. effort Type: Real Real Real RSSl Real )_ Source: User Entered User Entered User Entered User Entered Dynamic Form.. Class: Continuous Continuous Continuous Continuous Continuous p Format: Free Format R... Free Format R... Free Format R. Free Format R... Free Format I=i.. ), Dec.Places:3 3 3 3 3 Mean: 10.167 67.611 121.417 54.944 243.972 Std. Deviation: 14.350 97.049 197.137 86.213 362.107 St(I. Error: 2.392 18.175 32.856 14.369 60.351 Variance: 205.914 9418.530 38862.993 7432.625 131121.285 Coeff. of Variation: 1.411 1.435 1.624 1.569 1.484 Minimum:0 0 0 0 0 Maximum: 82.000 479.000 946.000 458.000 1594.000 Range: 82.000 479.000 948.000 458.000 1594.000 Count:36 38 30 38 38 Missing Ceils: 4 4 4 4 4 :: Sum: 368.000 2434.000 4371.000 1978.000 8783.000 Sum of Squares: 10928.000 494214.000 1890917.000 368022.000 6732053.000

:',:

_J 312

Ind. repro, effor InputColumn _. Type: Re= ReaJ k Source: Dynamic Form... User Enteract Class: Continuous Continuous Format: Free Format R., Free Format RxeO _, Dec. Pisces: 3 3 Mean: 28.815 Stcl. Deviation: 24.424 Std. Error:. 4.189 Variance: 596.539 . Coeff, of Variation: .848 Minimum: 1.883 Maximum: 104.533 Range: 102.850 Count: 34 Missing Cells." 6 Sum: 979.706 Sum of Squares: 47915.911

",,,_ 313,

Populal_on quadrai treatment fed 5 seedling # Mar 7 seedling # 1 1.000 1.000 1,000 86.000 48,000 2 1,000 2.000 1,000 76,000 30.000 3 1.000 3.000 1.000 23,000 18.0OO 4 1.000 4.000 1.000 7.000 5.000 5 1.000 5.000 1.000 38.000 25.000 6 1.OOO 8,000 1.000 19.000 15.000 7 1.000 7.000 1,000 100,000 84.000 8 1.000 8.000 1.000 178.000 108.000 9 1.000 9.000 1.000 I 58.000 23.000 10 1.000 10.O00 1.000 75.000 44.000 1 1 1.000 1.000 2.000 21.000 14.000 12 1.000 2.000 2.000 I 32.000 20.000 13 1.000 3.000 2,000 15.000 15.000 1 4 1,000 4.000 2.000 24.000 11.000 1 5 1.000 5,000 2.000 25.000 19.000 16 1,000 6,000 2.000 36.000 28,000 17 1.000 7.000 2.000 90.000 72.000 1 8 1,000 8,000 2.000 104,000 74.000 ': 1 9 1,000 9,000 2,000 62.000 5'1.000 ,' • 20 1.000 10.000 2.000 48.000 25.000 21 2.000 1,000 1.000 95.000 71,000 22 2.000 2.000 1,000 20.000 7,000 23 2.000 3.000 1.000 43.000 15.000 24 2.000 4.000 1.000 7.000 5.000 25 2.000 5.000 1.000 55.000 21.000 26 2.000 8.000 1.000 32.000 12.000 27 2.000 7.000 1.000 28.000 14.000 28 2.000 8.000 1.000 42.000 20.000 29 2.000 9.000 1.000 29,000 18.000 30 2.000 10,000 1.000 66,000 40.000 31 2.000 1.000 2.000 125,000 79.000 32 2.000 2.000 2.000 26,000 7,000 33 2.000 3.000 2.000 10,000 12,000 34 2.000 4.000 2.000 17,000 8.000 -:. 35 2,000 5.000 2.000 18.000 1,000 i:.::' 38 2.000 6.000 2.000 135.000 52.000 .:: 37 2.000 7,000 2.000 21.000 12.000 ' :'ii 38 2.000 8.000 2.000 41.000 21,000 .:: 39 2.000 9.000 2.000 8.000 3.000 :" 2.000 10.000 2.000 22.000 16.000 314

Aor 7 # fllnO, flowers senesced flowers develoging fd Reoro. effort 1 3.000 21,000 43.000 10.000 74,000 2 13.000 53.000 45.000 86.000 154.000 3 7.000 36.000 36.000 23.000i 95.000 4 4.000 11.000 12.000 13.000_ 36.000 5 6 82.000 47.000 52.000 39.0001 138.000 7 9.000 63.000 73.000 54.000! 190.000 8 19.000 43.000 106.000 75.000i 224.000 9 0.000 0,000 0.000 0.0001 0.000 10 3.000 5.000 8.000 4.000; 17.000 11 3.000 11.000 7.000 2.0001 20.000 12 14.000 34.000 40.000 33.000! 107.000 13 11.000 73.000 74.000 108.0001 255.000 14 4.000 11.000 9.000 7.000 27.000 15 16 1.000 33.000 18.000 5.000 56.000 17 3.000 22.000 32.000 12.000 66.000 18 1.000 5.000 5.000 1.000 11.000 19 0.000 O.O00 0.000 '0.000 O.O00 20 10.000 42.000 53.000 15.000, 110.000 21 20.000 35.000 170.000 167.000 372.000 22 2.000 21.000 27.000 1.000= 49.000 23 9.000 50.000 87.000 56.000 193.000 24 4.000 77.000 131.000 11.000 219.000 25 11.000 55.000 122.000 1.000 178.000 26 27 8.000 30,000 46.000 18.000 94.000 28 5.000 8.000 12.000 3.000 21.000 29 15.000 81.000 175.000 82.000 338.000 30 13.000 54.000 121.000 100.000 275.000 31 38.000 479.000 946.000 169.000 1594.000 32 5.000 133.000 156.000 2.000 291.000 33 5.000 20.000 109.000 40.000 169.000 34 9.000 209.000 287.000 113.000J 609.000 35 1.000 34.000 37.000 4.000 75.000 36 37 = 7.000 174.000 224.000 77.000 475.000 38_ 15.000 339.000 771.000 458.000 1568.000 39 3.000 30.000 84.000 15.0001 109.000 40' 11.000 97,000 273.000 174.000= 544.000 315

1 ind. repro24, .offor667 _i;..:._Inou!._':._Column.-_i.: ......

3 I 13.571 1_';,-¢:_=_-,.W,_"_,:_,_ 4 = 9.000 :k_G_c_'7_,v;,,_:Z_4_:_' 5 _r,¢_.¢*_/_,,_

5 i 1.683 ('__ffiz.._ 7' 21.111 " 8 11.789 " ""

10 5.667 11 6.667 12 7.843 __ _ _. 13 23.182 _. -- . 14 6.750 _ • 15 '_._ " " ' ." 18 56.000 17 22.000 ,.o. ,,._..,--,=,,_-..,,...._ , 18 11.000 •:: 19 . 20 11.000 ImVJW_BImIWIIHIW_ 21 18.600 22 24.500 23 21.444 -- I JlJM 24 54.750 25 16.182 | ..... 26 m 27 15.867 ..... 20 4.200 ,. 29 22.533 - 30 21.154 31 41.947 32 58.200 33 33.8O0 ilMl[IB_Ji_mmal_Kl_ 34 67.867 ...; 35 75.000 _" 38 :: 37 87.857 -- -. 38 104.533

•-" 39 36.333 40 49.455 . " I 316

Eremalche kernensis population 1: seed production in April 1993.

See text for sampling methods.

._.:.

..\ 317

date Species sample date Trtmeflt ID # # Viable Seeds per Fruit

1 4-24-92 Eremalcha twentyfour random $1 6 2 4-24-92 Erematche twentyfour random $1 2 3 4-24-92 Eremalche twentyfour random $1 1 4 4-24-92 Erematcha twentyfour random $2 0 5 4-24-92 Eremalche twentyfour random $2 2 6 4-24-92 Eremalche twentyfour random $3 3 7 4-24-92 Eremalche twentyfour random $3 5 8 4-24-92 Eremalche twentyfour random $3 4 9 4-24-92 Eremalche twantyfour random $3 6 10 4-24-92 =Eremalche twentyfour random $4 2 11 4-24-92 Eramalche twentyfour random $5 8 12 4-24-92 Eremalche twantyfour random $5 4 13 4-24-92 Eremalche twentyfour random $5 0 14 4-24-92 Eremalche twentyfour random S6 6 15 4-24-92 Eremalche twentyfour random $6 0 16 4-24-92 Eremalche twentyfour random $6 3 17 4-24-92 Eremalche twentyfour random $6 1 1814-24-92 Eremalcha twenb/four random $7 3 19 i4-24-92 Eremalche twentyfour random $7 5 20 4-24-92 Eremalcha twentyfour random $7 5 21 4-24-92 Eremalche twentyfour random $7 8 22 4-24-92 Eremalche twentyfour random $7 7 23 4-24-92 Eramalche twentyfour random $7 3 24 4-24-92 Eremalche twentyfour random $8 2 25 4-24-92 Eremalche twentyfour random $9 3 26 4-24-92 Eremalcha twen_four random $9 3 27 4-24-92 Eremalche twentyfour random $9 0 28 4-24-92 Eremalche twentyfour random $10 6 29 4-24-92 Erematche twentyfour random $11 0 30 4-24-92 Eremalche twentyfourrandom $12 5 31 4-24-92 Eremalche twentyfour random S12 2 32 4-24-92 Eremalche twentyfour random $13 10 33 4-24-92 Eremalche twentyfour random S14 1 34 4-24-92 Eremalche twentyfour random $14 1 35 4-24-92 Eramalche twentyfour random $15 2 36 4-24-92 Erematche twentyfour random $15 2 37 4-24-92 Eremalche twentyfour random $16 3 38 4-24-92 Eremalche twentyfour random $18 0 39 4-24-92 Eremalche twentyfour random $19 4 40 4-24-92 Eremalche twentyfour random $19 1 41 4-24-92 Eramalche twentyfour random $20 2 42 4-24-92 Eramalche twentyfour random $20 8 43 4-24-92 Eremalche twentyfour repeat 4 6 44 4-24-92 Eremalche twentyfour repeat 5 2 45 4-24-92 Eremalche twentyfour repeat 6 3 46 4-24-92 EEramalche twent_four repeat 9 10 318

date Species sample date Trtment IO # # Viable Seeds per Fruit

47 4-24-92 Eremalc e twentyfour repeat ,9 3 48 4-24-92 Eremalche twentyfour repeat 10 3 49 4-24-92 Eremalche twentyfour repeat 10 2 50 4-24-92 Eremalche twen_four repeat 12 1 51 4-24-92 Eremalche twen_four repeat 12 1 52 4-24-92 Eremalche twentyfour repeat 12 0 53 4-24-92 Eremalche twentyfour repeat 17 2 54 4-24-92 Eremalche twentyfour repeat 17 1 55 4-24-92 Eremalche twentyfour repeat 17 1 56 4-24-92 Eremalche twentyfour repeat 18 2 57 4-24-92 Eremalche twentyfour repeat 18 1 58 4-24-92 Eremalche twentyfour repeat 18 4 59 4-24-92 Eremalche twentyfour rand (Bag) 2 2 60 4-24-92 Eremalche twentyfour rand (Bag) 3 8 61 4-24-92 Eremalche twentyfour rand (Bag) 9 1 62 4-24-92 Eremalche twentyfour rand (Bag) 9 6 63 4-24-92 Eremalche twentyfourl rand (Bag) 9 3 64 4-24-92 Eremalche twentyfourl rand (Bag) 9 2 65 4-24-92 Eremalche twentyfour rand (Bag) 10 1 66 4-24-92 Eremalche twentyfour rand (Bag) 10 0 67 4-24-92 Eremalche twentyfour rand (Bag) 10 0 68 4-24-92 Eremalche twentyfour rand (Bag) 14 4 69 4-24-92 Eremalche twentyfour rand (Bag) 14 5 .70 4-24-92 Eremalche twentyfour rand (Bag) 14 2 71 4-24-92 Eremalche twen_four rand (Bag) 18 2 72 4-24-92 Eremalche twentyfour random 82 2 73 4-24-92 Eremalche twentyfour random B2 0 74, 4-24-92 Eremalche twent_four random B3 3 75, 4-24-92 Eremalche twentyfour random B5 3 761 4-24-92 Eremalche twentyfour random B6a 4 771 4-24-92 Eremalche twentyfour random B6a 5 781 4-24-92 Erematche twentyfour random B6a 2 791 4-24-92 Eremalche twentyfour random B6a 0

80 4-24-92 Eramalohe twent_four random 86 4 81 4-24-92 Eremalche twentyfourrandom 86 4 821 4-24-92 Eremalche twen_four random B7 7 831 4-24-92 Eremalche twentyfour random B7 2 841 4-24-92 Eremalche twentyfour random B9 8 85 4-24-92 Eremalche twen_four random B9 2 86 4-24-92 Eremalche twentyfour random B9 6 87 4-24-92 Eremalche twentyfour random B9 2 88 4-24-92 Eremalche twentyfour random B9 8 89 4-24-92 Eremalche twentyfour random B10 1 90 4-24-92 Eremalche twentyfour random B10 5 91 4-24-92 Eremalche twentyfour random B10 9 92 4-24-92 Eremalche twentyfour random BIO 3 319

date Species sample date Trtment ID # # Viable Seeds per Fruit

93 4-24-92 Eremalche twenb/four random BIO 2 94 4-24-92 Eremalche twentyfour random BIO 3 95 4-24-92 Eremalche twentyfour random BIO 6 96 4-24-92 Eremalche twentyfour random BIO 2 97 4-24-92 Eremalche twentyfour random BlO 2 98 4-24-92 Eremalche twentyfour random Bll 4 99 4-24-92 Eremalche twentyfour random B12 4 100 4-24-92 Eremalche twentyfour random B12 2 101 4-24-92 Eremalche twentyfourrandom B12 5 102 4-24-92 Eremalche twentyfour random B13 9 103 4-24-92 Eremalche twentyfour random B13 1 104 4-24-92 Eremalche twentyfourrandom B13 2 105 4-24-92 Eremalche twentyfour random B14 8 106 4-24-92 Eremalche twentyfour random B14 3 107 4-24-92 Eremalche twentyfourrandom B15 0 108 4-24-92 Eremalche twentyfour random !B15 2 109 4-24-92 Eremalche twentyfourrandom B17 1 110 4-24-92 Eremalche twentyfourrandom B18 5 111 =4-24-92 Eremalche twentyfour random i B18 7 112 4-24-92 Eremalche twentyfourrandom i B19 9 113 4-24-92 Eremalche twentyfourl random B22 0 114 4-24-92 Erematche twentyfour!random B22 2 115 4-24-92 Eremalche twentyfouri random B24 1 116 4-24-92 Erematche twentyfouri random B24 2 117 4-24-92 Eremalche twentyfour random B24 3 118 4-24-92 Eremalche twentyfourrandom B24 1 119 4-24-92 Eremalche twen'b/four random B24 7 120 4-24-92 Eremalche twentyfourrandom B26 3 121 4-24-92 Eremalche twentyfour random B27 0 122 4-24-92 Eremalche twentyfour random B27 3 123 4-24-92 Eremalche twentyfourTRANSECT 1 3 124 4-24-92 Eremalche twentyfour TRANSECT 2 2 125 4-24-92 Eremalche twent_our TRANSECT 2 1 126 4-24-92 Eremalche twent3ffour TRANSECT 2 0 127 4-24-92 Eremalche twentyfourTRANSECT 2 0 128 4-24-92 Eremalche twentyfour TRANSECT:2 1 129 4-24-92 Eremalche twentyfourTRANSECT 4 5 130 4-24-92 Eremalche twentyfour TRANSECT 4 3 131 4-24-92 Eremalche twentyfourTRANSECT 4 0 132 4-24-92 Eremalche twenryfour TRANSECT 4 0 133 4-24-92 Eremalche twentyfour TRANSECT 5 9 134 4-24-92 Eremalche twen_four TRANSECT 5 1 135 4-24-92 Eremalche twentyfourTRANSECT 5 10 136 4-24-92 Eremalche twentyfour TRANSECT 5 1 137 4-24-92 Eremalche twentyfourTRANSECT 5 2 138 4-24-92 Eremalche twentyfourTRANSECT 5 0 320

date Species sample date Trtment ID # # Viable Seeds per Fruit

139 4-24-92 Eremalche twentyfeur TRANSECT 5 7 140 4-24-92 Eremalche twen_fourTRANSECT 6 5 141 4-24-92 Eremalche twentyfeur TRANSECT 6 1 142 4-24-92 Eremalche twentyfour TRANSECT 6 11 143 4-24-92 Eremalche twentyfour TRANSECT 6 3 144 4-24-92 Eremalche twentyfourTRANSECT 7 1 145 4-24-92 Eremalche twenWfour TRANSECT 7 1 146 4-24-92 Eremalche twentyfour TRANSECT 7 2 147 4-24-92 Eremalche twentyfour TRANSECT 7 2 148 4-24-92 Eremalche twentyfourTRANSECT 7 5 149 4-24-92 Eremalche twen_four TRANSECT 13 1 150 4-24-92 Eremalche twentyfourTRANSECT 13 2 151 4-24-92 Eremalche twentyfourTRANSECT 13 4 152 4-24-92 Eremalche twentyfour TRANSECT 13 1 153 4-24-92 Eremalche twentyfourTRANSECT 13 1 154 4-24-92 Eremalche twentyfour TRANSECT 14 3 155 4-24-92 Eremalche twentyfour TRANSECT 14 2 156 4-24-92 Eremalche twentyfour TRANSECT 14 4 157 4-24-92 Eremalche twen_fcur TRANSECT 14 3 158 4-24-92 Eremalche twentyfour TRANSECT 15 2 159 4-24-92 Eremalche twentyfour TRANSECT 18 2 160 4-24-92 Eremalche twentyfour TRANSECT 18 2 161 4-24-92 Eremalche twentyfourTRANSECT 18 2 162i 4-24-92 Eremalche twentyfour TRANSECT 18 0 163:4-24-92 Eremalche twentyfour TRANSECT 22 2 164 4-24-92 Erematche twentyfour TRANSECT 22 1 165i 4-24-92 Eremalche twentyfour TRANSECT 22 1 166_ 4-24-92 Eremalche twentyfour TRANSECT 29 3 167 4-24-92 Eremalche twentyfour TRANSECT 29 6 1681 4-24-92 Eremalche twentyfour TRANSECT 29 11 169! 4-24-92 Eremalche twentyfour TRANSECT 29 7 1701 4-24-92 Eremalche twentyfourTRANSECT 30 2 1711 4-24-92 Eremalche twen_four TRANSECT 30 0 1721 4-24-92 Eremalche twentyfourTRANSECT 30 1 1731 4-24-92 Eremalche twentyfour TRANSECT 30 2 1741 4-24-92 Eremalche twentyfourTRANSECT 31 0 1751 4-24-92 Eremalche twentyfourTRANSECT 32 1 1761 4-24-92 Eremalche twentyfour TRANSECT 37 1 177 4-24-92 Eremalche twentyfour TRANSECT 37 6 178 4-24-92 Eremalche twentyfour TRANSECT 37 2 1791 4-24-92 Eremalche twenWfour TRANSECT 37 0 180 4-24-92 Eremalche twenWfourTRANSECT 37 3 181 4-24-92 Eremalche twentyfourTRANSECT 38 1 182 4-24-92 Eremalche twentyfourTRANSECT 38 1 183 4-24-92 Eremalche twenb/four TRANSECT 38 1 184 4-24-92 Eremalcl_e twenWfour TRANSECT 39 1 321

date Species sample date Trtment ID # # Viable Seeds per Fruit

1851 4-24-92 Eremalche twentyfour TRANSECT 39 3 18614-24-92 Eremalche twentyfourTRANSECT 39 1 1871 4-24-92 Eremalche twentyfour TRANSECT 40 1 18814-24-92 Eremalche twentyfourTRANSECT 41 0 189i 4-24-92 Eremalche twentyfourTRANSECT 41 0 190 4-24-92 Eremalche twentyfour TRANSECT 42 0 191 4-24-92 Eremalche twentyfour TRANSECT 42 1 192 4-24-92 Eremalche twentyfour TRANSECT 42 3 193 4-24-92 Eremalche twen_four TRANSECT 42 1 194 4-24-92 Eremalche twentyfour TRANSECT 43 3 195 4-24-92 Eremalche twentyfour TRANSECT 43 1 196 4-24-92 Eremalche twentyfour TRANSECT 44 1 197 4-24-92 Eremalche twentyfourTRANSECT 44 1 198 4-24-92 Eremalche twentyfourTRANSECT44 0 199 4-24-92 Eremalche twentyfourTRANSECT 45 1 200 4-24-92 Eremalche twentyfourTRANSECT 45 0 201 4-24-92 Eremalche twentyfourTRANSECT 45 1 202 4-24-92 Eremalche twentyfourTRANSECT 49 1 203 4-24-92 Eremelche twentyfourTRANSECT 49 1 204 4-24-92 Eremalche twentyfour TRANSECT 49 2 205 4-24-92 I Eremalche twentyfour TRANSECT 49 1 206 4-24-92 Eremalche twentyfour TRANSECT 49 1 207 4-24-92 _Eremalche twentyfour TRANSECT 50 1 208 4-24-92 Eremalche twentyfour TRANSECT 50 0 209 4-24-92 Eremalche twentyfour: TRANSECT 50 0 210 4-24-92 Erematche twentyfourlTRANSECT 50 0 211 4-24-92 Eramalche twentyfouri TRANSECT 57 1 212 4-24-92 Eremalche twent_fouriTRANSECT 60 1 213 4-24-92 Eremalche twentyfour TRANSECT 66 0 214 4-24-92 Eremalche twentyfourTRANSECT 66 0 215 4-24-92 Eremalche twentyfourTRANSECT 70 1 216 4-24-92 Eremalche twentyfourTRANSECT 70 1 217 4-24-92 EEremalche twentyfour TRANSECT 70 4 218 4-24-92 Eremalche twentyfourTRANSECT 72 1 219 4-24-92 Eremalche twentyfour TRANSECT I 73 0 220 4-24-92 Eremalche twentyfourTRANSECT 77 1 221 4-24-92 Eremalche twentyfourTRANSECTI 77 0 222 4-24-92 Eremalche twentyfourTRANSECT 77 0 223 4-24-92 Eremalche twentyfour TRANSECT 77 1 224 4-24-92 Eremalche twentyfour TRANSECT 78 1 225 4-24-92 Eremalche twentyfourTRANSECT 78 1 226 4-24-92 Eremalche twenfffour TRANSECT 79 0 227 4-24-92 Eremalche twentyfourTRANSECT 79 7 228 4-24-92 Eremalche twentyfouriTRANSECT 79 1 229 4-24-92 Eremalche twentyfour TRANSECT 81 8 230 4-24-92 Eremalche twentyfourTRANSECT 81 4 322

date Spemes sample date Trtment ID # # Viable Seeds per Fruit

231 4-24-92 Eremalche twentyfourTRANSECT 81 1 232 4-24-92 Eremalche twentyfour TRANSECT 81 3 233 4-24-92 Eremalche twen_four TRANSECT 82 4 234 4-24-92 Eremalche twen_four TRANSECT 82 5 235 4-24-92 Erematche twentyfourTRANSECT 82 1 236 4-24-92 Eremalche twentyfourTRANSECT 82 5 237 4-24-92 Eremalche twentyfour TRANSECT 82 3 238 4-24-92 Eremalche twen_four TRANSECT 83 3 239 4-24-92 Eremalche twentyfour TRANSECT 83 1 240 4-24-92 Eremalche twen_four TRANSECT 83 5 241 4-24-92 Eremalche twentyfourTRANSECT 83 7 242 4-24-92 Eremalche twentyfourTRANSECT 84 5 243 4-24-92 Eremalche twentyfourTRANSECT 84 0 244 4-24-92 Eremalche twentyfour TRANSECT 84 3 245 4-24-92 Eremalche twentyfour TRANSECT 84 2 246 4-24-92 Eremalche twentyfour TRANSECT 85 4 247 4-24-92 Eremalche twentyfourTRANSECT 85 5 248 4-24-92 Eremalche twentyfeurTRANSECT 85 3 249 4-24-92 Eremalche twentyfour TRANSECT 85 2 250 4-24-92 Eremalche twentyfour:TRANSECT 87 0 251 4-24-92 Eremalche twentyfourlTRANSECT 87 0 252 4-24-92 Eremalche twentyfour I TRANSECT 86 3 253 4-24-92 Eremalche twentyfourl TRANSECT 86 1 254 4-24-92 Eremalche twenty/our TRANSECT 88 0 255 4-24-92 Eremalche twentyfourTRANSECT 88 11 256 4-24-92 Eremalche twentyfourTRANSECT 89 7 257 4-24-92 Eremalche twentyfour TRANSECT 89 5 258 4-24-92 Eremalche twentyfourTRANSECT190 5 259 4-24-92 Eremalche twentyfour TRANSECT 190 6 260 4-24-92 Eremalche twentyfour TRANSECT !91 3 261 4-24-92 Erematche twentyfour TRANSECT :91 1 262 4-24-92 Eremalche twentyfourTRANSECT,91 1 263 4-24-92 Eremalche twentyfourTRANSECT 91 4 264 4-24-92 Eremalche twentyfourlTRANSECT92 5 265 4-24-92 Eremalche twentyfour=TRANSECT 92 7 266 4-24-92 Eremalche twentyfour TRANSECT 92 6 267 4-24-92 Eremalche twentyfour TRANSECT 92 7 268 4-24-92 Eremalche twentyfour TRANSECT 94 3 269 4-24-92 Eremalche twentyfour TRANSECT 97 3 270 4-24-92 Eremalche twentyfour TRANSECT 98 3 271, 4-24-92 Eremalche twentyfour TRANSECT 99 0 272! 4-24-92 Eremalche twentyfour TRANSECT 99 3 2731 4-24-92 Eremalche twentyfour TRANSECT 99 0 274 4-24-92 Eremalche twentyfour TRANSECT 102 4 275 4-24-92 Eremalche twentyfour TRANSECT 103 4 276 4-24-92 Eremalche twentyfourTRANSECT 103 7 3:23

date Species sample date Trtment ID # #"Viable Seeds per Fruit

277 4-24-92 Eremalche twentyfour TRANSECT 104 8 278 4-24.92 Eremalche twentyfourTRANSECT 105 4 279 4-24-92 Eremalche twentyfour TRANSECT 105 3 280 4-24-92 Eremalche twentyfour TRANSECT 105 5 281 4-24-92 Eremalche twentyfour TRANSECT 109 3 282 4-24-92 Eremalche twentyfour TRANSECT 109 2 283 4-24-92 Eremalche twentyfour TRANSECT 110 3 284 4-24-92 Eremalche twentyfeur TRANSECT 110 4 285 4-24-92 Eremalche twentyfour TRANSECT 110 9 286 4-24-92 Eremalche twentyfour TRANSECT 111 5 287 4-24-92 Eremalche twentyfour TRANSECT 111 2 288 4-24-92 Eremalche twentyfour TRANSECT 111 2 289 4-24-92 Eremelche twentyfourTRANSECT 114 5 290 4-24-92 Eremalche twentyfourTRANSECT 115 2 291 4-24-92 Eremalche twentyfourTRANSECT 115 7 292 4-24-92 Eremalche twentyfourl TRANSECT 116 2 293 4-24-92 Eremalche twentyfouri TRANSECT 116 4 294 4-24-92 Eremalche twentyfourTRANSECT 116 5 295 4-24-92 Eremalcha twentyfeur TRANSECT 116 7 296 4-24-92 Eremalche twentyfour TRANSECT 118 8 297 4-24-92 Eremalche twentyfourTRANSECT 119 3 298 4-24-92 Eremalche twentyfourTRANSECT 119 7 299 4-24-92 Erematche twentyfourTRANSECT 119 3 300 4-24-92 Eremalche twentyfour TRANSECT 120 3 301 4-24-92 Eremalche twentyfour TRANSECT 120 4 302 4-24-92 Eremalche twentyfourTRANSECT 120 4 303 4-24-92 Eremalche twentyfour TRANSECT 120 4 304 4-24-92 Eremalche twentyfourTRANSECT 121 8 305 4-24-92 Eremalche twentyfour TRANSECT 121 5 306 4-24-92 Eremalche twentyfcurTRANSECT 121 4 307 4-24-92 Eremalche twen_four TRANSECT 121 6 308 4-24-92 Eremalche twentyfour TRANSECT 122 4 309 4-24-92 Erematche twentyfeurTRANSECT 122 7 310 4-24-92 Eremalche twentyfouriTRANSECT 122 3 311 4-24-92 Eremalche twentyfourTRANSECT 122 4 312 4-24-92 Eremalche twentyfour TRANSECT 123 1 313 4-24-92 Eremalche twentyfourITRANSECT 123 2 314 4-24-92 Eremalche twentyfour ITRANSECT 125 5 315 4-24-92 Eremalche twentyfourTRANSECT 125 0 316 4-24.92 Eremalche twentyfour TRANSECT 125 3 317 4-24-92 Eremalche twentyfour TRANSECT 125 5 318 4-24-92 Eremalche twentyfour TRANSECT 126 2 319 4-24-92 Eremalche twentyfour TRANSECT 126 3 320 4-24-92 Eremalche twentyfourTRANSECT 126 1 321 4-24-92 Eremalche twentyfourTRANSECT 126 7 322 4-17-92 Eremalche seventeenTRANSECT 1 5 324

date Species sample date Trtment ID # # Viable Seeds per Fruit

323 4-17-92 Eremalehe seventeen TRANSECT 1 6 324 4-17-92 Eremalche seventeen TRANSECT 2 9 325 4-17-92 Eremalche seventeen TRANSECT 3 2 326 4-17-92 Eremalche seventeen TRANSECT 3 2 327 4-17-92 Eremalche seventeen TRANSECT 4 6 328 4-17-92 Eremalche seventeen TRANSECT 4 5 329 4-17-92 Eremalche seventeen, TRANSECT 4 4 330 4-17-92 Eremalche seventeen TRANSECT 5 5 331 4-17-92 Eremalche seventeen: TRANSECT 5 11 332 4-17-92 Eremalche seventeen: TRANSECT 6 4 333 4-17-92 Eremalche seventeenTRANSECT 6 0 334 4-17-92 Erematche seventeen! TRANSECT 11 3 335 4-17-92 Eremalche seventeeni TRANSECT, 11 2 336 4-17-92 Eremalche seventeen TRANSECT 13 2 337 4-17-92 Eremalche seventeen TRANSECT 14 5 338 4-17-92 Eremalche seventeen TRANSECT 17 8 339 4-17-92 Eremaiche seventeen TRANSECT 17 2 340 4-17-92 Eremalche seventeen TRANSECT 18 10 341 4-17-92 Eremalche seventeen TRANSECT 18 5 342 4-17-92 Eremalche seventeen TRANSECT 18 4 343 4-17-92 Eremalche seventeen TRANSECT 21 6 344 4-17-92 Eremalche seventeen TRANSECT i22 8 345 4-17-92 Eremalche seventeen TRANSECT122 11 346 ! 4-17-92 Eremalche seventeen ITRANSECT22 1 347 4-17-92 Eremalche seventeen :TRANSECT 22 2 348 4-17-92 Eremalche seventeen TRANSECT 29 1 349 4-17-92 Eremalche seventeen TRANSECT 30 2 350 4-17-92 Eremalche seventeen TRANSECT 30 1 351 4-17-92 Eremalche seventeen_TRANSECT30 1 352 4-17-92 Eremalche seventeen_TRANSECT30 1 353 4-17-92 Eremalche seventeen TRANSECT 30 1 354 4-17-92 Eremalche seventeen TRANSECT 35 6 355 4-17-92 Eremalche seventeen TRANSECT 35 2 356 4-17-92 Eremalche seventeen TRANSECT 35 0 357 4-17-92 Eremalche seventeen TRANSECT 37 6 358 4-17-92 Eremalche seventeen TRANSECT 37 3 359 4-17-92 Eremalche seventeen TRANSECT 37 3 360 4-t7-92 Eremalche seventeen TRANSECT 38 3 361 4-17-92 Eremalche seventeen TRANSECT 38 2 362 4-17-92 Eremalche seventeen TRANSECT 38 3 363 4-17-92 Eremalche seventeen TRANSECT 39 3 364 4-17-92 Eremalche seventeen TRANSECT 39 4 365 4-17-92 Eremalche seventeen TRANSECT 42 5 366 4-17-92 Eremalche seventeen TRANSECT 42 3 367 4-17-92 Eremalche seventeen TRANSECT 42 3 368 4-17-92 Eremalche seventeen TRANSECT 43 3 date Species sample date Trtment IE)# # Viable Seeds per Fruit

369 4-17-92 Eremalche+ seventeen TRANSECT 43 1 370 4-17-92 Eremalche seventeen TRANSECT 45 4 371 4+17-92 Eremalche seventeen TRANSECT 48 1 372 4-17-92 Eremalche seventeen TRANSECT 48 3 373 4-17-92 Eremalche seventeen TRANSECT 48 4 374 4-17-92 Eremalche seventeen TRANSECT 48 1 375 4-17-92 Eremalche seventeenTRANSECT 49 2 376 4-17-92 Eremalche seventeen TRANSECT 49 2 377 4-17-92 Eremalche seventeen TRANSECT 49 2 378 4-17-92 Eremalche seventeen ;TRANSECT 49 3 379 4-17-92 Eremalche seventeen !TRANSECT 49 3 380 4-17-92 Eremalche seventeen TRANSECT 51 1 381 4-17-92 Eremalche seventeen TRANSECT 53 2 382 4-17-92 Eremalche seventeen TRANSECT 54 5 383 4-17-92 Eremalche seventeen TRANSECT 60 3 384 4-17-92 Eremalche seventeen TRANSECT 60 1 385 4-17-92 Eremalche seventeen I TRANSECT 60 2 386 4-17-92 Eremalche seventeen TRANSECT 61 1 387 4-17-92 Eremalche seventeen TRANSECT 64 2 388 4-17-92 Eremalche seventeen :TRANSECT 64 1 389 4-17-92 Eremalche seventeen TRANSECT 64 0 390 4-17-92 Eremalche seventeen ITRANSECT 65 3 391 4-17-92 Eremalche seventeen TRANSECT 66 1 392 4-17-92 Eremalche seventeen TRANSECT 66 2 393 4-17-92 Eremalche seventeen_TRANSECT 70 1 394 4-17-92 Eremalche seventeen TRANSECT 70 1 395 4-17-92 Eremalche seventeen TRANSECT i 70 1 396 4-17-92 Eremalche seventeen TRANSECTI 71 1 397 4-17-92 Eremalche seventeen TRANSECT I 74 1 398 4-17-92 Eremalche seventeen TRANSECT 76 3 399 4-17-92 Eremalche seventeen TRANSECT 77 13 400 4-17-92 Eremalcha seventeen TRANSECT 79 9 401 4-17-92 Eremalche seventeen TRANSECT 79 0 402 4-17-92 Erematche seventeen TRANSECT 82 6 403 4-17-92 Eremalche seventeen TRANSECT 83 9 404 4-17-92 EremaJche seventeen TRANSECT 83 1 405 4-17-92 Eremalche seventeen TRANSECT 83 4 406 4-17-92 Eremalche seventeen TRANSECT 85 4 407 4-17-92 Eremalche seventeen TRANSECT 85 8 408 4-17-92 Eremalche seventeen TRANSECT 85 6 409 4-17-92 Eremalche seventeen TRANSECT 85 4 410 4-17-92 Eremalche seventeen TRANSECT 85 3 411 4-17-92 Eremalche seventeen TRANSECT 91 6 412 4-17-92 Eremalche seventeenlTRANSECT 97 1 413 4-17-92 Eremalche seventeen TRANSECT 103 0 414 4-17-92 Eremalche seventeen l TRANSECT 103 4 date Spemes sample date Tr_ment IO # # Viable Seeds per Fruit

415 4-17-92 Eremalche seventeen TRANSECT 103 2 416 4-17-92 Eremalche seventeen TRANSECT 103 6 417 4-17-92 Eremalche seventeen TRANSECT 107 1 418 _4-17-92 Eremalche seventeen TRANSECT 109 3 419 4-17-92 Eremalche seventeen TRANSECT 109 6 420 4-17-92 Eremalche seventeen TRANSECT 109 4 421 4-17-92 Eremalche seventeen TRANSECT 110 0 422 [ 4-17-92 Eremalche seventeen TRANSECT 111 9 423 4-17-92 Eremalche seventeen TRANSECT 114 0 424 4-17-92 Eremalche seventeen TRANSECT 115 4 425 4-17-92 Eremalche seventeen TRANSECT 115 5 426 4-17-92 Eremalche seventeen TRANSECT 116 4 427 4-17-92 Eremalche seventeen TRANSECT 116 6 428 4-17-92 Eremalche seventeen TRANSECT 116 6 429 4-17-92 Eremalche seventeen TRANSECT 116 4 430 4-17-92 Eremalche seventeen TRANSECT 120 4 431 4-17-92 Eremalche seventeen TRANSECT 120 8 432 4-17-92 Eremalche seventeen TRANSECT 120 4 433 4-17-92 Erematche seventeen TRANSECT 121 9 434 4-17-92 Eremalche seventeen TRANSECT 121 6 435 4-17-92 Eremalche seventeen TRANSECT 121 2 436 4-17-92 Eremalche seventeen TRANSECT 122 1 437 4-17-92 Eremalche seventeen TRANSECT 125 2 438 4-17-92 Eremalche seventeen TRANSECT 125 7 439 4-17-92 Eremaiche seventeen TRANSECT 126 0 # Aborted Seeds/Fruit Total Seed Wt (Viable Seeds [mg}) Color 3ender pop

1 8 1.38 P MS 1 2 5 .59 P MS 1 3 5 .17 P MS 1 4 2 0 W H 1 5 4 .70 W H 1 6 5 1.92 P MS 1 7 6 2.07 P MS 1 8 5 1.681 P MS 1 9 10 2.72 P MS 1 10 5 1.21 P MS 1 11 3 4.81 W H 1 12 8 ; 2.36 W H 1 13 1 0 W H 1 14 4 2.44 P MS 1 15 3 0 P MS 1 16 7 1.70 P MS 1 17 4 1.02 P MS 1 18 6 .64 W H 1 19 3 1.28 W H 1 20 6 1.87 W H 1 21 3 2.54 W H 1 22_ 4 3.4.3 W H 1 231 6 .86 W H 1 24 3 .80 P MS 1 25 2 2.02 P MS 1 26 4 .98 P MS 1 27 6 0 P MS 1 28 12 4.69 P MS 1 29 4 0 P MS 1 30 9 4.16 P MS 1 31 3 1.84 P MS 1 32 0 4.53 P MS 1 33 7 .57 P MS 1 34 2 .07 P MS, 1 35 3 .77 P MS 1 36 7 1.38 P MS 1 37 8 1.32 P MS 1 38 5 0 P MS, 1 39 9 .63 P MS, 1 40 5 .21 P MS I 1 41 6 1.31 P MS_ 1 42 9 3.21 P MS 1 43 4 2.00 W MS! 1 44 8 .71 W MS 1 45 7 1.75 W HI 1 46 0 5.00 W Hi 1 328

# Aborted Seeds/Fruit Total Seed Wt (Viable Seeds [mg]) Color Gender pop

47 8 1.04 W H 1 48 2 .65 W H 1 49 7 .63 W H 1 50 2 .45 W H 1 51 3 .45 W H 1 52 5 0 W H 1 53 5 .97 P MS 1 54 5 .09 P MS 1 55 9 .09 P MS 1 56 4 .51 W H 1 57 2 .06 W H 1 58 0 1.93 W H 1 59 0 1.05 W H 1 60 9 1.93 W H 1 61 2 .83 W H 1 62 9 3.68 W H 1 63 6 3.02 W H 1 64 5 .39 W H 1 65 4 .58 W H 1 66 4 0 W H 1 67 2 0 W H 1 68 5 1.88 W H 1 69 3 2.43 Wl H 1 70 1 .77 W l H 1 71 9 .65 Wl H 1 72 3 1.07 P H 1 73 6 0 P H 1 74 5 1.74 P H 1 78 3 1.53 P H 1 76 6 1.40 P H 1 77 2 2.11 P H 1 78 1 .70 P H 1 79 2 0 P H 1 80 6 2.70 P H 1 81 3 2.82 P H 1 82 1 3.01 P H 1 83 4 .78 P H 1 84 2 4.55 P H 1 85 7 .93 P H 1 86 2 3.24 P H 1 87 1 .84 P H 1 88 2 4.14 P H 1 89 2 .27 P H 1 90 1 1.87 P H 1 91 2 3.46 P H 1 92 4 1.14 P H 1 3_19

# Aborted Seeds/Fruit Total Seed Wt (Viable Seeds [mg]) Color Gender pop

93 4 .46 P H 1 94 2 .93 P H 1 95 3 2.51 P H 1 96 5 .78 P H 1 97 4 .83 P H 1 98 6 1.08 P H 1 99 8 .70 P H 1 100 5 .70 P H 1 101 4 .90 P H 1 102 1 5.29 P H 1 103 4 .41 P H 1 104 5 1.03 P H 1 105 1 3.70 W H 1 106 3 2.19 W H 1 107 12 0 W H 1 108 2 .97 W H 1 109 9 .56 W H 1 110 3 1.35 W H 1 111 2 3.68 W H 1 112 2 4.70 P H 1 113 3 0 W H 1 114 4 1.29 W H 1 115 4 .11 W H 1 116 3 .48 W H 1 11"7 6 .98 W H 1 118 4 .57 W H 1 119 5 1.88 W H 1 120 5 1.29 P H 1 121 6 0 W H 1 122 3 2.65 W H 1 123 2 2.25 W MS 1 124 2 1.68 W MS 1 125 2 .86 W MS 1 126 0 0 W MS 1 127 2 0 W MS 1 128 2 .61 W MS 1 129 2 2.86 W MS 1 130 3 1.80 W MS 1 131 3 0 W MS 1 132 4 0 W MS 1 133 1 3.26 W MS 1 134 4 .59 W MS 1 135 0 3.02 W MS 1 136 4 .70 W MS 1 137 6 1.39 W MS 1 138 4 0 W MS 1 330

# Aborted Seeds/Fruit Total Seed Wt (Viable Seeds [rag]) Color 3ender pop

139 3 2.27 W MS 1 140 1 1.21 W MS 1 141 4 .43 W MS 1 142 1 2.34 W MS 1 143 3 1.59 W MS 1 144 3 .52 W MS 1 145 7 .68 W MS 1 146 4 1.87 W MS 1 147 4 1.38 W MS 1 148 8 2.33 W MS 1 149 7 .78 W MS 1 150 9 1.57 W MS 1 151 7 1.99 W MS 1 152 6 1.11 W MS 1 1531 4 .88 WJ MS 1 1541 5 2.09 W MS 1 155i 4 1.12 W MS 1 156: 8 3.02 W MS 1 157 8 1.44 wi MS 1 158, 6 1.67 Wi MS 1 159 6 .84 W MS 1 160_ 6 .95 Wi MS 1 161 5 2.01 WI MS 1 162 6 0 W MS 1 163! 5 1.05 W MS 1 164 3 .42 W MS 1 165 7 .69 W MS 1 166 5 1.29! W MS 1 167 4 3.42: W MS 1 168 0 5.16 W MS 1 169 4 3.63 W MS 1 170 12 1.96 W MSi 1 171 2 0 W MS 1 172 3 .73 W MS 1 173 5 1.93 W MS 1 174 4 0 W MS 1 175 9 1.12 W MS 1 176 8 .29 W MS 1 177 2 2.51 W MS 1 178 8 .93 W MS 1 179 8 0 W MS 1 180 8 1.00 W MS 1 181 8 .39 W MS 1 182 7 .41 W MS 1 183 3 .75 W MS 1 184 3 .87 W MS 1 331

# Aborted Seeds/Fruit Total Seed Wt (Viable Seeds [mg]) Color 3ender pop

185 4 1.13 W MS 1 186 8 .53 W MS 1 187 9 .46 W MS 1 188 5 0 W MS 1 189 2 0 W MS 1 190 5 0 W MS 1 191 3 .98 W MS 1 192 0 1.45 W MS 1 193 7 .29 W MS 1 194 9 2.34 W MS 1 195 3 .96 W MS 1 196 8 .36 W MS 1 197 3 .43, W MS 1 198 3 OI W MS 1 199 4 1.05 W MS 1 200 6 0! W MS 1 201 3 1.01 W MS 1 202 5 .38 W MS 1 203 5 .70i W MS 1 204 9 1.50 W MS 1 205 6 .34 W MS 1 206 6 .75 W MS 1 207 3 .37 W MS 1 208 5 0 W MS 1 209 4 0 W MS 1 210 4 0 W MS 1 211 0 .84 W MS 1 212 2 .65 W MS 1 213 10 0 W MS 1 214 3 01 W MS 1 215 1 .74 W MS 1 216 4 .66i W MS 1 217 10 2.86i W MS 1 218 5 .89 P MS 1 219 4 0: W MS 1 220 3 .31 W MS 1 221 7 0 W MS 1 222 6 0 W MS 1 223 4 .62 W MS 1 224 11 .47 W MS 1 225 5 .37 W MS 1 226 4 0 W MS 1 227 4 2.68 W MS 1 228 4 .33 W l MS 1 229 9 3.70 W= MS 1 230 6 1.87 W_ MS 1 332

# Aborted Seeds/Fruit Total Seed Wt (Viable Seeds [mgJ) Color 3ender pop

231 7 ,44 W MS 1 232 4 2.09 W MS 1 233 8 1.94 W MS 1 234 9 1.43 W MS 1 235 6 .63 W MS 1 236 5 1,89 W MS 1 237 10 1.53 : W MS 1 238 6 2.91 W MS 1 239 8 .52 W MS 1 240 3 3.30 W MS 1 241 5 2.29 W MS 1 242 5 1.65 W MS 1 243 3 0 W MS 1 244 0 .83 W[ MS 1 245 2 .84 Wl MS 1 246 9 1.40 WI MS 1 247 9 1.60 Wl MS 1 248 5 2.21 W i MS 1 249 4 .66 W! MS 1 250 3 0 Wl MS 1 251 8 0 W! MS 1 252 0 1.76 Wl MS 1 253 1 .67 W! MS 1 254 2 0 Wl MS 1 255 3 6.12 Wl MS 1 256 5 4.63 W' MS 1 257 4 4.95 W MS 1 258 4 3.49 W MS 1 259 6 2.63 W MS 1 260 4 2.85 W MS 1 261 4 .86 W MS 1 262 4 1.03 W MS 1 263 3 3.58 W MS 1 264 3 4.09 W MS 1 265 6 3.25 W MS 1 266 4 4.93 W MS 1 267 5 5.75 W MS 1 268 8 2.24 P MSi 1 269 5 1.03 W MS 1 270 4 2.09 W MS 1 271 5 0 P MS 1 272 7 1.01 P MS 1 273 9 0 P MS 1 274 7 1.84 W H 1 275 5 2.03 W MS 1 276 6 2.48 W MS 1 3,33

# Aborted Seeds/Fruit Total Seed Wt (Viable Seeds [mgj) Color 3ender pop

277 4 5.00 W MS 1 278 1 1.89 W H 1 279 6 1,13 W H 1 280 4 2.44 W H 1 281 1 1.33 W MS 1 282 5 .87 W MS 1 283 2 .95 P MS 1 284 4 .54 P MS 1 285 5 2.77 P MS 1 286 9 2.15 W MS 1 287 0 .81 W MS 1 288 2 .82 W MS 1 289 7 1.50 W H 1 290 8 .87 P MS 1 291 7 2.57 P MS 1 292 1 1.00 W MS 1 293 4 1.63 W MS 1 294 6 2.65 W MS 1 295 1 3.00 W MS 1 296 5 2.44 W MS 1 297 5 2.14 W MS 1 298 3 3.41 W MS 1 299 6 1.22 W MS 1 300 7 1.00 W MS 1 301 4 1.47 W MS 1 302 5 1.83 W MS 1 3O3 5 .71 W MS 1 304 10 2.33 W MS 1 305 6 3.20 W MS 1 306 10 1.75 W MS 1 307 9 3.36 W MS 1 308 5 2.02 W MS 1 309 10 3.22 W MS 1 310 7 1.77 W MS 1 311 5 2.09 W MS 1 312 4 .19 W MS 1 313 4 .72 W MS 1 314 6 1.96 W MS 1 315 14 0 W MS 1 316 4 1.09 W MS 1 317 8 1.17 W MS 1 316 1 .39 W MS 1 319 5 1.32 W MS 1 320 2 .33 W MS 1 321 6 3.71 W MS 1 322 4 3.66 W MS 1 334

# Aborted Seeds/Fruit Total Seed Wt (Viable Seeds [mg]) Color Gender pop

323 3 4.43 W MS 1 324 4 7.19 W MS 1 325 7 1.95 W MS 1 326 1 1.89 W MS 1 327 10 3.31 W MS 1 328 5 3.52 W MS 1 329 6 3.22 W MS 1 330 0 3.03 W MS 1 331 4 6.92 W MS 1 332 5 1.60 W MS 1 333 14 0 W MS 1 334 4 2.54 W MS 1 335 4 1.45 W MS 1 336 4 1.92 W MS 1 337 3 3.92 W MS 1 338 5 3.50 W MS 1 339 4 1.17 W MS 1 340 2 7.76 W MS 1 341 7 4.58 W MS 1 342 5 3.07 W MS 1 343 6 5.92 W MS 1 344 5 8.35 W MS 1 345 2 7.37 W MS 1 346 1 .83 W MS 1 347 4 1.83 W MS 1 348 7 .25 W MS 1 349 6 1.95 W MS 1 350 3 1.04 W MS 1 351 6 .66 W MS 1 352 2 1.03 W MS 1 353 4 .84 W MS 1 354 3 2.42 W MS 1 355 5 .51 W MS 1 356 14 0 W MS 1 357 9 4.23 W MS 1 356 6 1.63 W MS 1 359 4 1.53 W MS 1 360 2 1.48 W MS 1 361 1 .93 W MS 1 362 6 1.66 W MS 1 363 5 2.33 W MS 1 364 8 1.89 W MS 1 365 5 3.39 W MS 1 366 8 2.53 W MS 1 367 8 2.09 W: MS 1 368 3 2.43 W_ MS 1 '3.35

# Aborted Seeds'Fruit Total Seed Wt (Viable Seeds [mg]) Color Gender i pop

369 5 .82 W MS 1 370 4 3.07 W MS 1 371 6 .70 W MS 1 372 5 1.95 W MS 1 373 8 3.22 W MS 1 374 1 .62 W MSi 1 375 2 1.23 W MS 1 376 31 1.31 W MS 1 377 4 1.32 W MS 1 3781 7 2.17 W MS 1 379 5 2.10 W MS 1 380 3 .71 P MS 1 381 1 1.67 W MS 1 382 6 3.51 W MS 1 383 4 2.86 W MS 1 384 3 .81_ W MS 1 385 3 1.12 = W MS 1 386 9 .37 W MS 1 387 2 .91 W MS 1 388 2 .92 W! MS 1 389 6 0 Wi MS 1 390 7 2.96 W MS 1 391 5 .51 W MS 1 392 5 1.18 W MS 1 393 7 .72 W MS 1 394 6 .75 W MS 1 395 3 .46 W MS 1 396 0 .57 W MS 1 397 2 .87 P MS 1 398 5 2.55 P MS 1 399 6 7.99 W MS: 1 400 5 5.02 W MS 1 401 6 0 W MS 1 402 2 4.03 W MS 1 403 6 5.70 W MS 1 404 4 .52 W MS 1 405 9 2.96 W MS 1 406 5 3.53 W MS 1 407l 6 5.94 W MS 1 408 6 4.24 W MS 1 409 7i 2.971 W MS 1 410 3 2.53 W MS 1 411 8 5.30 W MS 1 412 12 .56 W MS 1 413 14 0 W_ MS 1 414 3 2.7-/ W MS 336

# Aborted Seeds/Fruit Total Seed Wt (Viable Seeds [mg]) Color Gender pop

415 2 1.15 W MS 1 416 0 3.49 W MS 1 417 7 .36 W H 1 418 1 1.54 W MS 1 419 8 3.12 W MS 1 420 6 2.31 W MS 1 421 19 0 P MS 1 422 6 5.66 W MS 1 423 0 0 W H 1 424 8 2.16 P MS 1 425 9 2.96 P MS 1 426 8 2.75 W MS 1 427 12 3.70 W MS 1 428 7 3.31 W MS 1 429 6 2.54 W MS 1 430 8 2.44 W MS 1 431 11 4.75 W MS 1 432 4 2.75 W MS 1 433 10 7.00 W MS 1 434 5 5.02 W MS 1 435 10 1.34 W M S 1 436 3 .68 W MS 1 437 9 1.40 W MS 1 438 7 3.95 W MS 1 439 3 0 W MS 1 Mean Ind. Seed Wt (viable seed [rag])

1 .23 2 .34 3 .17 4 • 5 .35 6 .64 7 .41 8 .42 9 .45 10 .61 11 .60 12 .59 13 • 14 .41 15 * 16 .57 17 1.02 18 .21 19 .26 20 .37 21 .32 22 .49 23l .29 241 .40 251 .87 26, .33 27 • 28 .78 29 ° 30 .83 31 .92 32 .45 33 .57 34 .07 35 .38 36 .69 37 .44 38 39 .16 40 .21 41 .65 42 .40 43 .33 44 .35 45 .58 46 .50 338

Mean Ind. Seed Wt (viable seed [mg])

47 .35 481 .22 49! .31 501 .45 51 i .45 521 ° 53! .49 541 .09 55; .09 56i .25 57 .06 58! .48 s9i .s2 60i .24 611 .83 621 .61 631 1.01 641 .19 65i .58 66 67 ° 68 .47 69 .49 70 .38 71 .32 72 .54 73 74 .58 75 .51 :: 76 .35 77 ,42 78 .35 •.i 79 • l_ 80 .88 1"_"81 .70 82 .43 83 .39 84 .57 85 .47 86 .54 87 .42 88 .52 89 .27 90 .37 91 .38 92 .38 339

Mean Ind.Seed Wt (viable seed [mg])

93 .23 94 .31 95 .42 96 .39 97 .41 98 ,27 99 .17 1O0 ,35 101 .18 102 .59 103 .41 104 .52 105 .46 106 .73 107 108 .48 109 .56 110 .27 111 ,53 112 ,52 113 114 .65 115 .11 116 .24 117 .33 118 .57 119 .27 120 .43 121 122 .88 123 .75 124 .84 125 .86 126 127 • 128 .61 129 .57 130 .60 131 132 , 133 ,36 134 .59 135 .3O 136 .70 137 .69 138 Mean Ind. Seed Wt (viable seed [mgD

139 .32 140 .24 141 .43 142 .21 143 .53 144 .52 145i .68 1461 .94 147 ,69 148I .47 149 .78 150 ,79 151 .50 152 1.11 153 .88 154 .70 155 .56 156 .76 157 .48 158 .83 159 .42 160 .47 161 1.00 162 • 163 .53 164 .42 165 .69 166 .43 167 .57 168 .47 169 .52 170 .98 171 * 172 .73 173 .96 174 • 175 1.12 176 .29 177 .42 178 .47 179 * 180 .33 181 .39 182 .41 183 .75 184 ,87 341

Mean Ind. Seed Wt (viable seed [rag])

185 .38 186 .53 187 .46 188 • 189 • 190 • 191 .98 192 .48 193 .29 194 ,78 1951 .96 196i .38 • 197! .43 198, • 199: 1.05 200, 201 1.01 202 .38 203 .70 204, .75 205 .34 206 .75 207: .37 208, 209; - 210 . 211, .84 212: .65 2131 214i • 2151 .74 .: 216i .86 217 ,71 218 ,89 2191 22.0i .31 221 222' • 223, .62 224 .47 225, .37 226 •

227 l .38 2281 .33 229t .46 230 .47 Mean lnd. SeeUWt(viaDle seed[mg])

231 .44 232 .70 233 .48 234 .29 235 .83 236 .38 237 .51 238 .97 239 .52 240 .66 241 .33 242 .33 •": 243 • 244 .28 245 .42 246 .35 247 .32 246 .74 249 .33 250 • 251 • 252 .59 253 .67 254 • 255 .56 256 .66 257 .99 258 .70 259 .44 :',-i 260 .95 _";_ 261 .86 -;:i 262 1.03 •# 263 .90 264 .82 265 .46 266 .82 267 .62 2661 .75 269! .34 270! .70 271 • 272: .34 273; • 274 .46 275 .51 276 .35 3,43

Mean Incl. Seed Wt (viable seed [mg])

277 .62 278 .47 2791 .38 280i .49 281 .44 282 .43 283 .32 284 .14 285 .31 286 .43 287 .41 288 .41 289 .30 290 .43 291 .37 292 .50 293 .41 294 .53 295 .43 296 .30 297 .71 298 .49 299 .41 300 .33 301 .37 302 .46 303 .18 304 .29 305 .64 306 .44 307 .56 308 .51 309 .46 310 .59 311 .52 312 .19 313 .38 314 .39 315 316 .36 317 .2.3 318 .20 319 .44 320 .33 321 .53 322 33 344

Mean Ind. Seed Wt (viable seed [mgD

323 .74 324 .80 325 .97 326 .94 327 .55 328 .70 329 ,81 3301 .61 331' .63 332 .40 333 334 .8;I 335 .72 336 .96, 337 .78 338 .44 339 .58 340 .78 341 .92 342 .77 343 .99 344 .79 345 .87 346 ,83 347 .92 34.8 .25 349 .97 350 1.04 351 ,68 352 1.03 353 .84 354 .40 355 .26 356 • 357 .70 358 .61 359 .51 360 .49 361 .47 362 .55 363 .78 364 .47 365 .68 366 .84 367 .70 368 .81 345

Mean Ind. Seed Wt (viable seed [mg])

369 ,82 370 .77 371 .70 372 .65 373 .81 374 .62 375 .61 376 .66 377 .66 378 .72 379 .70 380 .71 381 .83 382 .70 383 .95 384 ,81 385 .56 386 .37 387 .46 388 ' .92 389 390 .99 391 .51 392 .59 393 .72 394 .75 395 .46 396 .57 397 .87 398 .85 399 .61 40O .56 401 402 .67 403 .63 404 .52 405 .74 406 .88 407 .74 408 .71 409 .74 410 .84 411 .88 412 .56 413 ° 414 .69 Mean lnd. Seed Wt(viable seed[mg])

415 ,57 416 ,58 4171 ,36 418i ,51 419: ,52 420 ,58 421 422 ,63 423 ° 424 ,54 425 ,59 426 ,69 ._' 427 ,62 428 ,55 429 ,64 ..... 430 ,61 431 ,59 432 ,69 433 ,78 434 ,84 435 ,67 436 ,68 437 ,70 438 .56 439 347

' Eremalche kernensis populations I and 2: ovule numbers, aborted ovule vnmbers for samples taken April 1411992.

See text for snmpling methods. 348

pop Gender population fl color trtment Total ovules Dev ovules aborts _ L//ILI

1 1 Herin one white Rand 9 • 2 -_ MS one white Rand 20 9 11 3 • MS one white Rand 16 ° • 41 ° Harm one pink Rand 10 ° ° 5, MS one white I Rand 14 • • 6 ° Herin one white Rand 8 3 5 7 • Herin one pink i Rand 8 8 0 8 • MS one pink Rand 14 10 4 9 ° MS one white, Rand 13 6 7 10 • MS one whiteRand 20 • • 11 Harm one white Rand 8 • • 12 ° MS one pink Rand 19 16 3 13 Harm one whiteRand 11 3 8 14 ° MS one pink Rand 12 8 4 15 • MS one pink Rand 18 • • 16 ° MS one white Rand 14 8 6 17 Harm one white Rand 10 • ° 18 • Harm one white Rand 9 19 • Herin one white Rand 9 ° 20 ° Herm one white Rand 10 • ° 21 MS one pinkRand 15 5 10 22 ° Harm one white Rand 9 2 7 23 * MS one pink Rand 15 1 14 24 * Harm one pink Rand 12 ° ° 25 • MS one pink Rand 16 11 5 26 • MS one white Rand 13 7 6 27 • Herin one white Rand 7 5 2 28 ° Harm one pink Rand 11 • - 29 ° Herin one whit( Repeat 12 11 1 30 Herin one whiteRepeat 10 2 8 31 • Harm one whiteRepeat 9 1 8 32 MS one whiteRepeat 19 7 12 33 • MS one whiteRepeat 18 5 13 34 • Herm one whiteRepeat 11 9 2 35 ° MS one pink Repeat 15 12l 3 36 • MS one pink Repeat 15 31 12 37 • Harm one whiteRepeat 11 .' • 38 • Herin one white Repeat 12 -, • 39 MSI one whiteRepeat 0 • • 40 ° Herin, one white Repeat 10 6 4 4.1 , MS; one whiteRepeat 15 11 4 42 ° Herin one I white Repeat 13 2 11 43 • MS one_ whiteRepeat 15 7 8 44 ° Harm one. whiteRepeat 10 8 2 45 ° MS one pink Repeat 11 7 4 46 ° Herin one white Repeat 12 11 1 47 • MS one whiteRepeat 14i 11 5 48 Hem one pinkRepeat 10i 6 4 49 • Harm two whiteRepeat 9_ 9 0 50 • Harm two white Repeat 9 8 1 51 • Herin two white Repeat 6 6 0 349

pop Gender population fl color trtment Total ovules Dev ovules aborls

52 Harm two whiteRepeat 11 11 0 53 • Harm two white Repeat 10 10 0 54 Harm two whit_Repeat 8 8 0 55 Herin two white Repeat 9 9 0 56 Harm two white Repeat 9 9 0 57 • Harm two white Repeat 11 10 1 58 Harm two whir( Repeat 12 12 0 59 Harm two white Repeat 12 12 0 60 Harm two white Repeat 13 13 0 61 Harm two white Repeat 13 13 0 62 Harm two white Repeat 12 7 5 63 Harm two white Repeal 10 10 0 64 Hem" two white Repeat 10 10 0 65 Herin two white Repeat 11 10 1 66 • Harm two white Repeat 11 11 0 67 ° Harm two white Repeat 11 10 1 68 • MS two white Repeat 13 8 7 69 MS two whiteRepeat 14 9 5 70 * MS two white Repeat 13 10 3 71 * MS two white Repeat 17 10 7 72 • MS two white Repeat 17 9 8 73 MS two white Repeat 14 7 7 74 MS two whiteRepeat 18 16 2 75 MS two whiteRepeat 16 16 0 76 MS two whiteRepeat 16 10 6 77 MS two white Repeat 16 14 2 78 MS two white Repeat 17 16 1 79 MS two pink Repeat 15 4 11 80 MS two pink Repeat 17 9 8 81 MS two pink Repeat 19 12 7 82 MS two whiteRepeat 18 7 11 83 • MS two white Repeat 19, 14 5 84 MS two white i Repeat 19 10 9 35O

Proportion of Ovules Aborted % dev ov

1 2 .580 .450 3 4 * 5 o 6 .625 .375 7 0 1.000 8 .286 .714 9 .538 .462 10 11 • ° 12 .158 .842 13 .727 .273 14 .333 .667 16 • , 16 .429 .571 17 18 ° 19 • • 20 • 21 .667 .333 22 .778 .222 23 .933 .067 24 ° 25 .312 .688 26 .462 .538 27 .286 .714 28 29 .083 .917 30 .800 .200 31 .689 .111 32 .632 .368 33 .722 .278 34 .182 .818 35 .200 .800 36 .800 .200 37 38 • 39 • • 40 '.400 .600 41 .267 .733 42 .846 .154 43 .533 .467 44 .200 .800 45 .364 .636 46 .083 .917 47 .357 .786 48 .400 .600 49 0 1.000 50 .111 .889 51 0 1.000 351

Proportion of Ovules AboRed %dev ov

52 0 1.000 53 O 1.000 54 0 1.000 55 0 1.000 56 0 1.000 57 .091 .909 58 0 1.000 59 0 1.000 60 0 1.000 61 0 1.000 62 .417 .583 63 0 1.000 64 0 1.000 65 ,091 .909 66 0 1.000 67 .091 .909 68 ,538 .615 69 .357 .64;3 70 .231 .769 71 .412 .588 72 .471 .529 73; .500 .500 741 ,111 .889 751 0 1.000 76 .375 .625 77 .125= .875 78 .0691 .941 79 .7331 .267 80 .471 .529 81 .3681 .632 82 .611 .389 83 .263 .737 84 .4741 .526 3.52

Eremalche kernensis population 1: total ovules per ovary for plants sampled on March 29, 1992.

See text for sampling methods. pop Gender fl color trtment Total ovules/ovary _

1 1 Herin white random 10 2 1 Herin pink 8 3 1 MS white 16 4, 1 Herm white 9 5_ 1 Herin white 11 6i 1 Herin white 8 7 i 1 Herin white 12 81 1 Herin white 6 9 1 Herin white 9 10 1 Herin white 10 11 1 Herin pink 9 12 1 MS white 20 13 1 Herin white 10 14 1 MS white 14 15 1 MS white 14 16 • MS white 13 17 • MS pink 14 18 ° MS white 13 19 • MS white 17 20 • MS pink 16 Eremalche kernensis populations I and 2: ovule number, developing ovule number, aborted ovule number for plants sampled on April 24, 1992

See text for sampling methods. 355 pop )lant ID plant # Gender fl color trtment Total ovules Mean ovules/flwr/ind

1 1 1 1 Herin white Random 10 11.30 2 1 1 1 Herin white Random 12 3 1 1 1 Harm white Random 12 4 1 2 2 MS pink Random 16 14.60 5 1 2 2 MS pink Random 14 6 1 2 2 MS pink Random 15 7 1 2 2 MS pink Random 15 8 1 2 2 MS pink Random 13 • 9 1 3 3 MS pink Random 16 15.30 10 1 3 3 MS pink Random 14 11 1 3 3 MS pink Random 16 12 1 3 3 MS pink Random 16 13 1 3 3 MS pink Random 15 14 1 3 3 MS pink Random 14 15 1 3 3 MS pink Random 16 ° 16 1 4 4 MS pink Random 15 15.40 17 1 4 4 MS pink Random 14 16 1 4 4 MS pink Random 18 ° 19 1 4 4 MS pink Random 15 ° 20 1 4 4 MS pink Random 15 21 1 5 5 MS pink Random 15 14.40 22 1 5 5 MS pink Random 14 = 23 1 5 5 MS pink Random 16 ° 24 1 5 5 MS pink Random 13 ° 25 1 5 5 MS pink Random 14 ° 26 1 6 6 Harm pink Random 12 11.40 27 1 6 6 Herin pink Random 12 ° 28 1 6 6 Herin pink Random 13 29 1 6 6 Herin pink Random 10 30 1 6 6 Herm pink Random 10 * 31 1 7 7 Herin pink Random 6 8.20 32 1 7 7 Herin pink Random 9 ° 33 1 7 7 Herin pink Random 9 34 1 7 7 Herin pink Random 9 35 1 7 7 Herin pink Random 8 36 1 8 8 Herin pink Random 12 11.50 37 1 8 8 Herrn pink Random _ 11 38 1 9 9 Herin pink Random 10 11.20 39 1 9 9 Herin pink Random 12 40 1 9 9 Herin pink Random 11 41 1 9 9 Herin pink Random 12 42 1 9 9 Herin pink Random 11 ° 43 1 10 10 Herin pink i Random 12 11.70 44 1 10 10 Herin pink _Random 12 ° 45 1 10 10 Herin pink l Random 11 ° 46 1 11 11 Herin pink Random 121 10.80 47 1 11 11 Herin pink Random 11 i 48 1 11 11 Herin i pink Random 9 • 49 1 11 11 Harm= pink Random 12 50 1 11 11 Herm i pink Random 11 51 1 11 11 Herml pink Random 10 356 pop 31ant ID plant # Gender fl color trtment Total ovules: Mean ovules/tlwr/ind

52 1 1 12 MS pink Random 19 17.30 53 1 1 12 MS pink Random 16= 54 1 1 12 MS pinkRandom 17! ,, 55 1 2 13 MS pink Random 151 14.50 56 1 2 13 MS pinkRandom 16i • 57 1 2 13 MS pink Random 14i ° 58 1 2 13 MS pink Random 13= 59 1 3 14 MS pink Random 171 16.00 60 1 3 14 MS pink Random 16i ° 61 1 3 14 MS pink Random 15i • 62 1 4 15 Herm pink Random 12 ! 11.50 63 1 4 15 Herin pink Random 11 i • 64 1 4 15 Herin pink Random 13 65 1 4 15 Herin pink Random 101 • 66 1 5 16 MS white Random 171 16.00 67 1 5 16 MS white Random 16 ° 68 1 5 16 MS white Random 17 • 69 1 5 16 MS white Random 14 - 70 1 5 16 MS white Random 16 • 71 1 5 16 MS whiteRandom 16 ° 72 1 6 17 MS white Random 16 15.80 73 1 6 17 MS white Random 15 ° 74 1 6 17 MS white I Random 16 75 1 6 17 MS white _Random, 16 ° 76 1 7 18 MS white Random 17 17.80 77 1 7 18 MS whiteRandomJ 18 ° 78 1 7 18 MS white:Random_ 18 79 1 7 18 MS white,Random, 17 80 1 7 18 MS white Random 19 - 81 1 8 19 MS white Random_ 15 16.30 82 1 8 19 MS whiteRandom_ 16 ° 83 1 8 19 MS whiteRandom 18 • 84 1 9 20 MS white Random 15 15.20 85 1 9 20 MS whiteRandomi 15 ° 86 1 9 20 MS white,Random 16 ° 87 1 9 20 MS white Random i 15 88 1 10 21 MS white Random 17 15.70 89 1 10 21 MS white Random 15 ° 90 1 10 21 MS white,Random 15 91 1 11 22 MS white Random 15 14.20 92 1 11 22 MS white i Random 141 ° 93 1 11 22 MS white Random 14i 94 1 11 22 MS white Random 14: ° 95 1 12 23 MS white Random 15: 17.40 96 1 12 23 MS white Random 13 97 1 12 23 MS whiteRandom 15 ° 98 1 12 23 MS white i Random 15 99 1 12 23 MS white,Random 15 100 1 12 23 MS whiteRandom 14 101 1 12 24 Herm white i Random 9 9.20 102 1 12 24 Herin white _Random 9 357

pop _lant ID plant # iGender fl color trtment Total ovules Mean ovules/flwr/ind

103 1 12 24 Herin white Random 9 J 104 1 12 24 Herm white Random 101 • 105 1 13 25 MS pink Random 16J 16.00 106 1 13 25 MS pink Random 161 107 1 13 25 MS pinkRandom 16i * 108 1 13 25 MS pinkRandom 181 109 1 13 25 MS pink Random 14[ 110 1 14 26 Herin pink Random 121 11.60 111 1 14 26 Herin pink Random 12 * 112 1 14 26 Herin pink Random 12 • 113 1 14 26 Herin pink Random 11 ° 114 1 14 26 Herin pink Random 11 115 1 2 27 Herm pink repeat 8 8,00 116 1 2 27 Herm pink repeat 7 7.00 117 1 3 28 Herin pink repeat 9 9,00 118 1 3 28 Herin pink repeat 8 8.00 119 1 3 28 Herin pink repeat 8 8,00 120 1 4 29 MS pink repeat 18 18,00 121 1 4 29 MS pink repeat 18 18.00 122 1 4 29 MS pink repeat 18 18.00 123 1 5 30 MS pink repeat 15 15.00 124 1 6 31 Harm white repeat 10 10.00 125 1 6 31 Herin white I repeat 10 10.00 126 1 6 31 Herm white I repeat 10 10.00 127 1 10 32 Herin white!repeat 10 10.00 128 1 10 32 Herin white I repeat 9 9.00 129 1 10 32 Herin white I repeat 9 9.00 130 1 10 32 Herin whiteI repeat 11 11.00 131 1 13 33 MS pink, repeat 15 15.00 132 1 13= 33 MS pink repeat 16 16.00 133 1 13[ 33 MS pink repeat 13 13.00 134 1 15l 34 MS white ! repeat 12 12.00 135 1 15 i 34 M S white i repeat 8 8.00 136 1 16 35 Herin pink I repeat 10 10.00 137 1 19 36 MS pinkl repeat 13 13.00 138 1 20 37 Herin pink= repeat 8 8.00 139 1 20 37 Herin pink i repeat 9 9.00 140 2 ° ° Herin * 9 ° 141 2 °1 * Herm 9 142 2 *_ • Herin • 13 ° 143 2 •, • Herin 10 144. 2 ° i * Herm * 10 145 2 ° I • Herin • 10 • 146 2 • i Herm 11 147 2 ol * MS ° 17 148 2 °l • MS * 14 149 2 * * MS * 181 * 150 2 ° • MS * 151 • 151 2 * * MS 181 152 2 °[ MS * 15i * 153 2 °1 ° MS ° 18= 358 359

# dev ovutes/flwr mean # dev ovs./ftwr/ind # aborted ovules/flwr mn# abo ovs/flwr/ind

1 7 65 3 45 2! • • • 3 6 • 6 • 4 4 65 12 85 5 9 " 5 • 6 • • • • "I • • • 8 •i • • 9 10 7.0 6 9.0 10 ..... 11 7 9 • 12 4 • 12 13 • • • 14 "I • • • 15 "1 • • 16 " 7.3 • 8.3 17 5i • 9 • 18 121 • 6 19 5i • 10 • 20 -, • 21 ,l 2.0 ° 11.0 22 .... 23 ..... 24 2i • 11 • 25 • • • • 26 8 ! 6.0 4 6.3 27 41 • 8 • 28 6i • 7 • 29 " • 30 ..... 31 5 5.0 1 1.0 32 .... 33 ..... 34 .... 35 • ° • ,= 36 6 7.5 6 4.0 37 9 • 2 • 38 5 7.2 5 4.0 39 9 "I 3 • 40 9 • I 2 " 41 5 "I 7 42 8 •l 3 43 6 6.0 6 5.6 44 6 • 6 45 6 ° 5 46 10 6.7 2 4.2 47 7 4 48 4 5 49 11 • 1 50 6 5 51 2 8 • 360

"# dev. ovules/flwr mean # clev. ovsJflwr/ind # aborted ovulesJflwr mn # abe. ovsJflwdind

52 19 17,3 O O 53 16 • 0 • 54 17 • 0 • 55 9 8.8 6 5.7 56 5 • 11 • 57 14 • 0 58 7 ° 6 • 59 17 13.0 O 3.0 60 16 ° O 61 6 9 ° 62 12 10.2 O 1.3 63 11 O ° 64 13 ° 0 65 5 ° 5 ° 66 17 13.5 0 2.5 67 9 ° 7 • 68 9 " 8 " 69 14 ° 0 70 16 • 0 • 71 16 • O 72 16 14.2 O 1.6 73 10 5 • 74 16 • O ° 75 15 • 1 • 76 6 11.4 11 6.4 77 6 ° 12 ° 78 9 9 79 17 O • 80 19 • O • 81 8 10.3 7 6.0 82 9 ° 7 83 14 • 4 • 84 5 12.2 10 3.0 85 14 * 1 ° 86 16 ° O ° 87 14 ° 1 ° 88 14 12.0 3 3,7 89 10 • 5 90 12 • 3 • 91 15 12.8 0 1.4 92 14 * O • 93 14 • 0 • 94 8 • 6 • 95 7 9.7 8 7.7 96 6 • 7 • 97 8 ° 7 ° 98 8 • 7 • 99 15 O • IO0 14 ° O 101 9 8.8 0 .4 102 7 °1 2 361 # ctev. ovutes/flwr mean # dev. ovsJflwr/ind # aborted ovulesJflwr mn # ado. ovs./flwr/ind

103 9 • 0 104 10 • 0 • 105 7 8.2; 9 7.8 106 9 *, 7 • 107 11 Ol 5 • 108 7 °' 11 * 109 7 ol 7 - 110 6 5.81 6 5.6 111 5 ° 7 • 112 " 3 * 9 *, 113 4 * 7 • 114 11 *1 0 • 115 7 7.0 1 1,0 116 7 7.0 0 0 117 . '1 * " 118 * • • • 119 * • * • 120 3 3.0 15= 15.0 121 0 0 181 18.0 122 2 2.0 161 16.0 123 14 14.0 1 1.0 124 10 10.0 O, 0 125 2 2.0 81 8.0 126 3 3.0 7 7.0 127 8 8.0 2 2.0 128 8 8.0 1 1.0 129 9 9.0 0 0 130 5 5.0 6 6.0 131 13 13.0 2 2.0 132 .... 133 • • • 134 3 3.0 9 9.0 135 1 1.0 7 7.0 136 .... 137 10 10.0 3, 3.0 136 8 8.00I 0 139 8 8.0 1, 1.0 140 7 * 21 141 0 * 9 ! 142 0 • 131 • 143 5 • 5 • 144 2 • 8 • 145 4 " 6 • 146 2 • 9 • 147 5 * 12 148 14 0 149 5 * 13 150 5 * 10 151 10 8 152 9 • 6 • 153 7 11 362 # dev. ovules/flwr mean # dev, ovsJflwr/ind # ahorteclovules/flwr mn# abo. ovsJflwr/ind

5 10 363

Prop. of Ovs Aborted/flwr Mean Prop. Ovs Aborted/ind Recodeof plant # ] population I 1 .300 .398 Element 1 I one 2 • * Element1 : one 3 .500 • Element 1 = one 4 .750 .582 Element 21 one 5 .357 ° Element21 one 6 ° ° Element2! one 7 • • Element2 one 8 • • Element21 one 9 .375 .588 Element3 one 10 * Element3 one 11 .562 Element3 one 12 .750 ° Element3 one 13 ° • Element3 one 14 • Element3 one 15 ° Element 3 one 16 ° ,539 Element 4 one 17 .643 • Element 4 one 18 .333 ° Element 4 one 19 .667 • Element 4 one 20 • ° Element 4 one 21 ° .764 Element5 one 22 • * Element5 one 23 ° ° Element5 one 24 .846 Element5 one 25 ° • Element 5 one 26 .333 .553 Element6 one 27 .667 ° Element6 one 28 .538 ° Element6 one 29 ° • Element6 one 30 ° Element 6 one 31 .167 .122 Element7 one 32 • Element 7 one 33 ° ° Element7 one 34. ° • Element7 one 35 ° • Element7 one 36 .500 .348 Element8 one 37 .182 • Element8 one 38 .500 .357 Element9 one 39 .250 Element91 one 40 .182 * Element9! one 41 ,583 Element9 _ one 42 ,273 ° Element9 one 43 .500 .479 Element 10 : one 44. .500 • Element 10 one 45 .455 Element 10 one 46 .167 .369 Element 11 one 47 ,364 ° Element 11 one 48 .556 ° Element11 one 49 .083 ° Element11 one 50 .455 Element11 one 51 .600 ° Element11 one 364

Prop. of Ovs Aborted/fiwr Mean Prop. Ova Aborted/ind Recode of plant # population

52 0 0 Element 12 one 53 -'0 - • Element 12 one 54 01 • Element 12 one 55 .400 .393 Element 13 one 56 .688 • Element 13 one 57 01 • Element 13 one 58 ,4621 • Element 13 one 59 O I .188 Element 14 one 60 0 • Element 14 one 61 .600 ° Element 14 one

62 O I .113 Element 15 one 63 0 I • Element 15 one I 64 0 I Element 15 one 65 ,500 ° Element 15 one 66 0 .156 Element 16 one 67 .438 • Element 16 one 68 .471 ° Element 16 one 69 0 ° Element 16 one 70 0 • Element 16 one 71 0 • Element 16 one 72 0 ,101 Element 17 one 73 .333 • Element 17 one 74 0 • Element 17 one 75 .062 • Element 17 one 76 .647 .360 Element 18 one 77 .667 • Element 18 one 78 .500 • Element 18 one 79 0 • Element 18 one 80 0 • Element 18 one 81 .467 .368 Element 19 one 82 .438 • Element 19 one 83 .222 • Element 19 one 84 .667 .197 Element 20 one 85 .067 Element 20 one 86 0 • Element 20 one 87 .067 ° Element 20 one 88 .176 .236 Element 21 one 89 .333 ° Element 21 one 90 .200 ° Element 21 one 91 0 .099 Element 22 one 92 0 ° Element 22 one 93 0 ° Element 22 one 94 .429 ° Element 22 one 95 .533 .443 Element 23 one 96 .538 ° Element 23 one 97 ,467 ° Element 23 one 98 .467 ° Element 23 one 99 0 Element 23 one 100 0 . Element 23 one 101 0 .043 Element 24 one 102 .222 • Element 24 one Prop. of Ovs Aborted/flwr Mean Prop. Ovs Aborted/ind Recocte of plant # population

103 0 Element 24 one 104 0 Element 24 one 105 .562 .488 Element 25 one 106 .438 • Element25 one 107 .312 • Element 25 one 108 .611 • Element 25 one 109 .500 * Element 25 one 110 .500 .500 Element 26 one 111 .583 ,, Element 26 one 112 .750 °, Element 26 one 113 .636 • _ Element26 one 114 0 ° _ Element 26 one 115 .125 .125 Element 27 one 116 0 01 Element 27 one 117 = *[ Element 28 one 118 • ° Element28 one 119 Element28 one 120 .833 .833 Element 29 one 121 1.000 1.000 Element 29 one 122 .889 .889 Element 29 one 123 .067 .067 Element 30 one 1241 0 0 Element 31 one 125 i .800 .800 Element 31 one 1261 .700 .700 Element 31 one 127 .200 .200 Element 32 one 128 .111 .111 Element32 one 129 0 0 Element 32 one 130 .545 .545 Element 32 one 131 .133 .133 Element 33 one 132 ° ° Element 33 one 133 • Element 33 one 134 .750 .750 Element 34 one 135 .875 .875 Element34 one 136 • • Element35 one 137 .231 .231 Element 36 one 138 0 0 Element 37 one 139 .111 .111 Element 37 one 140 _ ° two 141 1.000 two 142 1.000 two 143 .500 two 144 .600 ° two 145 .600 ° two 146 .818 • two 147 .706 " two 148 0 • , two 149 .722 ° two 150 .667 • two 151 .444 two 152 .400 ° two 153 .611 two 366 367

Eremalche kernensis population 1: ovule numbers, developing ovule numbers, and aborted ovule numbers of bagged and unbagged plants for a pollinator exclusion experiment in 1992.

See text for sampling methods. 368

pop plant IO Gender treatment Total ovules Dev ovules abo_s

1 1 1 MS bagged • • = 2 • 2i Herm bagged 11 ° 11 3 • 31 Herm bagged • • , 4 • 4 MS bagged • • , 5 • 5 MS bagged • . , 6 • 6 Herm bagged • • , 7 ° 7 MS bagged ,. , , 81 • 8 MS bagged ° , o 91 • 9 MS bagged ., • ° 101 • 10 Herm bagged °, • ° 11 • 11 MS bagged ° ° ° 12 ° 12 Herm bagged ° • ° 13 ° 13 MS bagged 10 1 9 14 • 14 Herm bagged 10 10 0 15 • 15 MS bagged • • ,_ 16 • 16 Herm bagged " • "1 17 ° 17 MS bagged, 14 2 12 18 * 18 Herm baggedi 9 ° ° 19 • 19 MS baggedl • • • 20 • 20 Herm bagged ° • ° 21 • 1 MS unbegged 16 9 7 22 ., 2 Harm unbagged • • ° 23 "I 3 Herm unbagged ° • ° 24 "1 4 MS unbagged 16 3 13 25 • 5 MS unbagged lS 3 12 26 • 6 Helm unbagged 11 9 2 27 • 7 MS unbagged 17 31 14 28 • 8 MS unbagged • ,1 • 29 • 9 MS unbagged 12 31 9 30 • 10 Herm unbagged " °l ° 31 • 11 MS unbagged • ° • 32 ° 12 Herm, unbagged ° ° ° 33 ° 13 MS, unbagged 14 • ° 34 • 14 Herm_unbegged ° ° • 35 • 15 MSI unbagged 15 • 15 36 • 16 Herm unbagged 10 6 4 37 • 17 MS unbagged 15 7 8 38 • 18 Herm unbagged 11 • • 39 ° 19 MS unbagged 14 7 7 40 • 20 Herm unbagged ° ° ° 369

Proportion Aborted Ovules

1 • 2 1.000 3 ° 4 ° 5 6 ° 7 ° 8 9 • 10 11 ° 12 • 13 .900 14 0 15 ° 16 17 .857 18 19 • 20 21 .438 22: 23J • 241 .812 251 .800

226 .1.82482 28 • 29 .750 30 • 31 32 ° 33 ° 34 • 35 1.000 36 .400 37 .533 38 39 .500 40 37G

Eremalche kernensi_ population 2: seedlings germinating from soil samples in a seed bank study completed in 1993.

See text for sampling methods. 3 'iI

Population semi)Is id date Emmalche grass unknown )b T./pe: Real Real Real ReaJ Real Real Real Source: User Entered User EntereO User Entered User Entered User Entered User Entered User Entered ). Class: Nominal Nominal Nominal Infermarive Continuous Continuous Continuous ), Format: Free Format Fi... Free Format... Free Format... Free Format... Free Format... Free Format... Free Format... )_ Dec. Places: 3 3 3 3 3 3 3 Mean: • 1.592 4.038 ; 5.579 Slot. Deviation: • 1.251 3,533 5.680 S|d. Error:, • ,347 .669 1.303 Variance: • 1.564 12.480 32.257 Coeff. of Variation: • i.739 .875 1.018 Minimum: 2.000 1.000 1.000 1.000 1.000 1.000 Maximum: 2.000 3.000 9.000 5.000 17.000 17.000 Range: 0 2.000 7.000 I 4.000 16.000 18.000 Counl: 66 68 69 113 28 19 Misaln_l Ceils: ; 0 0 0 I 53 38 47 Sum: _- 22.000 113.000 I06.000 Sum of Squares: I " 59.000 793.000 1172.000 37 2

Bromus EmOium Crassula Cryptantha Amsinol(ia Pectocaw,a ), Type: ReaJ ReaJ Real . Real ReaJ Real Source: User Entsrecl User Enterecl User _tered User Enterecl User Entered User Entere¢l

_, ClaSs: Continuous Continuous Continuous Continuous Continuous Con_nuous i _, Format: Free Format R,..: Free Format FI,.. Free Format R... Free Format R.., Free Format R... Free Format R.., k 0e¢. Places: 3 3 3 3 3 3 Mean: 15.500 2.887 4.000 4.000 ! 5,800 1.000 $td, OevieUon: 27,252 1.995 4.359 4.243 8.384 ill $10. Error:. 8,096 .515 2.517 3.000 4.500 Variance: 743.211 3.981 19,000 18.000 40.500 Coeff. of Vartation: 1.750 .898 1,090 1.081 1.157 Minimum: 1.000 1.000 1.000 1,000 1.000 1.000 Maximum: 112.000 7.000 9.000 7.000 10.000 1.000 Ra/_e: 111.000 8.000 8.000 8.000 9.000 0 Count: 20 1 5 3 2 2 1 MiSsintj Ceils: _ 48 51 63 64 84 65 Sum: 310.000 43,000 12,000 8.000 11.000 ; 1.000 Sum of Scluares:; 18926.000 179.000 86.000 50,000 101.000 1.000 + " , , • ,+ 373

Lotus Aster LayieQentectiaetaCanssliaI_urss-.. Bmssius juncea Legidium k Type: Rein Real Real Real Real Real _' Source: Usef Entered User Entered User Entered User Entered User Entered User Entered _' Class: Continuous Continuous Continuous Continuous Continuous Continuous _. Format: Free Format R... Free FormatR... Free Format R... Free FormatR..+ Free FormatR... Free FormatR... _, Dec. Plausa: 3 3 3 3 3 3 Mean: 1.000 1.000 1.000 3.000 2.000 Std. Deviation: 0 0 Std. Error. 0 0 Variance: 0 0 Coeff. of Variation: 0 0 Minimum: 1.000 1.000 1.000 3.000 2.000 Maximum: 1.000 1.000 1.000 3.000 2.000 RanCje: 0 0 0 0 0 Count:2 2 1 1 0 I Missing Ceils: 64 84 65 65 68 85 Sum: 2.000 2.000 1+000 3.000 0 2.000 Sum of SQuares: 2.000 2.000 1.000 9.000 0 4.000 374

Plegiobott_Ws c... jTheh/_odium lasl... InDul Column _, Type: Real ReaJ Real b' Source: User Entsre¢l User Entered User Entered k Class: Continuous Continuous Continuous ). Format: Free Format R... Free Format FI... Free Format Fixed Oec. Places: 3 3 3 M_rt: 4.500 2.000 Std. Oe_ation: 4.950 Std. Error. 3.500 Variance: 24.500 Coelf. of VarieUon: 1.100 Minimum: 1.000 2.000 Maximum: 8.000 2.000 7.000 0 Count: 2 1 Mlssin_ COlI_ 64 65 Sum 9.000 2.000 Sum of Squares: 65.000 4.000 375

Pooulation sampla id date Eremalct_e grass unknown 1 2.000 1.000 1.000 1.000 4.000 2 2.000 1.000 2.000 1.000 3 2.000 1.000 8.000 1.000 1.000 4 2.000 1.000 4.000 1.000 3.000 1.000 5 2.000 1.000 5.000 1.000 3.000 6 2.000 1.000 8.000 1.000 1.000 2.000 7 2.000 1.000 7.000 1.000 2.000 8 2.000 1.000 8.000 1.000 1.000 2.000 0 2.000 2.000 1.000 1.000 1.000 10 2.000 2.000 2.000 1.000 17.000 t .000 11 2.000 2.000 3.000 1.000 1.000 4.000 12 2.000 2.000 4.000 1.000 3.000 13 2.000 2.000 5.000 1.000 2.000 17.000 14 2.000 2.000 8.000 1.000 1.000 5.000 15 2.000 3.000 1.000 1.000 2.000 16 2.000 3.000 2.000 1.000 2.000 17 2.000 3.000 3.000 I .O00 I 6 2.000 3.000 4.000 1.000 13.000 19 2.000 3.000 5.000 1.000 20 2.000 3.000 8.000 1.000 1.000 5.000 16.000 21 2.000 3.000 7.000 1.000 22 2.000 3.000 8.000 1.000 23 2.000 1.000 1.000 2.000 8.000 24 2.000 1.000 2.000 2.000 25 2.000 1.000 3.000 2.000 1.000 26 2.000 1.000 4.000 2.000 : 3.000 5.000 1.000 27 2.000 1.000 5.000 2.000 3.000 25 2.000 1.000 6.000 2.000 2.000 2.000 29 2.000 1.000 7.000 2.000 1.000 30 2.000 1.000 8.000 2.000, 1.000 7.000 31 2.000 3.000 1.000 2.000 ; 1.000 32 2.000 3.000 2.000 2.000 : 33 2.000 3.000 3.000 2.000 ; 7.000 34 2.000 3.000 4.000 2.000 : 2.000 35 2.000 3.000 5.000 2.000 5.000 0.000 38 2.000 3.000 8.000 2.000 : 12.000 37 2.000 3.000 7.000 2.000 3.000 38 2.000 3.000 8.000 2.000 5.000 39 2.000 2.000 1.000 2.000 2.000 40 2.000 2.000 2.000 2.000 I 1.000 41 2.000 2.000 3.000 2.000 42 2.000 2.000 4,000 2.000 43 2.000 2.000 5.000 2.000 2.000 44 2.000 2.000 6.000 2.000 2.000 45 2.000 1.000 1.000 3.000 40 2.000 1.000 2.000 3.000 47 2.000 1.000 3.000 :3.000 48 2.000 1.000 4.000 3.000 5.000 49 2.000 1.000 5.000 3.000 50 2.000 ! .000 8.000 0.000 51 2.000 1.000 7.000 3.000 52 2.000 1.000 8.000 3.000 1.000 53 2.000 2.000 1.000 3.000 54 2.000 2.000 2.000 " 3.000 13.000 55 2.000 2.000 3.000 3.000 58 2.000 2.000 4.000 3.000 57 2.000 2.000 5.000 3.000 1.000 55 2.000 2.000 6.000 3.000 59 2.000 3.000 1.000 3.000 60 2.000 3.000 2.000 3.000 3 7

Poou_adon sample id dale Erernalche grass unknown 61 2.000 3.000 3.000 3.000 1.000 2.000 62 2.000 3.000 4,000 3.000 63 2.000 3.000 5,000 3.000 1.000 7.000 64 2.000 3.000 0.000 3.000 1.000 3.000 65 2.000 3.000 7,000 3.000 2.000 3.000 8.000 2.000 377

Bromus Erodlum Cmssula Cryptantna Amsinckia Pectocawa 1 1.000 2 3 4 17,000 2.000 5 5 7 8 9 1.000 10 6.000 11 1.000 12 50.000 7.000 13 50.000 4.000 14 1,000 4.000 15 2.000 4,000 16 2,000 5.000 17 1.000 9,000 18 2,000 19 20 20.000 2,000 21 22 23 24 25 28 2.000 27 28 29! 1.000 30 1,000 31_ 32! 19.000 331 1.000 1.000 341 15.000 1.000 1,000 351 5.000 7.000 36 2.000 37 1,000 1.000 38 39 2.000 4O 41 42 43 112,000 10.000 44 45 46 47 48 49 50 51 52 53 1.000 54 55 56 57 5.000 58 50 60 378 Bromus Eroclium Cmssula Cwptantha Amsinckia Pectocawa 81 1.000 62 03 2.000 84 65 2.000

'r •¸ :+ :•' 379

Lotus Asler Layia penlachaeta CaDsela 6urea-... 8rassica juncea LeDiaium 1 2 3 4 5 6 7 8 9 10 11 12 13 .I 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 3g 40 e I 41 42 43 1.000 44 45 48 47 48 1.000 49 50 1.000 51 52 53 54 551 56_ 57! 1.000 2.000 581 591 6ol 380 Lotus Aster Layia pentactlaet; Caz)sallaI)uma-,_ Brassicajuncea U3Didium 81 62_ 1.000 63 3.000 64. 65 (]6 381

Ptaqiobotnws c... Thelypo,fiumlasL. InputColumn

3 _:."_ • 4 * //_:; • •

12 • .... . -" 13 • _,_#_-'-_, 14 • _l_tt_l_:._'._', 15 • mli_k_=_,_._'-_

17 • Im_',_,:_._'-=_r

20 • ..... 21 • .... _3 22 • 23 • 24 • 25 26 • _ 27 • _ 28 • " 29 30 • _ 31 • _ 32 ,,

34 • _ 35 • III_'_ 36 • 371 3al • 39_ • _

41401 • - 421 ° 43 • _

45 • , "

47 • 48 • _ 49 * ---_ 50 • - _". 51 1.000 • " s2 - _MSW_ms_ 53 • _'_,_: 54 • _,'¢, :=

57 • _'_ .._,._..'_.;'-..-" Ptagiobomr_ c... Thely_odlumlasl,. InoutColumn 3 _ B1 82 2.000 - IIIII 63 8.000 BINnIBIIIBBBII 84 85 - 86 .... rn I I ...... 383

Eremalche kernensis population 1: reproductive branch numbers, flower numbers, bud numbers, fruit numbers, numbers eaten, numbers aborted for plants sampled on March 29th, April 17th, and April 24th 1992.

See text for sampling methods. 384

plant col/sex Sex rep bran. 3/29 FIs 3_29 buds 3_29 iris 3/29 Pot frts 3/29 4/17 buds

1 1 1 1 2 9 17 2 28 1 2 2 1 1 4 7' 16 2 25 7 3 3 1 1 3 i 8 17 2 27 0 4 4 1 1 4i 6 38 1 45 2 5 5 1 1 3 2 8 2 12 0 6 6 1 1, 3 5 13 2 20 1 7 7 1 1 2 2 17 3 22 2 8 8 2 2 3! 5 15 2 22 4 9 9 2 2 1 1 6 li 8 0 10 10 1 1 1 0 2 0 2 0 11 11 1 1 1 2 4 3 9 0

12 12 1 1 1 1 1 0 I 2 0 13 13 1 1 1 2 14 3 19 6 14 14 1 1 1 6 21 1; 28 2 15 15 1 1 1 2 9 0 11 5 16 16 1 1 3 10 i 45 1 56 22 17 17 1 1 3 6:= 17 1 24 8 18 18 1 1 4 6 i 30 3 39 16 19 19 1 1 1 11 11 0 12 0 20 20 1 1 3 31 17 1 21 1 21 21 1 1 3 5 I 11 1 17 3 22 22 1 1 3 4, 12 5 21 2 23 23 1 1 1 _ O= 4 0 4 0 24 24 1 1 1 1 4 0 51 ° 25 25 1 1 1 1 ! 7 0 81 0 26 26 1 1 1 2 5 0 7 " 27 27 1 1 1 5 23 6 34i 0 28 28 1 1 1 1 4 1 6 ° 29 29 1 1 1 1 10 3 14 2 30 30 1 1 1 2 14 1 17 0 31 31 1 1 1 1 5 2 8 0 32 321 1 1 1 0 8 3 11 0 33 33 1 1 1 1 4 1 6 0 34 34; 1 1 1 1 2 1 4 0 35 35i 1 1 1 3 15 2 20 0 36 36 1 1 1 2 6 1 9 "

37 371 1 ,_ 1 6 15 8 29 0 38 38 I 1 • 1 5 12 1 18 0 39 39 1 1 1 1 10 0 11 7 40 40 1 1 1 1 2 0 3 0 41 41 1 1 3 5 20 0 25 10 42 42 1 1 3 8 21 3 32 4 43i 43 1 1 1 2 81 2 12 5 441 44 1''1 1 1 1 41 1 6 3 451 45 1 1 1 6 55 0 61 3 461 46 1 i 1 1 1 6 3 10 2 47 47 1 1 3 5 22 2 29 28 48 48 1= 1 1 7 21 1 29 1 49 49 1 1 2 12 31 1 44 3 50 50 1 1 1 2 9 0 11 3 51 51 3 1 2 1 2 5 8 0 385

plant col/sex Sex rep bran. _29 FIs 3/29 buds _29 f_s 3/29 Pot f_s_29 4/17 buds

52 52 1 1 I 1 2 5 1 8 0 i 53 53 1 1 1 1 3 2 6 0 54 54 1 1 1 1 2 1 4 1 55 55 1 1 1 1 3 1 5 0 56 56 1 1 1 1 1 1 3 1 57 57 1 1' 1 3 7 0 10 "'2 58 58 1 1 2 1 2 1 4 0 59 59 1 1 1 3 11 4 18 0 60 60 1 1 1 3 6 1 10 0 61 61 1 1 1 5 12 2 19 0 62 62 1 1 1 2 12 2 16 0 63 63 1 1 2 1 3 0 4 O 64 64! 1 1 1 3 5 2 10 0

S6 66 1 1 1 4 15 1 29 4

6968 68'69 1 1 1 1 21 3 1 65 01 701 70 1 1 1 2 6 3 111 O 71 i 71 1 1 1 2 8 2 12 4 72 72 3 1 1 1 8 0 9 2 73_ 73, 1 1 1 2 4 0 6! 0 74' 74' 3 1 1 1! 5 0 6' 1 75 75 1 1 1 1 1 3 9 76i 76 3 1 1 5 0 6 1 77 77 1 1 1 21 42 0 44 8 78 78 1 1 2 21 4 0 6 2 79 79 1 1 1 0 I 5 1 6 3 80 80 1 1 1 2 8 0 10 ° 81 81 1 1 2 li 12 O 13 50 82 82 1 1 1 0 13 0 13 2 83 83 1 1 1 0 13 0 13 18 84 84 1 1 1 1 12 0 13 17 85 85 1 1 3 6 28 3 37 22 86 86 1 1 1 1 2 2 5 " 87 87 2 2 1 2 5 1 8 4 i 88 88 1 1 1 2 4 0 6 1 89 89 1 1 1 1 7 2 10 3 90 90 1 1 1 1 3 0 4 0 91 91 1 1 1 5 20 5 30 2 92 92 1 1 1 2 6 I 0 8 17 93 93 1 1 0 0 241 0 24 0 94 94 3 1 3 2 9 1 12 95 95 2 2 1 1 8i 0 9 1 96 96 1 1 1 2 10 3 15 16 97 97 1 1 1 2 9 2 13 7 98 98 1 1 1 1 10 5 16 0 99 99 3 1 1 3 15 4 22 0 100 100 1 1 1 1 6 5 12 1 101 101 1 1 1 3 8 6 17 0 102 102 2 2 1 4 24 1 29 6 386

plant coYsex Sex rep bran _29 FIs_29 buds 3/29 f_s_29 Potf_s_29 4117 buds

103 103 1 1 1 0 14 0 14 0 104 104 1 1 1 0 1 1 2 0 105 105 2 2 1 2 8 1 11 0 106 106 1 1 1 0 5 1 6 0 107 107 2 2 1 1 5 1 7 1 108 108 1 1 1 2 4 0 6 0 109 109 1 1 1 2 26 2 30 0 110 110 3 1 1 1 22 1 24 0 111 111 1 1 1 2 9= 2 13 O 112 112 1 1 1 2 4i 0 6 3 113 113 1 1 1 5 18i 1 24 0 114 114 2 2 1 2i 22 2 26 4 115 115 3 1 1 3i 20 4 27 0 116 116 1 1 1 1 15 3 191 0 117 117 2 2 1 2 6 0 81 0 118 118 1 1 1 2 15 2 19 0 119 119 1 1 1 0 9 1 10 2 120 120 1 1 1 2 0 0 2 0 121 121 1 1 1 2 13 1 16 2 122 122 1 1 3 9 22 5 36 5 123 123 1 1 1 1 20 1 22 0 124 124 1 1 1 2 11 0 13 0 125 125 1 1 2 1 14 2 17 3 126 126 1 1 3 3 20 1 24 0 127 • 2 2 1 5 11 0 16 • 128i • 2 2 1 2 8 1 11 1291 • 4 2 1 1 8 1 10 130i 4 2 1 1 6 2 9 • 131 • 4 2 2 1 14 0 15 132 ° 2 2 1 2 18 1 21 133 2 2 4i 5 12 1 18 ° 134 2 2 1= 2 11 0 13 •

135 °, 2 2 11i 1 8 2 11 • 01 136 2 2 1l 2 5 2 9 • 137 °1 4 2 1 3 6 0 9 • 138 4 2 1 3 13 3 19 • 139 4 2 1 2 9 1 12 • 140 ° 4 2 1 4 10 0 14 • 141 4 2 1 2 5 1 8 142 ° 2 2 1 2 10 1 13 . 143 2 2 3 4 21 2 27 . 144 ° 4 2 2 5 20 2 27 " 145 2 2 1 2 5 1 8 146 2 2 1 3 11 2 16 147 • 2 2 2 4 25 4 33 • 148 • 2 2 1 8 36 4 48 • 149 ° 4 2 2 4 23 4 31 150 ° 4 2 1 2 11 3 16 . 151 . 4 2 1 2 8 2 12 152 • 4 2 • • • 153 • 2 2 ..... 3_?

plant col/sex Sex rep bran. 3/29 FIs3/29 bucls 3/29 fns3/29 Pot frts 3/29 4/17 buds

154 ., 4 2 .....

156 • 4 2 ...... _157 ."' , 4, 2 "= :'i .... 158 " 4 2 " .... • 159 ...... 160 • • 2 ° • • " •

•- /.. 388

4/17 |IS 4/17 dev ins 4/17 _ot, |ns , 4/17 matins 4/_7 aDens eaten 4/24 |is 4124 buds

1 0 27 28 0 8 0 1 0 2 4 18 29 0 0 0 6 2 3 0 11 11 0 7 0 0 0 4 1 42 45 0 5 0 0 O 5 0 8 8 0 6 0 '0 0 6 0 7 8 0 2 0 0 0 7 0 17 19 0 4 0 3 1 8 0 4 8 0 10 0 • 9 0 0 0 0 5 0 * • 10 0 1 1 OI 1 0 0 0 11 0 2 2 2 5 0 • • 12 O O 0 O 2 O • 13 3 19 28 11 3 0 0 0 14 0 27 29 0 I 9 0 0 0 I 15 0 11 16: 0 4 0 0 0 16 2 58 82i 2 15 0 • • 17 0 38 46 21 7 0 • * 18 1 33 50 4 11 7 9 2 19 1I 10 11i o, 1 0 0 0 2Q 0 ! 15 161 1_ 8 9 0 Q 21 2 17 22 1 6 2 0 0 22 1 10 13i 0 13 0 2 0 23 0 0 o' 0 3 0 0 o; ,24 "l " " " .... ' 25 OI 0 Oi 0 1 0 0 OI 26 -, ...... 27 01 0 0 0 0 0 • O: 28 -J ...... 29 0 12 14 1 3 2 0 0 30 1 13 14 7 2 3 1 0 31 1 7 8 0 4 4 0 0 32 2 5 7 1 7 0 0 0 33 O; 0 0 0 0 0 0 0 34 0 3 3 1 2 0 OI 0 ,35 0 0 0 3 17 0 01 0 36 -, • ..... o= 37 0 12 12 3 13 0 0 0 38 0 7 7 4 6 1 2: 0 391 1 15! 23 2 4 5 0 0 ,401 0 1I 1 0 1 0 0 0 411 5 81 23 1 8 0 2 0 42: 3 21 28 6 7 1 6 0 431 0 14 19 2 4 0 2 0 44! 0 9 12 1 1 0 0 1 45 0 46 49 1 6 4 0 0 46i 2 6 10 0 4, 0 0 0 i 47 3 32 63 0 12 0 0 0 48 1 32 34 7 12 Oi 0 0 491 1 29 33 7 12 1 1 1 i 50 2 15 20 0 5 0 0 0 51 0 0 0 1 3 0 0 0 389

4/17fls 4117 devfgs _17pot. f_s 4/17 mail,s 4/17 abogs eaten 4/24fls 4/24 buds

52 0 0 0 0 5 0 0 OI 53 0 1 1! 1 2 Ol O O I 54 0 2 3 1 1 0 0 0 55 0 0 0 0 3 0 0 Oi 56 Q 2 3 0 2 1 0 O' 57 0 5 7 _ 9 0 0 0 58 0 0 0 0 1 0 " ,l 59 0 0 O O 18 0 0 0 60 0 20 20 0 6 0 0 0 61 0 0 0 3 16 0 0 0 62 0 0 0 11 15 0 0 0 63 0 0 0 Oi 3 0 0 0 64 0 0 0 7 3 0 0 0 65 1 6 9 1 7 0 0 0 66 1 7 12 3, 8 0 0 0 67 0 0 0 0 i 5 0 0 0 68 0 0 10' 5 0 0 0 69 0 0 0 0 4 0 , ° 70 0 7 7 4i 4 0 2 0 71 0 3 7 2 13 0 0 0 72 1 8 11 0 2 0 0 0 73 0 1 1 0 1 0 0 0 74 O! 3 4 1 2 0 0 0 75 0 0 0 0 4 0 0 0 76 0 2 3 1 2 0 0 0 77 9_ 38 55 1 3 0 6 5 78 1 4 7 0 2 0 2 0 79 1 5 9 2 1 0 1 3 80 .... • • • • 81 71 33 90 0 1 0 21= 5 82 OI 9 11 1 1 0 41 1 83 2 23 43 3 1 0 4 1 84 5= 24 46 0 2 0 3 1 85 91 70 101 14 11 0 24 12 86 • • • ° • • • 87 3 6 13 1 3 0 1 0 88 1 5 7 0 1 0 1 1 89 2 8_ 13 0 2 0 0 0 90 0 5i 5 1 1 0 O 0 91 1 251 28 1 1 O O 0 92 13 24 54 1 1 0 4 0 93 0 0 0 0 0 0 0 0 94 ...... g 3 95 1 0 2 0 2 0 0 0 96 14 4 34 0 4 0 18 15 97 2 15 24 1 O! 0 3 4 981 1 13 14 3 21 0 0 0 991 0 12 12 4 41 0 0 0 iO01 1 5 7 0 1 _ 0 0 0 101! 0 0 0 0 0 0 0 0 1021 5 12 23 0 7 0 0 0 4117fls _17_evf_s 4117pot f_s 4/17 m_f_s 4/17 abo_s earn 4/24fis 4124 bugs

103 0 20 20 4 0 0 0 0 i04 0 4 4 0 0 0 0 0 105 1 10 11 0 3 0 0 0 106 1 O 1 Q 2 O 2 1 107 11 7 9 1 0 0 • • 108 0 = 0 0 0 1 0 0 0 109 0 17 17 3 2 0 0 0 110 0 12 12 2 2 0 0 0 111 OI 22 22 2 2 0 0 0 112 2 19] 24 0 3 0 • 113 0 i 0 I 0 0 0 0 0 0 114 0 5J 9 1 0 0 0 0 115 0 211 21 2 2 0 0 0 116 0 301 30 5 6 0 0 0 117 1 3 4 0 3 0 0 0 118 0 81 8 3 4 0 0 0 119 0 10 12 0 1 0 0 0 120 0 21 21 3 2 0 0 0 121 4 25 31 4 3 0 0 0 i, 122 5 42 52 3 6 0 0 0 123 3 13 16 0 5 0 0 0 124 0 0 0 0 0 0 0 0 125 1 19 23 4 9 0 O 0 126 3 29 32 2 4 0 1 1 127 * * , * • ° 8 7! 128 * ° • • • • 0 0 129 - • " • ° •1 10 0 130J ° * * • • •1 5 151 1311 ° • • • • •1 6 4 1321 • ° • ° • °1 2 0 1331 .... ° * • ° • •1 5 8 134! • • * ° " • 2 1 135j * • • • • •l 1 1 136i • • * ° " • 11 4 1371 * • • • • • 13 2Q 138, , - * ° • • 3 0 139 • • • ° • • 0 0 140 • • • • • 9 5 141 • • • • " • 2 0 i 142 * • • •l • • 0 0

144143 o• • _ • *• • 56i I 20 145 • ° •[ * • • 6 7 146 • • " ° • " 3 0 147 • •1 * • " 18 3 148 " " ' • • • 10 14 149 ° • •' " • 9 4 150 " " " " • 0 0 151 • • • 10 4 152 • • • 39 1 153 * • " ° • 36 0 391

4/17 fls 4/17 dev frts 4/17 pot. frts 4/17 mat frts 4/17 aborts eaten 4/24 fls 4_24 buds

154 ., "I • ° •1 • 8 1 155 • * • • 11 3 156 ..... ° •, • 1 2 157 .... ° • • 18 ' 13 158 " *' ,,," * ° - 4 3

159 ° * " ° ii i • ° ° 160 ° • ° ° • 392

4/24 mat frts 4/24 aborts tot mat fits abo+eat aDorts/mat

1 2 2 2 10 1.000 2 16 10 16 10 .625 3 0 8 0 15 • 4 14 26 14 31 1.857 5 6 10 8 16 1.250 = 6 4 6 I 4 8 1.500 7 4 12 I 4 16 3.000 5 _, •l 0 10 ,, i 9 "1 0 5 • I 10 0 1 0 2 • 11 • • 2 5 • 12 • • 0 2 13 6 5 7 8 .714 14 10 16 = 10 25 1.600 15 1 7 1 11 7.000 16 • • 2 15 • 17 • • 2 7 • 18 16 35 20 53 1.750 19 0 0 0 1 • 20 0 14 1 31 14.000 21 4 13 5 21 2.600 22 3 4 3 17 1.333 23 0 2 0 5 • 24 ..... 25 0 0 0 1 • 26 ..... 27 0 0 0 0 • 25 ..... 29 4 9 5 14 1,800 30 9 6 16 11 .375 31 1 1 1 9 1.000 32 2 2 3 9 .667 33 0 0 0 0 34 0 0 1 2 0 35 0 0 3 17 0 36 • ° • • 37 6 7 9 20 .T78 38 4 0 8 7 0 39 4 18 6 27 3.000 40 1 0 1 1 0 41 2 4. 3 12 1.333 42 9 5 15 13 i .333 43 4 6 6 101 1.000 44 6 1 7 2 .143 45 9 20 10 301 2.000 46 0 3 0 7 4.7 0 13 0 25 48 1 12 8 24 1.50C 49 8 11 15 24 ,733 50 5 3 5 8 .60C 51 o o 1I 3 a 393

4/24 mat frts 4/24 aborts tot mat frts abo_-eat aborts/mat

521 0 0 0 5 i 53 0 4! 1 6 4.000 54 0 31 1 4 3.000 55, 0 2 0 5 56 0 4; 0 7 • 57 1 2 I 1 11 2.000 58 .I 0 1 • 59 0 0 0 18 60 0 1 0 7 • 81 0 0 _ 3 16 0 82 1 17 2 32 8,500 63 0 1 0 4 • 64 0 0 7 3 0 65 2 3 3 10 1.000 86 4 5 7 13 .714 87 0 0 0 5 • 68 0 0 0 5 • 69 * 0 4 • 70 4 2 8 6 .280 71 0 4 2 17 2.000 72 2 2 2 4 1.000 73 1 1 1 2 1.000 74 0 0 1 2 0 75 0 0 0 4 • 76 0 0 1 2 0 77 16 16 17 19 .941 78 2 0 2 2 0 79 3 0 5 1 0 60 • • • • • 81 12 17 12 18 1.417 82 7 9 8 10 1.125 83 11 4 14 5 .286 84 11 7 11 9 .636 65 43 7 57 18 .123 88 ° ° . , . 87 7 6 8 9 .750 88 9 6 9 7 .667 89 9 5 9 7 .556 90 2 2 3 3 .667 91 16 10 17 11 .588 92 23 2 24 3 .083 93 0 0 0 0 94 6 3 6 3 .500 95 0 0 0 2 96 0 6 0 10 97 18 2 16 2 .125 98 5 11 8 13 1.375 99 3 5 7 9 .714 100 1 7 1 8 7.00( 101 0 0 0 0 102 5 28 5 35 5.60(] 394

4/24 mat frts 4/24 aborts tot mat frts aDo+eat aborts/mat

103 7 I 9 11 9 .818 104 2 4 2 4 2.000 105 3 9 3 12 3.000 106 0 0 0 2 * 107 • • 1 0 • 106 0 0 0 1 * 109 5 9 8 11 1.125 110 5 1 7 3 .143 111 10 15 12 17 1.250 112 • • 0 3 • 113 0 0 0 0 ° 114i 2 19 3 19 6.333 1151 9 10 11 12 .909 116i 10 10 15 16 .667 1171 1 0 1 3 0 I 118 2 10 5 14 2,000

119 i 5 7 5 8 1.400 1201 14 10 17 12 .588 121 12 13 16 16 .812 1221 14 25 17 31 1.471 123 7 131 7 16 1.857 124i 0 OI 0 O • 1251 13 7 I 17 16 .41_ 126 27 2 29 6 .069 127 20 5 20 • .250 126 9 0 9 • 0 129 0 7j 0 • " 130 33 37 I 33 • 1.121 131 10 4 10 • ,400 132 15 111 15 • .733 133 35 16 35 • .457 134 18 6 18 • .333 135 3 3 3 • 1.000 136 10 8 10 • .600 137 7 2 7 * .286 138 1 1 1 • 1.000 139 7 6 7 • .857 140 10 7 ' 10 • .700

142141 85 24 58 _ .800.250 143 7 4 7 •, .571 144 10 7 10 •1 .700 145 10 22 10 • 2.200 146 4 0 4 • 0 147 9 2 9 , .222 148 7 5 7 • .714 149 5 9 5 • 1.800 150 2 5 2 " 2.500 151 5 3 5 • .600 152 26 23 261 • .88_ I 153 3 24 31 • 8.ooo 395

4/24 mat frts i 4/24 aborts tot mat frts abo+eat aborts/mat

154 13 I 3 13 ,• .231 155 12 8 12 • .667 156 0I 13 0 • ° 157 19 15 19 ° .789 158 7i 1 7 ° .143 159 I ° ° ° • 160 ° ° ° • ° 396

Eremalche kernensis population 2: reproductive branch nnmbers, flower numbers, bud numbers, fruit numbers, numbers aborted for plants sampled on March 29th, April 17th, and April 23th 1992.

See text for sampling methods. 397 plant # ft. color/sex sex 4/13 # branches 4/13 # rapr. bran. 4/13 # Flowers

1 1 1 1 2 2 12 2 2 ! 21 2 2 2 5 3 31 3 1 1 1 2 4i 4 1 1 2 2 3

5iI 5 41 2 1 1 1 61 6 1 1 1 1 3

71i 7 1 1 1 1 '7 81 8 1 1 1 1 10 9' 9 1 1 1 1 '10 10i 10 1 1 1 1 3 11 i 11 1 1 1 1 3 12 12 1 1 1 1 6 13: 13 1 1 1 1 7 14, 14 1 1 1 1 0 15 15 1 1 1 1 0 16 16 2 2 1 1 1 17 17 1 1 1 1 7 18 18 1 1 1 1 2 19 19 1 1 1 1 10 20 20 1 1 1 1 6 21 21 1 1 1 1 1 22 22 1 1 1 1 19 23 23 1 1 1 1 1 24 24 • • 1 1 0 i i 25 25 1 1 1 1 4 26 26 1 1 I 1 1 8 27 27 1 1 1 1 4 28 28 • • I 1 1 0 29 29 1 1 1 1 30 30 1 1 3 3 8 31 31 1 1 5 3 25 32 32 2 2' 1 1 2 33 33 1 1 1 1 2 34 34 1 1 1 1 5 35 35 1 1 1 1 6 36 36 1 1 1 1 5 37 37 1 1 1 1 1 38 38 1 1 1 1 0 39 39 1 1 1 1 3 40 40 2 2 4 4 I 14 I 41 41 1 1 3 3 2 42 42 • ° 1 1 0 43 43 1 1 2 2 1 44 44 2 2 1 1 1 45 45 1 1 1 1 2 46 46 2 2 2 2 5 47 47 2 2 3 3 7 48 48 " ° 1 1 1 49 49 1 1 1 1 1 50 50 ° 1 1 0 51 51 1 1 2 2 6 398

iplant# fl. colo#sex sex _13 # branches 4/13 #repr. bmn. _13 # Flowem

52 52 1 1 1 1 1 53 53 1 1 2 2 7; 54 54 1 1 4 4 25 55 55 2 2 3 3 1 56 56 1 1 1 1 1 57 57 2 2 4 3 26 58 58 1 1 2 2 14 59 59 1 1 4 4 111 60 60 1 1 4 4 21 61 61 1 1 3 3 7 62 62 1 1 3 3 7 63 63 3 1 4 4 14 64 64 2 2 1 1 2 65 65 1 1 1 1 2 66 66 1 1 1 1 2 67 67 1 1 1 1 2 68 68 1 1 1 1 2 69 69 1 1 1 1 1 70 70 1 1 1 1 2 71 71 1 1 1 1 1 72 72 2 2 2 2 4 73 73 1 1 4 4 2 74 74 1 1 3 3 11 75 75 1 1 2 1 1 76 76 1 1 1 1 0 77 77 1 1 1 1 0 78 78 1 1 1 1 3 79 79 1 1 1 1 1 80i 80 1 1: 1 1 0 81 81 1 1 1 1 1

8382 8283 1 1 1 1i1 01 84i 84 2 2 : 1 1 4

85 iI 85 1 1 4 4 4 86 86 1 1 1 li 0 87= 87 1 1 1 11 0 881 88 1 1 1 11 4 89 89 1 1 1 1 0 90 90 1 1 1 1 2 91 91 1 1 1 1 2 92 92 1 1 1 1 2 93 93 1 1 3 3 5 94 94 1 1 1 1 1 95 95 "2 2 2 1 2 96 96 2 2 3 3 8 97 97 1 1 2 1 1 98 98 2 2 1 1 5 99 99 1 1 3 3 10 100 100 1 1 1 1 1 101 101; 1 1 1: 1 1 102 102 1 1 1 1 1 399 plant # fl. color/sex sex 4/13 # branches 4/13 # repr. bran. 4/13 # Flowers

103 103 1 1 1 1 0 104 104 1 1 1 1 4 4O0

4/13 # buds 4/13 #fmits 4/13 TotalPotentialFruit# 4/23 buds 4/23fls _23 matfds I

1' 40 26! '78 0 5 61 2 17 6i 28 0 0 9 3' 3 6' 11 0 0 "7 4 15 9 27 0 0 12 5 2 1; 4 0 0 2 6 7 2 12 8 11 6 7 33 31 43 7 26 15 8 9 0 19 3 9 5 9 27 4 41 6 20 21 10 4 1 8 0 2 1 11 2 1 6 0 0 0 i2 13 10 '"29 4 10 12 i3 8 14 29 0 0 9 14 2 7 9 0 0 3 15 1 3 4 0 0 0 16 2 0 3 0 0 2 17 4 10 21 0 1 9 18 3 6 11 2 0 6 19 34 18 62 9 19 26 7 7 20 0 2 21 3 3 7 0 0 0 22 25 30 74 0 5 46 23 3 5 9 2 3 5 24 5 0 5 1 0 2 25 7 0 11 4 2 o 26 18 13 39 5 11 15; 27 6 8 16 " " "1 28 1 1 2 0 0 1 29 0 4 5 " ' " 30 28 20 56 7 10 18' _1 35 24 84 4 26 8 32 6 1 9 O 1 2 33 13 4 19 4 9, 1 34 11 11 27 2 7! 16 35 15 11 32 6 6 11 36 9 5 19 1 6 5 37 2 7 10 • • • 38 3 3 6 0 0 3 39 4 2 9 • • • 40 20 21 551 0 16 46 _41 16 15 331 4 7 16 42 1 0 1 0 0 0 43 9 2 12! 1 3 4 44 2 2 5 0 1 3 45 4 2 8 4 0 7 46 6 0 11 O, 3 4 47 11 12 30 1 7 13 48 2 2 5 O' 0 2 49 3 0 4 1 1 1 50 1 1 2 O' 0 1 51 6 20 32 0 0 15 401

4/13 # buds 4/13 # fruits 4/13 Total Potential Fruit # 4/23 buds 4/23 fls 4/23 mat frts

52 1 3 5i 0 0 0 53 20 24 51_ 1 3 21 54 36 55 116 0 0 52 55 22 2 25; 6 7 8 56 1 4 6' 1 1 3 57 19 30 75 0 0 3 58 12 37 631 0 1 40 59 59 41 111 2 3 52 60 34 78 133; 5 1 81 61 13 19 39 0 i 28 62 7 47 61 0 0 28 63 27 40 81 0 13 16 64 3 0 5 0 0 0 65 5 4 11 4 3 2 66 1 2 5 3 3 2 67 5 2 9 3 2 1 68 1 3 6 3 3 0 69 1 3_ 5 1_ 0 4 70 5 OI 7 2 2 4 71 3 4 8 4 2 3 72 15 11 30 Oi 3 14 73 9 741 85 OI 2 40 74 27 241 62 OI 3 37 75 3 3_ 7 OI 0 4

76 77 13 6oI 73 0"1 0" 5" 78 16 19; 38 O, 5 30 79 0 2 3 Oi 0 9 80 0 17 17 0 0 0 81 7 9_ 17 • • - 82 10 191 30 O; 2 18 83 1 4 5 0 0 0 84 1 3 8 1 2 4 85 8 45 57 0 1 23 86 2 6 8 2 2 3 87 1 6 7 0 1 8 88 3 12 19 0 0 2 89 1 7 8 1 1 7 90 8 9 19 0 2 13 911 2i 9 13 0 1 13

921 3 I 10 15 • • 93 25 33 63 0 3 39 94 1 1 3 0 1 2 95i 9 2 13 0 3 8 96 21 9 38 1 7 13 97 3 4 8 0 0 5 981 6= 6 17 0 3 7 99 8 50 68 0 4 50 100 1 4 6 0 2 3 101 0 3 4 0 0 5 102 4 12 17 0 0 13 402

4/13 # buds 4113# fruits 4/13 Total PotentialFruit# 4_23 buds 4_23fls 4/23 matfrts

103 0 7 7 0 0 41 104 9 47 60 0 0 321 403 4/23 aborts aborts/mat Column 14

1 17 .279 52.000 2 15 1.667 22.000 3 8 1.143 5.000 4 9 .750 18.000 5 1 .500 3.000 6 4 .667 ; 10.000 7 20 1.333 40.000 8 10 2.0001 19.000 9 6 .286 37.000 10 5 5.000 7.000 11 12 " 5.000 12 3 .250 19.000 13 18 2.000 15.000 14 7 2.333 2.000 15 7 " 1.000 16 3 1.500 3.000 17 7 .778 11.000 18 4 .667 5.000 19 6 .231 44.000 20 3 .300 13.000 21 4 • 4.000 22 17 .370 44.000 23 4 .800 4.000 24 0 0 5.000 25 7 • 11.000 26 4 .267 26.000 27 • " 10.000 26 3 3.000 1.000 29 " 1.000 30 16 .889 36.000 31 27 3.375 60.000 32 3 1.500 8.000 33 6 8.000 15.000 34 7 .438 16.000 35 10 .909 21.000 36, 8 1.600 14.000 37 " • 3.000 381 23 7.667 3.000 391 • • 7.000 401 0 0 34,000 411 8 .500 18.000 421 4 1.000 431 1 .250 10.000 441 2 .667 3.000 451 3 .429 6.000 46 2 .500 11.000 47 3 ,231 18.000 48 0 0 3.000 49 0 0 4.000 50 0 0 1.000 51 3 .200 12.000 4O4

4/23 abotls aDorts/mat Column 14

52 3 • 2.000 63 8 .361 27.000 64 14 .269 61.000 55 0 0 2,3.000 56 1 .333 2.000 57 0 0 45.000 58 4 .100 26.000 59 2 .036 70.000 60 11 .136 55.000 61 4 ,14,3 20,000 62 2 .071 14.000 63 4 .250 41.000 64 1 • 5.000 65 6 3.000 7.000 66 5 2.500 3.000 67 2 2.000 7.000 68 4 "1 3.000 69 1 .250 2.000 70 1 .250 7.000 71 2! .667 4.000 72 4i .286, 19.000 73 61 .150 11.000 74 5 I .1351 38.090 75_ 1: .250 4.000 761 *1 ,, 3.000 771 OI OI 1.000 78 0 0 19.000 791 4; ._ 1.000 80i 3i ° 0 81 • • 8.000 82 3 .167 11.000 83 0 • 1.000 84 1 .250 5.000 85 10 .357 12.000 86 1 .333 2.000 87 5 .625 1.000 88 2 1.000 7.000 89 2 .266 1.000 90 1 .077 10.000 91 0 0 4.000 92 * ° 5.000 93 0 0 30.000 94 0 0 2.000 95 0 0 11.000 96 2 .154 29.000 97 0 0 4.000 96 5 .714 11.000 99 4 .080 18.000 100 0 0 2.000 101 1 .200 1.000 102 4 .306 6.000 405 4/23 aborts aborts/mat Column 14

103 5 1.250 0 104 10 .312 13.000 406

Eremalche kernensis populations I and 2: density, estimated fruit production for plants sampled in 1993.

See text for sampling methods. 407 # plants/.25 m quad, p 1, nonranclom # plants per .25 m2, p 2

1 9 5 2 14 1 3 21 6 4 6 27 5 26 2 6 9 4 7 7 7 8 9 0 9 25 2 10 * 3 11 2 12 * 3 13 * 2 14 * 7 15 • 0 16 • 0 17 • 33 408

Eremalche pop pl densi_ Densi_ Est. f_.pmd Eremalche pop 2 pop2 Est. _pmd

2 9 9 2i 61 61 2 16 9 9 16 9 9 3 0 9 9 0 7 7 4 14 9 9 14 12 12 5 8 9 9 8 2 2 6 4 9 9 4 6 6 7 4 9 9 4 15 15 8 0 9 9 0 5 5 9 0 9 9 0 21 21 10 0 14 14 0 1 1 11 2 14 14 2 OI 0 12 0 14 14 0 12 12 13 7 14 14 7 9 9 14 10 14 14 10 3 3 15 1 14 14 1 0 0 16 2 14 14 2 2 2 17 2 14 14: 2 9 9 18 20 14 14 20 6 6 19 0 14 14 0 26 26 20 1 14i 14 1 10 10 21 5 14 14 5 0 0 22 3 14 14 3 46 46 23 0 14 14 0 5 5 24, • 21 21 • 2 2 25i O, 21 21 0 0 0 26i o= 21 21 • 15 15 27 Oi 21 " 21 0 • • 28 • 21 21 • 1 1 29 5 21 21 5 • ., 30 16 21 21 16 18 18i 31 1 21 21 1 8 81 32 3 21 21 3 2 2' 33 0 21 21 0 1 1 34 1 21 21 1 16 161

35 3 21 21 3 11 11[ 36 • 21 21 • 5 5= 37 9 21 21 9 * *[ 38 8 21 21 8 3 3[ 39 6 21. 21 6 • *l 40 1 21 21 1 46 46[ 41 3 21 21 3 16 16 42 15 21 21 15 0 0 43 6 21 21 6 4 4 44 7 21 21 7 3 3 45 10 6 6 10 7 7 46 0 6 6 0 4 4 47 0 6 6 O_ 13 13 48 8 6 6 8: 2 2 49 15 6 6 15 1 1 50 5 6 6 5i 1 1 51 1 26 26 1, 15 15 Eremalche pop 1 pl densi_ Density Est. fn. pmd Eremalche pop 2 pop2 Est. f_pmd

52 0 26 26 0 0 0 53 1 26 26 1 21 21 54 1 26 26 1 52 52 55 0 26 26 0 8 8 56 0 26 26 0 3 3 57 1 26 26 1 3 3 58 0 26 26, 0 40 40 59 0 26 26= 0 52 52 60 0 26 261 O 81 81 61 3. 26 26I 3 28 28 62 2 26 261 2 28 28 63 0 26 26 0 16 16 64 7 26 26 7 0 0 65 3 26 26 3 2 2 66 7 26 26 7 2 2 67 0 26 26 0 1 1 68 0 26 26 0 0 0 69 0 26 26 0 4 4 70 8 26 26 8 4 4 71 21 26 26 2 3 3 72 2! 26 26 2 14 14 73 1 26 26 1 40 40 74 1 26 26 1 37 37 75 0 26 26 0 4 4 76 1 26 26 1 ° 77 17 9 9 17 5 5 78 2 9 9 2 30 30 79 5 9 9 5 9 9 80 9 9 ° 0 0 81 12 9 9 12 ° 82 8 9 9 8 18 18 83 14 9 9 14 0 0 84 11 9 9 11 4 4 85 57 9 9 57 28 28 86 " 7 7 ° 3 3 87 8 7 7 8 8 8 88 9 7 7 9 2 2 89 9 7 7 9 7 7 90 3 7 7 3 13 13 91 17 7 7 17 13 13 92 24 7 7 24 • • 93 0 9 9 0 39 39 94 6 9 9 6 2 2 95 0 9 9 0 8 8 96 0 9 9 0 13 13 97 16 9 9 16 5 5 98 8 9 9 8 7 7 99 7 9 9 7 50 50 IO0 1 9 9 1 3 3 101 0 9 9 0 5 5 102 5 25 25 5 13 13 410

Eremalc_e pop 1 pl densi_ Densi_ Est f_ pmO Eremafche pop 2 pop 2 Est f_pmd

103 11 25 25 11 4 4 104 2 25 25 2 32 32 105 3 25 25 3 • 106 0 25 25 0 • • 107 1 25 25 1 * • 108 OI 25 25 0 o 109 8 25 25 8 • ° 110 7 25 25 7 • o 111 12 25 25 12 • . 112 0 25 25 0 • o 113 0 25 25 0 • • 114 3 25 25 3 • o 115 11 25 25 11 • 116 15 25 25 15 • • 117 1 25 25 1 • • 118 5 25 25 5 • 119 5 25 25 5 • • 120 17 25 25 17 • • 1211 16 25 25 16 • • 1221 17 25 25 17 • • 1231 7 25 25 7 • • 124 0 25 25 0 125 17 25 25 17 126 29 25 25 29 • • 127 • • 4 61 ° • 128 ° ° 4 9 • * 129 • • 4 7 • • 130 • • 4 12 • 131 • • 1 2 • • 132 " 6 6 • • 133 • • 6 15 • • 134 • • 6 5 • 135 • • 6 21 • • 136 • • 6 1 ' • 137 • 6 0 = • 138 • 28 12 " • 139 " • 28 9 .... 140 ° • 28 3 • 141 ° ° 28 0 • • 142 " • 28 2 • • 143 ° ° 28 9 • • 144 ° ° 28 6 • • 145 ° " 28 26 • • 146 " • 28 10 ° • 147 " • 28 0 • • 148 • 28 46 • • 149 28 5 • • 150 • 28 2 ° 151 • • 28 0 152 • 28 15 153 • • 28 • • 411

iEremalche pop l pl densi_ Oensi_[ Est. fn. prod Eremalche pop 2 pop2 Est. f_prod I 154 °1 ° 28 1 ° • 155 • 28! • • • 156 ° 28i 18 ° 157 .i 28 8 • 158 "1 • 28 2 • • 159 ° 28 1 • • 160 " 28 16 " • 161 "l " 28 11 " • 162 ol ° 28i 5 ° 163 .I . 28 i . . . 164 " ° 28 3 " • 165 " " 28 " • 166 " ° 2: 46 ° • 167 " • 4 16 168 ° ° 4 0 • 169 °' ° 4 4 ° • 170 • 2 3 171 ° ° 4 7 • • 172 • ° 7 4 ° ° 173 • ol 7 13 ° ° 174 " " 7 2 " " 175 • • 7 1 • • 176 ° • 7 1 • - 177 • ol 7 15 ° o 178 ° 7 0 " " 179 °' 2 21 ° ° 180 ° ", 3 52 ° 181 • ", 3 8 • ° 182 " "I 2 3 183, * ° 3 3 * ° 1841 ° • 2 40 ° • 185 ° °, 2 52 ° 186 ° ° 3 81 ° ° 187[ ° • 3 28 • • 188] • • 3 28 • • 189 j • -' 1 16 - 19o • • 8 o, • .I-, 191 ° • 8 2[ • °1 192 " • 8 21 • "i 193 ° • 8 1 " " 194 ° ° 8 O= " • 195 ° ° 8 4; ° ° 196 ° • 8 4 °' ° 197 ° ° 8 3 °. ° 198 = • 33 14 • ° 199 * 33 40 ° 200 ° ° 33 37 ° ° 201 • ° 33 4 ° . 202 ° ° 33 ° ° ° 203 • • 33 5 204 ° * 33 30 °

','_',, ,' , 412

Eremalche pop 1 pl densi_ Density Est. fn. prod Eremalchepop 2 pop2 Est. f_prod

205 * ° 33 9 * • 206 "' " 33 0 • 207 " " 33 • . 208 .I ° 33 18 • e 209 " " 33 0 • o 210 " " 33 4 - . 211 " • 33 28 ° . 212 " " 33 3 • ° 213 " ° 33 8 • . 214 " " 33 2 • • 215 " " 33 7 -, 216 " " 33 13 -, 217 " " 33 13i "1 " 218 " " 33 " "1 " 219 " • 33 39i • • 220 " ° 33 2 • • 221 ° " 33 8 • • 222 • • 33 13 • ° 223 " " 33 5 • -, 224 " • 33 7 • .I 225 • • 33 50 • .I 226 • • 33 3 • .i 227 • • 33 5 • • 228 " • 33 13 • • 229 • 33 4 • • 230 • • 33 32 • • 231 • • • o . . 232i ...... 2331 * o, • , , . 2341 ...... 2351 • ., .... p2 ctensity population aPorts +eaten Unsucc./success

1 ! 4 1 10 5.000 21 4 1 10 .625 3 4 1 15 4 4 1 31 2.214 5 1 1 16 2.000 6 6 1 8 2,000 7 6 1 16 4.000 8 6 1 10 9 6 1 5 • 10 6 1 2 • 11 6 1 5 2.500 12 28 1 2 13 28 1 8 1.143 14 28 1 25 2.500 15 28 1 11 : 11.000 16 28 1 15 i 7.500 17 28 1 7 i 3.500 18 28 1 53 2.650 19 28 1 1 • 20 28 1 31 31.000 21 28 1 21 4.200 22 28 1 17 5.667 23 28 1 t. 5 24 28 1 • • 25 28 1 ! 1 • 26 28 1 ° • 27 28 1 0 • 28 28 1 ° • 29 28 1 14 2.800 30 28 1 11 .688 31 28 1 9 9.000 32 28 1 9 3.000 33 28 1 0 ° 34 26 1 2 2.000 35 28 1 17 5.667 36 28 1 • • 37 28 1 20 2.222 38 28 1 7 .875 39 28 1 27 4.500 40 2 ; 1 1 1.000 41 4I 1 12 4.000 42 4I 1 13 .867 43 4 I 1 10 1.667 44 2 1 2 .286 45 4 1 30 3.000 46 7 1 7 ° 47 7 1 25 * 48 7 1 24 3,000 49 7 1 24 1.600 50 7 1 8 1.600 51 7 1 3 3.000 4 p2 densi_ ;opulation aDo_s +eaten UnsuccJsuccess 4_

52 7 1 5 53 2 1 6 6,000 54 3 1 4 4.000 55 3 1 5 56 2 1 7 ° 57 3 1 11 11,000 581 2 1 1 591 2 1 18 ° 601 3 1 7 ° 611 3 1 16 5.333 62: 3 1 321 16.000

5643 i 81 1 ; .429° 65 8 1 10i 3.333 66= 8 1 131 1.857 67: 8 1 5 68 8i 1 5 * 69 8 1 4 * 70 8 1 6I .750 71 81 1 17 I 8.500 72 33 1 4 2.000 73 33 1 2; 2.000 74 33 1 2 i 2.000 75 33i 1 4 76 33 1 2 2.000 77 33 1 191 1.118 78 33 1 2 1.000 79 33= 1 1 .200 80 33 1 • 81 33 1 18 1.500 82 33 1 10 1,250 83 33 1 5 .357 84 33 1 9 .818 85 33 1 18 .316 86 33 1 * , 87 33' 1 9 1.125 88 33 1 7 .778 89 33 1 7 .778 9O 33 1 3 1,000 91 33 1 11 .647 92 33 1 3 .125 93 33 1 0 • 94 33 1 3 .500 95 33 1 2 ° 96 33 1 10 * 97 33 1 2 .125 98 33 1 13 1.625 99 33 1 9 1.286 100 33 1 8 5.000 101 33 1 0 102 33 1 35 7.000 41.5 p2 density population aioorts +eaten Unsucc./success

103 33 1 9 .618 104 33 1 4 2.000 105 • 1 12 4.000 106 • 1 2 107 ° 1 0 0 108 1 1 109 1 11 1.375 110 • 1 3 .429 111 • 1 17 1.417 112 • 1 3 • 113 1 O! • 114 " 1 19I 6.333 115 1 12 1.091 116 • 1 16 1.067 117 • 1 3 3.000 118 ° 1 14 2.800 119 ° 1 8 1.600 120 • 1 12 .706 121 • 1 16 1.000 122 • 1 31 1.824 123 * 1 18 2.571 124 ° 1 i 0 • 125 ° 1 16 .941 126 • 1 6 .207 127 • 2 17 .279 128 ° 2 15 1.667 129 ° 2 8 1.143 130 ° 2 9 .750 131 ° 2 1 .500 132 • 2 4 .667 133 ° 2 20 1.333 134 ° 2 10 2.000 135 • 2 6 .286 136 • 2 5 5.000 137 • 2 12 ° 138 • 2 3 .250 139 ° 2 18 2.000 140 • 2 7 2.333 141 ° 2 7 • 142 " 2 3 1.500 143 " 2 7 .778 144 • 2 4 ,667 145 ° 2 6 .231 146 •i 2 3 .300 147 ,I 2 4 • 148 • I 2 17 .370 149 2 4 .80O 150 • 2 0 0 151 ° 2 7 • 152 • 2 4 .267 153i ° 2 4.t6 p2 clensity population aborts +eaten UnsuccJsuccess

154. .i 2 3 3.000 155 "1 2 • 156 • 2 16 .889 157 • 2 27 3.375 158 2 3 1.500 159 • 2 8 8.000 160= • 2 7 .438 161I • 2 10 .909 1621 " 2 8 1.600 163 • 2 • . 164 ° 2 231 7.667 165 " 2 -i 166 • 2 0 0 167 2 8 .500 168 " 2 4 • 169 • 2 1 .250 170 " 2 2 .667 171 2 3 .429 172 " 2 2 .500 173 " 2 3 .231 174 • 2 0 0 175 • 2 0 0 176 " 2 0 0 177 " 2i 3 .200 178 • 2 3 179 ° 2 8 .381 180 • 2 14 .269 181 • 2 0 0 182 • 2 1 .333 183 • 2 0 0 184 " 2 4 .100 185 ° 2 2 .038 186 2 11 .136 187 " 2 4 .143 188 • 2 2 .071 189 • 2 4 .250 190 " 2 1 • 191 " 2 6 3.000 192 " 2 5 2.500 193 • 2 2 2.000 194 " 2 4 " 195 " 2 1 .250 196 " 2 1 .250 197 " 2 2 .667 198 " 2 4 .286 i 199 " 2 6 .1501 200 • 2 5 .135 201 •i 2 1 .250 202 "' 2 • .' 203 "I 2 0 0 204 "I 2 0 o • 7 p2 density population iaborts +eaten UnsuccJsuccess

205 2 4. ._. 206 ° 2 3 207 • 2 ° 208 • 2 3 .167 209 • 2 0 * 210 2 1 .250 211 * 2 10 .357 212 ° 2 1 .333 213 " 2 5 .625 214 • 2 2 1.000 215 • 2 2 .286 216 • 2: 1 .077 217 ° 2_ 0 0 218 • 2 • • 219 • 2 0 0 220 • 2 0 0 221 • 2 0 0 222 • 2 2 .154 223 • 2 0 0 224 ° 2 5 .714 225 • 2 4 .O8O 226 • 2 0 0 227 • 2 1 .200 228 • 2 4 .308 229 " 2 5 1.250 230 • 2 10 ,312 231 • ° • • 232 • • " • 233 ° ° 234 • • 235 • • 418

Appendix B

Data from greenhouse Experiments 1, 2, and 3 conducted at U.C.S.B. 1993 4i9

sgec_s ). Type: 5tnn_ Gategory _mng Gate_jo_, GategoP/ tnteqet 5u_xj

Grass: lflfam'ta... Nom_n_d ilflforrnaovo N(x'nm_ NOCTtV'._ COntU_U_J$ iflf,_mauve ,_orrflat: • I_ec. placs_ • , • Mean: • , 1,0(_3 :5[_, Qe'naUon: i * 0 :51_ P.troc.I • 0 VS/lanc_ * 0 Goeff. of vanabon: • -- O MmlnlUr_ • _ 1 Pfa/l[ 1 _q_erlment '1 I MaXlfflum: * Plarlt 17 Plant 5 ,_q:)eflnlefll 3 I Hange: • I§.QO0 4,000 2,._)0 0

MksS_ngL;ei_: • O 140 0 0 :5uffl: • _99.C_0 5urrt of ,_:itJa¢'l•_$: 699,C_1 420

Se;! vs. Outcross; qumoer of viao;e 5eeas/.. Did Pna; _=_17 # ol ADoneO _eeO _-olal WI v_aDJe Seeos (rn FZ_ma_n Dale Type: _ate(JO_ Int_er Ga_efJory Integer MeaJ .. 5_'_3 _,ou_rce; user _.ntered User _ LJsef _.n_ed user _.n_red t.Jsef P_._er_l LJ$et _'_l_mo (.;;ass: Norn_al f,_onUnuous NOf'm_l U.on_nuous Conunuous lnlocmalwe _orr'naC • Free I-orrra! I-ixeO [31_. _laCes; • 3

_10. L3evlauon: * 11,960 1(_._4 8.214 _la. _,11_. • ,45? .6.32 .31_ Vafla._:_ • 143.041 ;_?_.036 0?.463 * _001/. or vans_on: ,, 2..?2:0 3._'.'._7 2.=2_ MI/1_It _81! 0 YeS 0 0 MBXlrnunl: (_J_.; _._ 2U:_ NO 273 1U4,1_3 Flarl(3e: 1.000 20_.01:0 1.000 ;_3.(X]O 1_4,180

MlS_flg (_eILS: 46 14 163 ! 1 30 _um: • 3017.(300 3137,000 ;_3_0.010 _urn o! :_(:luams: * 111064.000 203253,000 _33_0.7_

i-:.: 421

i Gommenls see(_s meg? Mean mcl. s41eowt, (rag,) prgDonion o! aOortecl soe_s Accrue Orop. aOottecl see_ I TygB: ; _tr_l GaL_off _ _aa,t _

:sGlaSS:ource: u,nsferormatEnwtereae uNommaser EnJterm UCmmSe, rnuoEntuesr_ 13con,nuo.fr_n¢ = _

_=_1.Em_. • .001 .011 .014 VS_&t_ac - .02.I .05_ .10I _ff. Of V_tiOtt: • * .17U .48_. .404 MINtI_IU_ * Yes ._ n 0 MeJOnlum_ * NO 1.340 1,000 1.571 FzJz(l_]e: • 1.QGO .98.') 1,(_o 1.571 COUi'lt: l " 6U_I 46_ 495 41_5

MiS_ng GetLS:_um:: 1 23441Q.81;] 20424_,315 204_._I _U1110t _:;uBfeS: - 374.1P.5 1_0+.657 3.54.103 422

Inl_l COlumn type: Neal _,_: USer EntenKI Cla_: C,onunuous b Fon'nat: Free Forest Nxe¢l

M61_: • _1rt UevlaOon; •

Goelt, Of VStlabO_1: •

Goun[:I MISBI_g CS_lS: • _um: •

_| _ I t 423

species t E;kHI Plant 1 exlra seeas _.xpenment 1 I I _- kemensLs 2. _kH t PhzntI ss I:.xDenrnen;1 I I E, Y,emens+s _] _EH 1 plant 1 SS I=x0enmenl 1 1 P- Xemens_s 4 _)C-II pklnt 1 ss _.J(oenmen[1 I P..I_emensxs 5 EkH 1' Plant1 ss E.xDenmen[1 1 P--kemensts 5 _kP+t Ptanl 1 ss b:xaenmem I 1 E. _emens_ • I=kHI Plant1 ss k,zDennlenl 1 P-kemenszs 8 I;kH I Plant1 ss P-xDenmenl1 | P..kemen.s_ 9 EiddI Pi3nt I SS EJ(Denmon[I I P..kemen,s_ 10 _.KH'+ Plant1 ss _--xDenmentl 1 P_icemen_ 11 E;kH1 Plant1 SS ExDenment 1 1 E. kamensas 12 ]:kH 1 Plant1 unl0ucnea I=.xaenmenlI I t:. Yemensz, s 13 _kH I Piant1 nolg_ven i=.xDenrnent1 1 t=.Kemen_ 14 _kH1 P1antl EkH2 i._a_12 _.xDenmenll I P..kemep.,s_ 15 EkHI Plant1 EkH4 Plato4 Exaenmem 1 P.._ernensls I U _)_ 1 Planl 1 EkH1 Plan| 1 _xoenmenl I 1 P- _mmens_ 17 EkH 1 Pklrll 1 un_uctl _xDenmen[ 1 1 P,.kemensrs '_8 EkHI Pqant1 In? Expenmen! I I P- I

,._ 2120 I=kHIt=kH1 Plant1plant1 EEkkHe53 PtPla_to5t3 E.xoenment_'xDenment 11J_P..Kemens.l(ementlass 22 EkH1 Ptant 1 EkH1 Pla_'l ExDenmenl E. kemen._s 23 EkHI Piantl EkH2 Ptanl2 Exl_enmenl Ii _emens_s ;. 24 Ek.;-il plant I EP,H 1 ptan!1 Expenmen[ I I P*-kemens+s ?.5 EkH1 p_rtX1 E_5 Ptard5 Ex_enmem _ 1 I E. kemet_-s •"" 26 E:kH1 P_a_tl EI_4 pta_lt4 Exgenment P-kemen_ 27 EkH1 plank1 EkH4 Plant'4' ExDenmenl P-.._emens_s 28 EkH1 Pta_ I EkH5 Pta_5 F__genmen[ I i _. kemens_ Z9 EkH_ p_nt "t E_J_I Piant1 EJ_Denmen_ 1 ' P- kemens_ 3O EPJHI, plant 1 EkH4 Pta_ 4 _.xgenment P,-kemens_ 31 EkH 1 PmntI EId-_5 Plan ,5 E.,(genmenz P.._(emenszs 32 EkH 1 Ptanl I umOtx_ _._genmenl I F_Yame, r,,_ 33 EPH, _ PUantl _3 Pta¢_3 _;.xaenment '_ P..._u_msns_ 34 EkHI Plant1 EkH2 Pt_2 _xgenmen( I P..l_tnef_sts 35 EkH1 PlantI Eiddl _ I Exgenmen! 1 J E. k,_ens_ 3_ r-icH1 plant 1 EkH3 PIll3 _xDenment 1 J I P..kemens_ 37 P.kH_ Pqant1 _kH5 Planfb Exoenment 1 ' P.._ernens_ ' 38 l:kH1 Plant1 EkH3 Plard3 _.x_enmen!1 _, P.emer_s_s 319 EkHI Ptarlt1 EkH5 Plant'5 ExDenmen( I _ le_nens=s • 40 EkH1 ptant1 EkH4 Ptant'4 ExDenmen! 1 + P__Kemens_ 41 E_H1 plant 1 El_rl2 _ z _.xgeament I=.I(emens_s 42 EkH1 P_ant1 EKH1 Plant1 Exgenment P- _emens_s 43 EkH2 Ptarl[2 EkH5 P_nt,5 __J(i)enment P_kemens_s 44 EkH2 plant2 extraseecis - P.xaenment P,.Kerllep_l_ 45 EkH2 plant2 ss Exoenmen( P..)mmens_s 40 EkH2 Plant2 ss 1=xDenment E.P,emenszs iiii 4*' E:kH2 plant2 ss _.xDeamenl E.l

Rec_olem Hec;p+entGale<:jor/ ;-+Ollenoonor Po.enDonorCalegOr_ _xpenment+D Populauon sDecles 73 r-Kl_2 P;ant 2 _kH2 P_I 2 =,_Denmen( I _ Xemenms 74 _k)-1_ Ptant 2 _kH 1 Plan! I _.+(08nment I P.,t

9897 _i+_J(H3,H3 PlP_ant3nt 3 un_(Ptc14_c_ Plant 4 ,£_:.xpenmenxpenment_ I I Ii I_=..i

_13378 r'_KHKH44 PlaPlato4_4 _-kH4ss Plant 4 E.xDenmemlP..xpenmemll j I_ F_lP_Kernens_emensls_ 138 _kH4 Plant4 E;kH5 P_a_lt5 f=xDenment 1 J 1 E.kernens_ 1;]9 I=l_Pi4 Ftant 4 _kH4 plan( 4 _.xDenmen! 1 I 1 F.. kemens_ 140 E:I(H4 Plant4 _kH2 Plant2 ExDenmentl I 1 _Kemens_s 141 I=kH4 Went4 _H3 Planl3 _xpenment I I 1 P..Kemens_s 142 I=kH4 Plan(4 _kH1 Pla_l _J(Denmen_ I I 1 _._sn'lens_s 143 _H4 Plan_4 _H2 Plan(2 F.xDenment _ I 1 P_kefnensLs 144 I E_H4 Planl4 EkH1 P]ardl F.xDenment I I 1 _..kemsnsis 425

R_BDBeNI HOC_DIOnTGa(oQory POl_enD0f'lor F_Ol]OnDON0i'C(II@gO_ _.x0enrnemJD Po(_uLatton sDec_es 14_ _-kH4 Plan( 4 _-kH4 Plan! 4 _._l_enment I I I _--Kemens_s 1,4,6 _KH4 ,_lant 4 _kH4 Plat1! 4 _x_)onmenl I _. _Drnensts 147 _kH4 Plant 4 _I_H3 Plari__ _x_)enrnen! I I _ KerT1en$_s 148 L=_H4 P_:_I! 4 : _kH2 P_t 2 _0enmen! I I _-. komens_s 149 r'-kH4 I_I_It4 _kH_ Ptmlt5 _x0enmentl I _rnens_

15_ _kH4 ._n_4 _:kH4 PI_rlT4 _.x_)0nrnent I I i _. kemensxs 1521 _kH4 _It4 _kPi5 _l,_nt5 _._enment I I , _.ki_nw,_s_s I_i _kJ-14 V_Ln_4 i:k_2 Pi.?,n_2 _..x_)onmenf I I J_..kecrLens_ i_4i _:_H4 PraY4 _H_ k'_l,nt_) _..xDenmsn! I I _..XO_nS_

156i _V.H4 _nt4 _k)'_5 ._l_It_ _.x0enrnen! I I L:.m I._7i _:_H4 P'tant4 _P.HI _I L_x0enmenl I I P..k.emens_ I _ _)_H4 _ 4 _(H3 PLanT_ _.xDenmen! I l P..k.orneft_.s 159 _kH4 F_dnt4 _kH5 P_.5 _.,xpenrnent _ I _-m 150 _KH4 _ 4 i E:kHI pI_I! I _.,x_)enment I I L:.)(emens_s 151 r'l_H4 ,_I_4 _I'.HI Plan_1 _.xl;enment I ] _..l_rnens_s I _2 _kH5 Plant _ Ss • _.x_i]nment I I _.. l(ernensts 1(_.._ L:VJ-_5 _ $$ _.xD6nment I I __Ki_nensts I_4 _:J_H5 V_IT5 SS _.x_enmen_ I I _ernens_s 165 _._-_._ _n_ ss _xDenmen11 I _kernen._s 165 _k,H5 _nt5 SS _._Denmentl I _kemens_s 167 _]0-_5 _Lrt! 5 SS * l_xoenmen_ I I _. l(ernensLs 168 _PJ'(5 P_ant5 s$ • _x0enmen_ I I ,_ _emens_ ..: 159 _)0_5 F_n_5 s$ • _Denmenll I _Xemens_s 170 _Fo-15 _lallt_) ss tl _.xpenrnen( I I _.kemensJs 171 {:)(H5 _nt5 ss ° i _.xpenrnent I I L:.l._rnens_s 172 _kH5 Plant 5 _ P'lan_:] _x_Inment I I _--l_rnens_ 173 L:J_'_5 Plant _ _)_H5 plant I _._)enrnent I I _ Kernensos 174 I _)_H5 . _ _J_HI Pl,_n_1 _..x0enrnen_ I I _..kernens_ 17_ _,J_5 _nt_ _XH_) Vta/_T5 _.,x0erlmen_ I I _.._9fnoft_s 17_ _V,H5 _ 5 L:XH4 P_IT 4 _penment I 1 _ J

2_2 _A F-'lant6 untotcn • _.x_enment2 I _l;a_ 203 _I_A _=_an_6 Unt0u_ _.x_enment2 _ _an_ 204 _)A ]=_.n_6 _ • _.Xl_onment2 _ _.(_rr_ 20.5 _A Ptarr_6 _k)'(2 F=L_T2 _..xDenment2 T E:.l_r_ 206 _DA _nt6 I=_,.H4 _'_J'_4 _.x_0nment2 I _-_n_ Z07 _)A Plant 6 E:_H4 _-,ta_ 4 _.Xl_onment 2 I P.. _)arr_ 208 _D. o, _1.nt6 _kH1 F=lantl _..xDenment2 I _._)an_ 209 _DA Plant6 _H4 Plant4 _.xDonment2 I _._an_ 210 _D._ P_ant(_ _KH_ l=lant "_ _._e_ment2 I _.l_n'_/i

2'_2 _I_A P_n[_ _kH4 ,_L,_nt4 _.x_onmenl2 I _.parw_ _1:_ _A F=tantl_ _kH5 ;_nt5 _.x0enment2 I _.l_arr_/_ 214 _DA Want 5 _kH_ PLant 2 _x_i)nmont 2 I _. Dan_/l 15 _:_ ,4, P1a_ 5 _XH_ _ 3 _x0onrnenf 2 I _. _arr_i 215 _A I_I_It5 _J_HI P'lan1_ _.x0enmon_ i I _.0arr_I 4.6

s_ecles • 217 EDA PlantTIS_H5 Ptant5 Expeament2 1 E. Darr'/i 215i 5DA Plant5 5kH4 Plant4 Exoenment2 1 E.l_arry= 219 ' EDA Plant5 EkH5 Ptanl5 " E.XDenmsnl2 1 E,;)amP 220 EDA plant6 EkH3 . P_I3 _.xoenment2 I E. Darryl 221 EDA Plar_t5 5kH5 Plant5 ExDsnmenl2 1 E.gatwi 222 I I"DA Plailt5 EkH4 PlaJll4 ExDenment2 1 E."_amp 22;_ =_DA PIa_6 EkH3' I.qa/ll3 EXDenment2 ! E."_at'_ 224 EOA _ant 5 _KH3 Plant3 _'.xDenment2 1 E. Damp 225 EDA Plant5 EkHI Fqaxttl ExO_nf'_nt.?. ', E.D_t_p 220 I'EDA Plant5 _=XH2 Plant2 L-.xDeflmen!2 1 E. ioan_ 227J EDA Pla_5 EkH1 Plaltl EXDenment2 1 E_rwI Z25 EDA P1antu _Jd4 Ptant4 Exgenment2 I E. Dan_ Z2.91_DA P_t6 E_2 Plant2 ExDanrnertt2 I _garr_ 230 !'EDA Platl[5 EkHI Pt_u51 ExDenment2 1 F_.loan_ 231 EDA P{_ITG EkJ-tS" Plant5 _xDenment2 1 E. Dam_ 232"EDA Plarlt5 EkH1 " Ptantl 5xDenment2 I E. Damp 23.3 I EDA _ 5 E_,H2 Pl_t2 ExDanment2 1 E. gatt_ 284 I EDA pie=l!61 EkH2 Plant2 _-xDenment2 1 F_pamp 235 JEDA Plant5 EkH3 Plant3 ExDenmen!2 1 E. pan_ .. 23_ EDA Ptant5 EkH2 Pla_2 ExDenmen!2 1 E.'Damf_ -_- 237 EDA Plantl_ Ek_1 Ptantl _.Xl_erlment2 1 E. Dari_* - 238 EDA Plant8 EkH5 Ptant5 Expenment2 1 E. Dar_ 236 EDA Plant5 kKH3 plant3 ExDenment2 I E. Damp : 240 EDB Plant7 extra seeds * EXDenment2 1 E. Damp - 241 _DE] Plant7 51¢H3 Print3 ExDenment2 1 E. Damp 242 ED B Plant7 untc_eo Experiment2 1 F_Damp 243 _'DB PlaJlt7 untOu_ea Exosnment2 1 E_.gamp 244 EDB P_lt7 EkH1 Plafltl ExDenment2 1 E. pamp 245 E_B Pi_tl[7 hkH1 Pla_l ExDenmen!2 1 F-Damp 246 EDB _ / EkH5 Plant5 ExDenmen!2 1 E. Damp 247 ED8 PlantT; EId-tl PTa_I ExDenment2 1 E. Damp 24_ EDB Plattt7 EkH5 Plant5 _xDenment2 1 P-.gamp 249 _D[_ Plarlt7El_-12 F1ant2 L'.xDenmen!2 1 E, pamp 250 EDB _lartt7 EkH2 Pla_2 E._Denment2 1 E. gamp 251 EDB Pla_7 EkH3 Plant3 Exgenmen!2 1 P...DatP_ _-52 EDI_ Pla_TI EkH2 Ptant2 F-J_enmentz % F..gext_n 25;_ EDB P;,_lt7 Eidd4 Ptac¢4 _xDenmen!2 1 E. Damp 254 EDB Pla_lt7 EkH1 Pie/l!1 kxDenmen¢2 1 E.Damp 255 EDB Plarli'7; EEH2 P_2 P-xDenment2 1 E,Damp 2.56 ED_, P_t7 _E_.H3 Pl_3t3 _xDeflrnertt2 _ _.,DBr'¢_ 257 EDB Pla_7 i:kH3 Plard3 ExDesmsnt2 1 E_'gamp 25_ _D B Pier1!7 _kH4 plant4 _.xDeRment2 1 E. garry= 259 P-.DB Ptant7 EkH1 Ptantl ExDenmen!2 1 P._DarryJ 260 ED_ Pla_l EYH_, . P',a_4 "c.xDenment2 _ E. Damp 251 I=DB Piarlt7 EY.H4 " =P_lt4 F-xgenment2 1 F_.Damp "; 262 EDB Pia_7 t=kH5 Pta_5 Exgenment2 1 _,pamp :-".. 2(]3 EDB Plant7 EkH4 Plant4 E.xDenment2 1 P-.Dari_ : 26¢, I=DB Ptant7 t=_5 P'_55 ExDenment2 I i E. Oamp ..;ii 265 ED8 Pla_7 EkH3 Pia_3 L'.J(oenment2 1 JE,'pamp .... 260 I=DB Pla_7 Extd5 P-'ta_t5 ExDenment2 1 IE, l_am/_ :-: 257 _DB Pfa_7 _:xtd3 Plallt3 ExDenment2 1 _.l_amp 256 EDB Platlt7 EI,.H2 Plant2 kxDenment2 1 E. pamp 25e EDB Pla_7 EkH4 Plant4 Experiment2 1 E. oamp 270 EDB PlantI EkH3 PrePt:, 5xgenmenl 2 I E. Dan'_p 271 EDB Pla_7 EkH4 Plard4 ExDenment2 I Is.Damp 272 _ B plant 7 EkH1 H_nt I Exoenmen!z I I _ Oemp 27_ E_B Ptarlt7 EKH5 Ptant5 ExDenment2 1 I E. Damp 274 EDB Pla_7 E_H2 P1_112 ExDenmen!2 l JE. Damp 275 EDB Plantl 510dl Pl<_ntl ExDenment2 li E. pamp 276; EDB Ptar_7 EkH5 P_5 _.xDenment21 E. parry= 277 : t=pB Pla_ 7 Eke2 Plant2 E'..xoenment2 E. garry* 276 J EDC Plartl8 extra see(Is ExDenment2 I 1 _ Damp 279i P-DC Pl_t_ EkH3 P_tt3 _.xoenment2_ I, _.Da_r_ 280 _DC Plato untouo'l Exoenment2 E. Damp 281 _C pl_ilt8 _kH5 Ptant5 ExDenment2 E. oerr'_ 252 I::DC Pla_8 ss L-.xDenment2 E. Damp 253. EDC P_,_t 5 un_.n ExDenmen!2 _. D_,r_* 284 EDC Plant5 t._ltou_ ExDenment2 f E. Darw, 285 EDC Plant8 untouc_ Exoenmant 21 E. Dam/_ 285 EDC Plat1'!8 EkH4 Plant4 Exgenmen!21 E. parry_ •:: 257 ED_ Plant5 EXH2 F%_m2 Experiment21 E. parry= 258 EDC , Pla_8 EkH2 PElnt2 Exosnmen!21 E. garry* species 289 _=oc FJantl EkH2 Plarll: ExDenment2 I E.l:an-y_ ;_90 EDC F_r_8 E_H4 Plant4 _.xperqmen(2 I _-_n,p Z91 _'DC :_tant8 EkH4 Pla_4 E_l=enmenl2 1 _.l_n_n 292 EI_C Ptanl8 _-I0.t1 P_Ln(t Ex0enmen(_. _ _,-_ Z93 EDC _'lant8 EkHI PlantI I=.xDertmenl2 1 _. ;)amp' 294 _C Fla_ _XH2 P_nt; ExDenment2 1 _'Dan_n 295 EDC PlaN8 EkH4 Ptant4 "ExDenment2 1 _" !_.'_n 296 _pC Plant8 EkH2 Plant; E.xDenmenl2 1 I=._:_ln_n i, _.gT EDC _ t=_,_,5 _ant5 _x_nmen_2 1 _n'_

299 _pC Plant8 Eke4 P_nt4 _,x_enmenl2 1 _.;)_n_ 300 _r_ _ant8 EkH1 Plant1 _.xDenmant2 1 _.l::_an_ 301. E_C Ptant8 EkH1 Ptantl _.xDenmen(2 1 P..l:_'_n _02 _r)_ _lant8 _,.H1 Print1 _.xl=enment2 1 _._r_n _0_ _I=C Plan_8 _XH3 Plant3 _.x;)enmen[2 1 _an_n 304 _I=C PraY8 _KH1 Plant1 E_enmenl2 _ b.._r_ 305 _C _tant8 t=_H1 P_n! 1 _-x;:enrnen[2 1 E. 306 E_)C Plant8 E_t_ Ptant_ _:x_enment2 1 _._r_ 307 E_C plant8 _'Y,_5 Ptant5 _(0enmenI2 I _l=an_ 3O8 _"pC Plant8 EkH3 Pla_t3 b.x;)enment2 1 ,_._:_rrp 309 E;)C Ptant8 EYe5 Plant_ _x_enmen(2 I P__ari_ _10 _I=C J;_nt8 EY,H1 Pla_tl Exl:enment2 I _pan_i

_12 _DC Ptanl8 E_.,_4 Planl4 _(penment2 1 ['- parr_ 313 E_C P_ant8 EkH2, P_nl2 _.xpenment2 1 P..._n_n 314 _=DC P_a_t8 Eke5 Ptant5 _(;_enmenf2 1 _,._n_n 315 I=DC Ptant8 _Jo-13 P_nt3 _xDenment2 1 _.;_an_n 31_ P--D_ Plant1 _.H2 P_.nt: '=.xDenmenl2 1 P..l_n'p 317 _C Ptan_8 EKH3 Ftanl3 _.xl=enment2 _ _._u_n 318 _C Piant8 _=H2V, Plaint2 Exl=enment2 1 _.._r_n 319 _:pC Plant_ I=KH4 Plant4 _=x;_enment2 "1 ___arry_ 320 E_C Prank8 Ek,_3 Ptant: (=.xDenmem2 I _pan_ ;321 _:I:)C _;_8 EkH5 Ptant5 _.x0enmenl2 I _..pan_ 322 _I=C _8 _YJ't3 Plant3 _0enmen_2 1 _l:_an_ 323 _1_; _;u_8 _1_1.t3 Plant3 E.xaenmenf2 1 t=._,_r_n 324 _C P_lnt8 _,J't4 Plant4 _..xi)enmen!2 1 P- 325 E0C P_an_8 ,_o._ Plant5 Exaenment2 1 P.__an_ i,"326 _=_Q Ptant9 Jexlra $ee0$ _xl=enment2 1 E. 1 ;_27 _;_ P_ar119I t:K:_4 pIsn14 _.xl=erlment2 t P.,0an_ 32B _-I=_ Plant9 E_-H4 F_nl4 _.x_:enment2 1 __Dan_ 329 _DD _ant9 E_H4 Planl4 __xl=enman_2 1 E._ar_n 330 _.._,_ P_n_9 _ri_ _'_nl_, _=.xDBnment2 1 _.._n_n 331 E_:D Plant9 E_J-13 P_ant3 Exoenment2 1 _._=_n_n 332 _=_O Vlant9 EkH2 P_ant: ExDonment2 1 _pan_ ;333 _=1=_ Ptant9 _=Y,_2 P_n_: _.xDenment2 1 _._=_n 334 _I=D .... Plant9 JI:kH5 Planl5 5xl=enmen!2 1 ,_. 335 _pD Ptant9 EkH4 Pr_ll4, Expenment2 I I=._n,_n 336 _;]D Ptant9 E:(H2 P;ant2i _(penment2 t _-.gan_n 337 E;:O Plant9 EkH2 I_ant21 (=x_enment2 1 _.._n_ :_:38_'_D P_nt9 _.H'_ P_antlI _x_enrnent2 I P..._oan_ 339 t:t0U Plant9 _ -I _.xDonmem2 1 P-._r_# :340 i t:pQ PraY9 un_ou_ Ex0enment 2 1 P_parr_ 341 I=DD _ 9 unloucn ExDenment2 I E. 342 I=DU Plant9 _ _.xaenment2 I _ _arryl 34.3 _DD Pta_ 9 t:kH5 plartl5 _xDenmenl 2 1 P_gamp

345 EPO PLar_g EkH5 Plan_5 ExDenment2 ,_n_1 346 EDD Ptant9 EKH3 Plant3 _..xaenment2 1 E._oan_ "347 E:_O Pta_ 9 EkH3 Ptant3 Ex_enmenl 2 1 E. 348 E_00 PMJ'It9 EkH1 Plat_t1 E.xDenmen(2 1 I=. garwI 349 _0 P_ant9 EkH5 P_ant5 _-x0anment21 llE._arr_ 350 EDD Pt_lt9 _H5 PI8/115 E.xDenmenl2 1 P_gain 351 I=_D Pi,_9 _PIt Ptantl _.x!=enment2l 1 E. 13arwI 352 EDD P_9 EKH2 Ptant2 ExDenment21 11E.l:_arr_ 353 EI_D Ptant9 EkHI P_antl Exoenment2l I E. gam_l 354 _D U _ 9 _:10-_5 Pranl5 P-.xl=enmenl2 E. 355 E_D Ptant9 EkH3 plant3 Ex_enment2 P_l_amp 356 EJOD PlaN9 EkH5 Plant5 ExDenment2 E._oan_l 357 E_O Plartt9 EkH4 Pia_lt4 Exgenment2J E.l_an_ 358 E_O Pt_nt9 EI_H5 P_nt5 _.x_enment2_ P.._amp 3591 E_I0 Pla_t9 EkH2 . Plant2 Experiment 2 I _.. I=arWI _flO EDO Ptant9 EkH3 Pl&'lt3 ExDeflment2! P__arr/I 428

spBcleS 351 I EPD Plant! _kPi2 Plant2 Expenmefll2 1 E, pam# 36Z I _D Plant 9 EkH3 Plan[3 _xpenment 2 I _. parr_ ' 3631E00 P[ant9 F-kill P'lantl ExPenmeN2 1 _.l_an_ i 364 _Q P_anz!18kill P_tl Exoenmen|2 " _ k. psn3n 365 EpD Ptard_ EI,.H1 PtanlI Expenmen_2 I _- pam_ 356 EpE Pant 10 extra seeds _.xpenmenl2 1 8. panyi 387 ED_ PlantlO _mucn _.xpenmentz 1 _,pamp 368 ED_ Plan(10 untoUCtl P.JKpenmetlt2 1 I=. pam/t 369 t=p_ )-,ta_Q untouct_ - Expenment2 ' I 8. pam/t ,]TQ _DE Plant 10 _ldd;] P[afl|3 _.xpenmertt2 1 _. _71 EI_E PLant10 8kH2 P_nt2 _.xpenmentZ 1 8. ;]7_ _l)_ P[arl|lO u_otJ_l kJcOetlmmlt2 1 _..pa_ ;37;] _p_ PqantlO ss - Expenmentz 1 ,':.gar/yi ;_74 _D_ Plant1(] _KH4 P_Snl4 _Jtpoflmen(2 I 8. gast_t 375 _p_ Pl_ntloI _YJ-13 Piant_ 8xponmefll2 I 8. gam/t 376 _D_ PlaN10 EkH4 P_ant4 Expenmenl2 1 I_pan3n 377 8_E I._lantlo 8kill P_/Itl 8_aenmentz 1 Pc.pat'_n 378 _'DE Plant 10 8Iu-_2 Pratt 2 Experiment _ 1 E. g_Wt 379 El)E Plant10 8kH5 P_I5 P.xaenmenl2 1 _.l)amp 380 8l)E PE_n(10 _'kH1 Ptanl 1 _xpenme_l(2 ' 1 _. l)an_t _+" 381 El)E Plan[10 EkH;_ Plant2 8xpenmerll2 I E. pam/1 382 Epi= plant 10 i PJ(H3 Plant3 _.xpenment2 1 i=.Damp _8_ ED_- _]_11(_ I 8_H1 P',antl Expenment2 1 E. part_ " 384 8_E ., PLant10 i;Y.H3 P_a,'lt_] tcxpeflme_t2 1 I_p_ti_/I 385 8pE PtantlO 810d5 Plants E.xpenment2 1 8, par_ 386 i=pE P1_1110 EKH4 Plant4 Expenme_lt2 1 _.partyI : , 387 I=PE "' Plantlo 8KH4 Plant4 Expenmen(2 1 _parr'p 388 Epi= PlantlO EPJdl Pk_nll 8xpenmenl2 I E. pamp 389 8l)E PtantlO 810"_2 P_lnt2 Exl)enme_t2 1 P-pamp 390 8P E Plant10 8KH1 Plant I EJKgenmenl2 1 ,_ pan_ ;391 ED_= Plant10 8XH4 Ptant4 P-xl)enmef_12 1 iI.',.l)amp 382 i=PE PlantlO EKH2 Plant2 Exl)enment2 1 :P..l)an-yt 393 EPi= Plant10 8]

_=ell vs. uurcross Number ot VtaOle 5eeos/.., DiG Fru=[ 5817 # of AI30rleO 5eed_ Total wt VLaO_e 5eels (rag) Potlanat_ont_a" 1 156 Yes 238 105.320 2 _elr 5 Yes 2 3.G60 3 5e11 8 Yes 0 5.4._0 4 _elf 4 Yes 4 2.590 5 5elf 8 Yes 2 4.040 8 _etl 3 i Yes 5, 1.520 7 5ell 4 Yes 31 2.120 8 _elr 5 Yes 21 4.0?0 9 _e_t 7 Yes 2 5.i_4x3 I 0 :_e9 3 Yes 5 ?..5GO 11 5eli 5 Yes 3 4.140 12 Z Yes 3 I.;?_0 ?J3 13 _ 0 0 0 2/21 14 r.] 0 0 0 ?./9 I ._ {3u_t'l_._ 0 0 0 219 18 Sell U 0 Q 2/21 17 0 0 0 2/18 19 • 0 0 0 2/15 19 _ 0 ° 0 0 2/15 20 OUICZZ:_S 7 Yes I 4.800 2/9? 21 C3UtCrOSS I Yes 6 .680 3/4 22 _e5 0 0 0 2/18 23 (3UtCrOSS 0 0 0 2/15 24 _e5 3 Yes 8 2.000 2/24 25 Out,ross _ Yes 2 3.640 i 3/4 . 28 Outcxo._ 2 Yes 4 1.410 Z/28 27 Outcr_ 0 0 0 2/21 29 _utcxoss I Yes, 2 .590 2/21 291 _e_l 2 Yesi 4 1.090:3'9 301 Ou_.J_ 0 * i 0 0 3/4

32 0 0 0 0,/4 33 OUCZOSS Q 0 0 2/9 34 _ e 0 0 3;9 35 _e11 4 Yes 5 2.750 3/4 38 Uu_u_._ 0 0 0 I ?..121 37 Ou_.=u=._ 1 Yes e ,560 I 3/9 38 Ou_,._o 4 Yes 3 3,040 i 3/9 39 Ou_ 3 Yes 5 2.08( , 2/25 40 Oul_ u._= 6 Yes 2 4.070 3/9 41 Ou_ u_ 4 Yes 4 2.850 3/4 42 Serf 3 Yes 4 I .seo 2/8 43 Oui_u._,, 2 YeS / 1.390 3/9 44 205 Y e8 2?3 184.190 45 5el11 2 Yes 6 1.540 46 _elf I 2 Yes 4 .710 47 5elf I 8 Yes 2 5.080 48 _ell I 4 Yes 5 3.420 49 _[f 4 Yes 3 3.260 50 _ell 3 Yes 8 2.600 51 5eli 8 Yes 3 3.440 52 581I f" Yes 3 5.500 53 5elf e Yes 2 4.630 54 5elf 3 Yes 8 2.5CO 55 0 0 0 2/16 58 0 0 {3 2/3 57 0 0 0 3/4 58 5elf 1 Yes I ,740 2/21 5g Ou_ 2 Yes 2 1.390 _J18 50 _ 7 Yes 2 8.080 2/27? 61 Ou_.a u_._ 0 0 0 2/9 52 _ u_= 3 Yes 5 2.530 2/28 53 (_u=u_u._ 0 0 0 3/4 54 Ou_ _._ 5 Yes 8 4,550 3/4 85 _ 5 YeS 3 5.240 3/4 88 Uu t,_ 00,_ 9 Yes 1 7.540 3/4 57 _u_.._= Z Yes 0 1.700 3/9 59 _ell 8 Yes 3 5.750 3/9 69 Ou_ u_._ 4 YeS 5 3.480 2/9 70 _ u_.__.-._ 7 YeS 2 5.480 3/9 71 Outcllo_ 4 Yes o 2"850 3/9 72 Ou_ u,_ 5 Yes 3 5,450 2/9 434

7_ _elf 4 Yes : 2.=20 2J16 T4 _,_ _ Yes 4 4,390 2/15 75 Ou_G,_ 3 Yes 6 2.210 2/21 76 Self 0 0 0 2/9 ;'7 {_ut_ 4 Yes 4 3"_10 2/28 78 _e_! 4 Yes 4 2,'950 3/4 79 Ou_ 4 Yes 3 2.5GO 2/16 80 _elf 7 Yes 2 5_420 2J24 81 Out_oss _ Yes _ 3._ 2J21 82 Q,L_OS_ 2 Yes _ 1,Z80 7._2_ ' 83 _i_ 0 NO 0 0 7J9 84 O,_, _,_ a Yes _ 4,ZZO W2T 85 132 Yes 21 • 8(] _ell 4 Yes _ 2,34O 87 _e_l 7 Yes 4 3,_ 88 _eil _ Yes 4 3,_ 89 _elf _l Yes 4 3_40 90 _ell i 3 Yes 8 1,720 _)1 5elf ;_ Yes is I,]50 92 _el! 4 Yes 6 2,1(_

94 :_elf, 1 Yes 9 ._30 95 _elf i 7 Yes _ 3_870 _)fi 0 NO 0 0 J2/16

98 Outc_,_ : Yes I _21 9B °1 0 0 0 I 3/4 10Q O_ 1 Yes 10 .610 I 3/9 _01 (_Jtc_r_s' 2 Yes _ 1.1_0 i _ 102 _ _ Yes _ 2_9_o 3/9 103 (_?C_s i 3 Yes 7 1,780 _ 104 _ l YeS 4 4_Z70 2/11 10_ _ss ¸ 0 0 0 211_ 106 _};! 3 Yes 5 1.B90 2/11 107 Outc_s i 2 Yes 8 1.300 3/4 10_ ;_elfI 0 NO 0 0 2/11 10g OUtCtI_S 0 0 0 3/4 110 Out_OSS 0 0 0 2/1_ 111 OUtCmSS 0 0 0 _11 112 Outcrops _ Yes 5 2.48O _4 110 _elf _ Yes 4 3.O2O, _9 114 Outcs_ss 0 NO 0 0i 2./11 11_ {_tC;_OSS 3 YeS 8 1.760 2/28 116 _e_f 3 Yes • 1.560 3/4 1171 Outc_ss 3 Yes I_ 2.O40 2/11

119 (_X_OSS 0 0 0 2/1;_ 120 _ Q 0 0; _21 121 _ (_Cn_s 2 YeSl _ 1.310 2J1_ .ii.... 1221 _el! 0 ° 0 0 _l_ 1231 _ 0 N0 0 0 3/4 -:.'_" 1_.41 _ _ YeS • ._ _J2B - 125 _ell _ Yes fi 2.700 2/24 125 _cmss _ Yes 4 3.0_0 2/21 127 _Jtc_s 7 Yes, 4 3.720 2/21

129 _ Yes 1 1_0 0 NO 0 [} 2/1_ 131 o 0 0 0 _3 132 _eif 0 o 9 0 1;_3 _elf 6 Yes 21 4._;ZO 134 :_ell 0 NO _, I 1;3_ _ell 3 Yes • I 2.|40 1;3_ _el| _, Y(is 3 ' 4. | 30 137 _el_ 0i NO 0 0 2/11 1;]8 OtJt_'t_s 1 i Yes _ ._:_ 7./1] 139 3elf I I Yes 8 .700 2J21 140 _ 0 NO 0 0 _lb 141 (_JtC_SS 0 NO 0 0 _11 142 (_utcf_8 0 NO 0 0 ;7J1_ 143 _ 0 NO 0 0 2Jll 144 O_ 5 Yes _ 3.720 3/9 435

_ett vs. OuCross NumOor ol VLaDIe _eeo_... O¢1 ;-.ru:l 3et? # ot AIXIR6¢I _e605 Total Wl vta01e 5eeOs (rag) Pothnauon D._., 145 5e_l 0 NO 0 0 2Jr5 t46 8ell 4 Yes S 3.280 0'9 147 Out Cl'OS,,S 4 Yes 5 3._20 0"9 t48 OulCtOCS Q NO 0 0 3/9 149 (_AICt_>s Yes 8 .890 0"9 150 OtJtcror=.g 8 Yes 5 3._30 2./15 151 3ell 3 Yes 1.630 ?/24 152 O_ 8 Yes 8 3.81U ?/2a 183 U_ 0 0 0 0"24 184 _utcfl_s 0 NO 2 * ?/24 155 Outcmcs 0 0 0 ?/21 186 (_JtCI'OSS 4; YeS 4 3.4_o 7./5 1,51 _ 4; Yes ,5, 2._40 0"21 158 _ Oi sl 0 0"21 189 _Jtc_oSS 01 NO 81 • 2/21 180 _ 8 Yes 41 4.290 2/t1 161 OUtCtlO_S 3 Yes 4 ?-2a0 2/24 162 3elf 5 Yes 4 4.730 163 5elf 8 YeS 3 4.980 164 5@It 4 Yes 4 3.800 •._ 165 5eS 1 Yes 3 1,080 186 _elf 4 Yes 0 2.900 167 _ll 8 Yes 8 4.6;30 188 Sell 4 Yes 8 3.880 189 8ell 8 Yes 4 5,580 •' 170 Self 6 Yes 4 8.720 171 8sit 4 YeS 4 3,880 172 C)utQ'oss O Q 0 2/11 173 8ell 0 o 0 2/28 174 Outc=_ 0 O 0 2/16 175 _11 O 0 O 0"9 176 O_ 0 O O ?/16 177 _)tJ_ 0 0 O; ?/16 178 0 0 O, 2/16

117980 _ 40 Ye _ 30 4.10010; ?/2?/146 181 8611 Q O 01 2/11 182 Outcros8 4 Yes 4 3.720 ?/21 183 Out,_,_, O 0 0l ?/11 184 Oub_u:_,_ 2 Yes 6 2.190 ?/24 188 OUtCtOS8 _ 4 Yes 3 3.790 2/28 186 QU_u_, 5 Yes 5 5.100 2/24 187 8sill 8 Yes 3 4.800 2/21 188: (_JIC_ I 8 YeS 3 8,540 0"9 189i 88 YeS 103 " I 1901 _;u_.__ 4 Yes 5 3.880 3/9 191 i (_j_4_¢_, 4 YSS 3 3,4_ 0"9 • 1921 _1 +Jm.ll 3 Yes 4 2.970 0"9 193 (_k_ O O 0 2/18 .+i:i; 194 Ou_oj_ 4 YeSl 3 3,980 ?/24 195 Ou_u_ 2 Yesl 3 ?-;300 ?/21 ::,: 196 _lf 2 YSSl 4 1.930 ?/24

198 _ut_u_ 4 Yogi 6 4,120 ?/21 199 8elf 4 Yogi S 3.990 ?/24 290 OUlQ_._ 7 YeSl 1 6,510 2/21 201 13 YeSl 12 202 0 0 0 ?/11 203 0 • _ 0 O ?/23 204 0 .i 0 O 2/15 206 E_JtC_*S Yes I ?/18 206 Ou_.au_ Yes I ?/17 207 Oukau_ Yes I 7./15 208 _u_ Yes i ?/3 209 Out_,,_,_ Yes 2/10 210 Ou_ : YeS 10 4,780 2/3 211 Oul_ O NO 1 2/17 212 OuL_ u_ 8 Yes 3 4.910 2/26

214213 OuO u_tQ'u_== 4Z YeSYes 108 32,260.000 0"?/285 215 Ctlt_ 8 I YeS 3 4+570 0"8 216 Outc_ocs 11 Yes _ 1,0507/28 436

_)elv$,; (3utcross;_lumDerolViarle, 5eeos/.,D_ Frill,Set?# oFAi00_ed_ee£1£ro[aiwt Vial:lSeeecl$(rag)P011Lm]rJD.On_ 2171 Ou_ u_a, 4 YeS 9 4,120 2/_0 218 Uul_,._.i_ 5 Yes _ _)._002/23 219 OutCn_ss 3 Yes 10 ;L780 7./23 220 (3utc_oss ;_ Yes 2 2,o00 2/23 221 3 Yes 8 ;'.9802/15 222 • Yes 3 ° ?./3

_ _ - _ -8" -- . ,zr,rs, _ "--4 es

230 2 Yes ;_ Z.[_4_ _J17 231 Ou_J_ 7 YeS 4 6,440 ?.Jlr 232 Qu_u_ 3 Yes 3 Z,940 2JlO 2_ Q_u:a_a 1 Yes 2 1.080 _'Z3 234 QUICrOS8 1 Yes o .93Q _JlO _';3_ _._ 1 Yes I0 1.180 2/10 236 _JtCrD_ 4 Yes 2 3,440 Z/3 237 Qutmo_ 3 Yes 3 2.720 3/5 238 C_tC_)SS 2 Yes 4 1.950 3/5 239 (3_tcro_ 3 Yes 12 2.(X)0 2/13 240 20 Yes 12 241 (_Jtctoss 0 0 0 no_Jale 242 o 0 0 ?Jll 243 o 0 0 ?../23 244 _ 5 Y88 1 4.2_0 ,._/5 245 Outcro_ 0 5 0 I 2/3 Z45 L_1C_OSS 7 Yes 5 8.03O I 3/5 247 OUtO'O_ 3 Yes 8 2.500 I 2/28 248 Outcross Yes • i 2/10 249 (,._Jtc10s8 YeS • 2/3 250 OtJtC_t:_S Yes 3 • 2/23 251 GutC_:_S " Yes • 2/3 252 I_fCl't_S 0 NO 0 0 ?J_5 253 Guto'o_ 0 NO O 0 2/3 254 Outc_os_ 0 NO (] 0 2./10 2_ _UtOOSS 0 NO 0 O 2/18 256 Uul_ro_s O NO 0 0 2/1_ 2,57 Uut_ross 0 NO 0 0 2./2_ 25B Outct0_ 0 NO 0 0 Z/1B 259 Outcrt_s 0 NO 0 0 2/18 260 OUtC_¢_ 0 NO 0 0 2/15 2_1 (J_ YeS 3 .SGO Z/tO 2U2 Outcm_ 0 NO 2 • 2/28 263 O_ 2 YeS 1 1.820 2,'28 254 O_tC_.S I ; Yes 1 .G00 2/18 265 (_JI_3S8 0; NO 4 ° 2/15 : 265 (.P,Jtcross 6, Yes 3 4.990 2/3 207 (JUtQOS8 3, Yes 5 2.020 3/5 •.:: 2@8 Out_ 71 Yes I 5.910 2/28 2(_9 GuL_L¢_ 3 I Yes 4 2.7802/23 270 _ UL_u. _.,.,_ 31 Yes 5 ;_.530 2/23 271 Ouk__d, 3, Yes 4 2.6203/5 272 Ouk,_..'_ 41 Yes 2 3.5_o2/23 273 OUtC:rO_S 3 I Yes 4 2.690 2/23 274 Uu(c/OSS 2 Yes 4 1.700 2/1Q 275 OUIC_O_S 3 Yes 3 2.250 2./15 27_ OUtQ'_S 3 Yes 2 2.;320 2/15 277 Outcro_ 5 Yes Z 3.75(] 3/5 278 : 1_ Yes 8 279i OutcT0Ss 2 Yes 1 1._6Q 2/13 280J 0 0 0 2/13 2811 OUtCrOSS Yes • 2/10 zszl 5ell 4 Yes 7 3.070 2831 0 0 0 2/2;] 2841 O 0 0 "?J11?" 2851 0 O 0 2/15 286 Outc_s 0 0 0 2/1_ 2_7 Oulct_a 0 o 0 2Jr5 288 Outc_ss 0 0 0 2/23 437

5elf vs, _utctoss NumDer of Viable _eeos/,., Qicl P.nJa_t et? # of ADorteci 5eeo: Total Wt VlalZe 5eeas {rag) Pollulatlort Da*' 289 Outctoss 0 0 0 2/16 _90 _utcros$ Yes _ .910 2/]5 291 Uutctoss 10 YOS I 7.060 Z/_8 292 Qutcross 8 Yes 5 5.//0 2/3 29;3 r_ulctoss 3 Yes B 2.580 2./10 ;_94 _u_mss 51 Yes ]0 4.4_0 2/17 295 _lJlCtoss 8 i YeS :] _i,6,.10 2/17 296 Qwtcross ;_ Yes 2 1.1_00 Z/3 29/ (_Jtc_o._ 4 YOS 2.210 Z/16 _98 Qu_to_ 4 Yes 2.1;20 7J14 299 (3u/moss 4 Yes ;3 3./7o 7J13 _00 Qutcro_ 4 Yos .3 3.350 7Ji5 ;]01 _u*,cm_ 4 Yeg _ 3.520 Z/13 3(32 _ :Z YeB 4 1,_,50 7J28 _[3_ C)ulcro_ (_ Yes 3 4.330 2/17 304 Qutcro_ 7 Yes _.500 7JZO 305 _Jtcross 5 Yes 2 4.000 7J23 306 Qutcmss 7 Yes 4 6.270 _J23 307 _Jutc_a_s 4 Yes 5 3.470 2/28 , 308 Qutaos,s ;] Yes 5 2.310 2J_5 309 C)_ 2 Yes ,_ E. 1130 2/t3 "_10 (Jutcn_ss 4 Yes 6 3.560 3/5 31 _ Qut_o_ 5 Yes 4 4.160 2/10 312 (3ut_ 0,_ 6 Yes 4 4,910 2/23 313 C3u-_.u_,._ 5 Yo$ 7 4,520 ;7./28 314 Qutc_,:_._ 9 Yes 4 7,180 3/5 315 (3u_ _._ 8 Yes 5 6.300 3/,5 318 (3u_ o_, 7 Ye6 7 6.3301 2,/1:3 317 Qu_._,_,, 6 Yes 8 4.370 _J18 _18i (3LItC_O_ I _ Ye_ 41 8.530 3/5 319i Qu_O_ 5 Yes, 8i 3.930 3/5 3201 Q_b._O_ U Yes 101 5,63O 2J3 3211 0_,._= 1 Yesi 71 .750 2/15 322 C)u_,_u_, I1 YeBi 0.550 Z/23 32a C)u_u_ _ YO_ i 8 'L660 2/28 324 Q_L_ _._,_ 0 U 0 2,/10 a25 (3ut_ 0_,_ 10 Yes 4 8.460 Z/17 326 Qu_:__,_ 10 Yes 4 I 327 _,._ 12 Yes ;3 9.780 I 2/13 3_8 r,3u_._.-_ 2 YeS 2 1.720 I 2/10 329 (3ulctoss 7 Yes 3 5,930 I ?J28 330 _u_cross 4 Yes 8 3.730 i 2/10 331 _,, 7 Yes 7 6.970,2/13 3,32 C3u_u_ 0 NO 0 0 2,'28 ;_;_ Qu_._u_,a 3 YOS 5 2.640 3/5 • , _a4 Qu_,.._u_,_ 0 Yes 7 8.54[} 2./18 :" 335 (3utcn:_,s 0 (3 0 2J_5 ;336 QuCro_ 0 (3 0 2/18 i:_: 3"z7 (,3JCt xo_ 0 0 0 ,?J15 '"i 338 Qutclloss 0 0 0 2/18 3_9 QutDro_s U 0 0 2/15 • 340 _ 0 0 0 2/_1 ;_41 _3t,_'_s (3 0 0 2'23 ;]42 L3t,It¢_ Q • {3 0 2,'13 34_ C3UtC_'OSS 2 YO$ 4 1.900 2,'1_ _44 _ 4 YeS 2 ;].510 2'18 ;345 QutaoSS _ Yes l 4,690 2/10 346 (3UtCXO_ 2 Yes 8 1,940 2/15 347 _utcross ,5 Yes 5 4.,570 ?J_3 348 (3U'bDross 3 Yes 7 2.88(3 2/28 349 (3_cro_ (_ YSS _ 5,790 3/5 ;_0 QtOoro_ (3 0 0 2,/15 ;3_ (3_¢z0s8 0 Yes 4 7,4;30 3/_ ;),52 Outcross 2 Yes 5 2.020 2/10 353 Qu_crc_ 9 "re9 _ 7.930 2/15 354 (,3utcros$ 8 Yea 5 _.650 3/5 _55 (,3utc_ss 2 Yes 7 t,540 2/18 _6 _utctos,s 7 Yes 7 6,340 2/23 []57 Qutcros8 8 Yes 4 7.820 2JZ3 ;]58 C)utcros8 3 Yes 8 2.440 2Jz8 :35_ Outcro_ _ Yes 10 2.900 2/28 _80 (3utc_s_ (_ Yes 8 _,090 2J28 438

i. 361 Outcross 5 Yes 9 4.5.30 2-/13 302 Oulczoss • Yes 7 6.880 3J5 ;]63 Outct0ss 6 Yes 8 5.8_0 2/_3 364 OutCr0Ss 7 Yes 7 _i_30 2/Z3 365 _4J[Ctoss 1 i Yes 9 1"_b80 2210 365 Ou_toss _ Yes 2 367 Ou_toss 0 0 0 7J23 308 OUlCtOSS 0 0 0 2/I 1 ;$_ _l_zo_ _ * 0 0 2/15 370 Outctoss 91 Yes 0 8.380 2/3 37_ Outctoss Z Yes 4 2.410 _23 372 0 0 0 2/13 373 5elf 11 Yes 4 [0.410 374 Outctoss ? Yes 0 6.180 2/28 375 Ou[ctoss BI Yes 1 7.boo 2/15 376 Ou_ctoss ' 41 Yes 1 3.6_ 2/23 377 Outctoss 121 Yes 0 10.860 2/23 378 _u_'oss 131 Yes ! 11.680 2/13 379 Outctoss zo Yes 2 9.830 2./15 38O Ou_toss '13 Yes 1 10.B50 2/15 381 Outcto_ 14 Yes 1 12.500 3/5 3a2 O_ctoss 13 Yes 1 11.960 _5

384 OLJtctos8 4 Yes 2 4.080 2/10 385 O_ctoss 12 Yes Z 11.660 315 386 Outctos5 14 Yes 1 12.700 3J5 3B7 outr.ross 12 Yes 1 11.460 2./13 _B8 Oucxoss _2 Y_S _. 10.9B0 2.'13 389 OblCrOSS 0 NO 0 0 2/15 ,, i1,,,

391 O_ 2 YeS 0 2.000 2./3 392 OUtCt_SS 0 NO 0 0 2/18 393 OUlCtOSS 0 NO 0 0 2210 394 OU_CtOSS 0 NO 0 0 2/10 395 Ou_t_ss 0 NO 0 0 2/15 396 Outctoss 0 NO 0 0 2./18 397 _tcto_ 0 NO 0 0 7./18 398 OU/CtOS8 0 NO 0 0 I 2/18 399 OUb_OSS 0 NO 0 0 2/10 400 O_CtOSS 10 Yes _ 8._0 I 2-/28 401 Outcto_ 10 Yes 0 8.020 I 2/3 402 _utct_ss 0 NO O 7.410 2J2_ 403 OutCto_ 9 Yes, 0 8.270 2/13 404 Outctoss 12 YeSl 0 11._40 2./13 40_ Outct0ss 7 Yes 0 $.780 _28 405 OutcTOSS _ Yes 0 5.810 2/23 -i_ 407 Outctos_ 5 Yes o, 5.150 2/3 408 Outctos_ / YeS _ i 7.050 2./28 409 C?,ZtCn3_S 3 Yes, 21 Z.960 2/23 ' 410 Outcz'_s 7 Yes, O I 6.3,502/13 411 _RQ'OSS 0 ., U I 0 Z/11 412 OUtC;'O_ 5 Yes 4.820 2/27 "'_: 413 (.XJtCtlOSS 0 0 O_ 2/13 414 OU_:_S 0 0 O, 2/16 415 (.1UfCOt _ 0 O 0 ?./22 416 Ot.rtCrO_s 4 Yes _i 4,QOQ ; 2/11 417 r.H.rtcross 8 YeS _ i_,420 2/22 418 OUtC_CS ] Yes 5 .950 2/18 419 OUIQOSS 5 Yes 4 4.270 2/22 420 Uu1_ro_ 0 0 0 Z/'i6 421 OLAcross i O 0 0 2/18 422 Outcnoss : 0 0 0 2,/15 423 ¢JtJtCtx_s I O U 0 2/18 424 OIPCtO,SSI O " O 0 2/27 425 Outcrocs 9 Yes 5 _.720 2/18 426 (_tct_ss 5 YeS 8 4.960 2/27 427 Outcros.s 7 Yes _ 4.950 2/18 428 OUtCt_SS 9 Yes t_ _.150 2/11 429 Uuto-oss : 10 Yes _ 8.850 2/13 430 C_JtC_SS; 5 Yes d 4.920 2/1 1 431 r.3LItCtOSS 8 Yes / 7,(_70 2/13 4;_2 Ot.J_c_'os,S 11 YeS b 10.020 2/13 439

5eit vs. Ouicro$s Numoe¢ of ViaOle 5eeOs/... [3_ }-ru_t _1'_ # ol ADor_ea 5eecl_ Tolal Wt viaole 5eeos (rag); PoltmaLK_li_p, 433 (_JtC_OS! 7 YeS 7 5.950 J2/8 434 Outcros$ 3 Yes 8 2,_501 ?.,/3I 4;35 (_JtCrOSS 0 0 0 I 2/8 436 O_ 7 Yes 5 5.960 2/22 437 UutCrOSS 15 Yes 0 11.8C4 ?-/27 435 (_JZCX'OSS 11 Yes 3 9.800 2J22 439 OUtCtOSS iO Yes 5 8.450 2/1 I 440 QIJtC_OSS 0 O 0 2/8 441 _ 10 Yes 7 7.590 7./27 442 OUl_rO_ |1 YSS 5 10.190 2/13 443 (_ItQ'OSS 11 Yes 4 8.110 2/11 444 (_Jt_rOSS 5 YeS 10 5.020 2/8 445 OUIQ'OSS 4 YeS 12 3._ 2/15 448 _UtCtOSS 0 0 0 ?./8 447 OUtCXt_.c 8 YeS 7 5.850 2/22 448 OUtCrOS_ 8 YeS 5 1.080 2/18 449 rOute:ross 9 YeS 6 8.00( 2/167 450 UUtC_¢_ 14 YeS 4 451 O_t_ 0 0 O 2/11 452 OUtCI'OS8 0 0 0 2/18 453 OUI_'OSS 0 0 0 2/13 454 (_JtO'oss 0 0 0 2/15 455 (3UtCl'OSS 0 0 O 2/22 458 (_Jtcto_s 0 0 0 2/18 457 U_ 0 0 O 2/18 458 OUtCmSS 0 0 0 2/16 459 OU_ 0 0 0 2/13 480 (_JtCross 0 0 0 2/16 451 QtJtC_SS 0 0 0 2/18 482 OUt_ 0 0 0 2/11 483 OUtC_3SS 0 0 0 2/11 484 Uutoro5_ 0 - 0 0 2/27 455 OUtCtOSS 3 Yes 2 2.750 2/13 486 O_ 3 Yes • 3.180 2/22 467 O_ 0 0 0 2/13 488 _ 4 Yes 3 3.930 2/22 469 OutcJ_os8 2 Yes 5 1.560 2/11 470 OUtCtOSS 3 Yes 3 3.080 2/22 471 O_ 0 NO 5 0 2/22 472 OUtC/_SS 3 Yes 8 3.280 ?./13 473 (_CtO_ 2 Yes 5 1.930 2/13 474 (_lt_ 8 Yes 9 5.750 2/8 475 Outctoss 6 Yes 5 6.260 2./15 478 Outc=o,ss 4 Yes 8 4.370 2/16 477 _ 8 Yes 8 5.240 2/27 478 (_JtcroS8 7 Yes 4 5.310 2/27 479 _ 8 Yes 11 8.500 2/18 480 r.3utmoss 8 Yes 8 8.200 2/18 481 Outczoss 4 Yes 8 4.080 2/27 482 Out_c¢_ 5 Yes 10 4.520 2/8 483 (.._Jt¢_'OS8 4 YSS 7 3.9S(] 2/11 484 _ 4 YBS 8 4.400 2/11 " 485 C_JtC_3_S 5 Yes 8 _.400 ?/8 488 _ 9 0 0 2/8 487 (_:tOSS 0 = 0 O 2/18 488 _JtCtt_S 10 YeS • 9.880 2/27 489 OUtC_3SS ? Yes S 4.830 2/8 490 Ct=tc:ros.S 8 Yes 8 4.890 2/22 491 _ 4 Yes 7 4.000 2/11 492 (_JfC_:_.S 10 YeS 8 9.67(3 2/27 493 (_/tcr05s 5 Yes t 4.920 2/13 494 Outct_ 0 O OI 2/13 498 (_/OC_OSS U 2 0 I ?.J13 498 C¢SC='0S8 0 O OI 2/18 497 (_RCtOSS O 0 0 J 2/I1 498 C_JtCtO.SS 0 0 0 ; 2/27 499 (..._JtC£OS.S 0 0 O 2/11 800 Out_oSS 8 Yes 11 4,489 : 2/1 1 501 0 0 O 2/22 502 OLJt¢_'OS8 0 O O 2/11 503 OUtO'OSS 2 Yes 2 1.480 2/15 504 (_JtC:t*oss 8 YeS • 5.210 2/22 440

505 Outcz_s 0 0 0 _t5 _06 Q_t_ 0 0 0 Z/16 5O7 _¢X_S 0 0 0 2/18 _O6 Q_A_'_ Q 0 O i _2 " 509 i, Q_rtc_06._ 0 0 0 I 7.J1 510 Qut:to_s 0 5 0 I 2/I I 511 _C_S 0 0 0 [ 2JI6 512 Ut._O'OSS 0 • 0 Q _J;Z2 51;3 _uli:ross ;] "_ss 9 ].f4_ 2Jll 514 _ 5 Yes 4 4.170 5_5 rJtz_toss 0 0 0 I 2/I I 516 (3utcx_ 11 Yes 5 O. 84) I _J;Z7 517 _ 7 Yes 11 61_4J, 2/27 518 _ 0 0 0 2/18 519 _t ct_£_ _ Y_S 6 5.Z90 _J22 520 {3t_{_ro_ks 0 0 0 2J;a

523 _ _ Yes _ 3_060 2/11 _24 _ 15 Yes 4 _;],_ I0 2/27 525 _ 0 Q 0 2/11 _25 0 0 0 2/16

52B _ B "res ! 2 6.950 I ._29 (3_ Yes ° ] 2J1 _30 _ :3 Yes 7 2.B50 2/11 _31 {J_tcr_ss 9 Yes 4 T,630 2/13 532 (:3trb:ro_s 5 Yes 5 4,{_9_ 2/13 533 (3t._to_s ! 1 Yes 1 9.c=00 2/1 534 (3t_r_ 0 0 0 2/27 53_ _ 1 Yes 6 ,_9_ 2/22. 536 (._tt_'_._ 3 Yes _ 2.{_60 2/11 _37 _ ;] Yes 4 2.640, 2/18 538 _ (_ Yes ;_ 5._40 i 2;'16 539 E3_ 0 0 0, _J18 540 QtJt_-o_l El 7 0 ] 2/I 0

542 _LttC=I_._ 2 YeS _ 1,630 2/16 _4;] (_utcII:_S 0 0 0 2/18 _44 {3_ 0 0 0 2/16 545 _t._5 3 Y_IS 9 2,960 2-./13

_47 ¢3_X_;S 7 Yes $ 6.140 2/10 _46 O_ 0 NO 6 • _J11 _49 _ 7 _es ;_ 5._;_4_ 2/10 550 (_ 0 7 0 2/10

552 _ (3 0 0 2J_8 _3 _ 0 0 0 2/11 554 (3utcz_; 11 Yes 1 9,364_ 2/16 _5 _ _ "COS P. .710 2J1{$

557 EXito-oss _ _fes 4 5.230 2/22 55B _3_ 7 Yes 4 5.690 _J2;Z _59 {3t_r_ 2 Yes 7 1.820 2/27

_z61 _ ;] Yes i 11 2.730 _J27 _6;Z 0_ I ¥e8 I 4 ._0 2/27 5_i3 _ _ YeSl 2 5.120 _{$4 _ _ Yes 4 5.570 2/22 5_5 Q_Icto£_ 4 Yes 5 3.B70 2/1;3 566 _3tztcto_ 9 Yes 5 8.840 2/13 5B7 Q_ 0 _ 0 2JI7 568 ¢3_r_ 0 0 0 2/8 569 _c_ 9 Yes 4 9,9Z0 2/11 _lo (_CtOSS _ Yes 7 5.120 2/11 _71 Q_ 10 Yes _ 11,110 2./27

"'573 Qutcr_s 4 Yes 10 4._90 _J_l

5754 __cr,, _ _0 Yes _ 5,S800 _2J/22! _76 _u,_ross _ Yes _ _,1;]0 2/1:] 441

_ell vs. (.3u¢cros_ Number of ViaDle 5ee0s/... _lci _-nJl! _17 # ol Ab0nea Seeds To[al Wt V=able _e_ls (rag) POllJnaaoni_-.,- 577 (3ulcmss 5 Ye= 2 5.320 2/13 578 (_utci'oss 8 Yes $ 7.600 2/;_7 579 C3utc_os$ 0 0 Q ?/27 580 Quto'_ss 0 0 0 2/22 _]1 Out_'oss 4 Yes 7 4.;310 ?,'17 582 Outcm_ 0 (3 0 2/22 583 (3utcn3_ (J ° 0 0 _J_ 584 L3UtO"0SS 3 Yes 8 ?...1_,40 2/17 565 (3ut_'oss 0 0 0 ?JZ1 586 (3L_=ross 4 Yes 9 4.740 ?./1/ 587 C3UlCf0SS 8 Yes I_ 9.110 2/22 588 (3utcm_ 11 Ye== ;3 11.,b60 ?.,'2! 589 Outcro_ 2 Yes El 2-1_, Z/;_ 590 (.3u-_ u_ ;_ Yes ;_ 2.320 .?J;_2 591 (3utct0_; 12 Yes 4 13._60 2J;Z7 592 (3ut_ross 9 Yes _ /]._lo ?/8 59;3 _ u-_ u._._ Yes _ .990 2Jlt 594 (3_ 5 Yes 9 _.930 2/27 595 (_UtCrOSS 2 Yes 8 1.830¸ 2,'11 596 OUtC_'0SS Yes Z 1._50 ¸ 2/22 597 (_tcr0ss 6 Yes 4 ,_.940 ?./13 598 Oulcros_ 9 Yes 3 10.240¸ 2,'21 _99 _ut_ross 0 0 0 ; 2/8 600 Ouk.z_ 11 YeS 4 11.300 2/11 601 (3uka _._a 7 Yes 5 7.390 2/11 602: O_ 0! 0 01 2/13 603 ; _ell 61 Yes 7 _.060 6041 _eJl 4 ; Yes 4 3.600 6051 _ell 41 Yes 7 4.000 1_061 (3ut_ _ ;_ YaS 10 1.840 ?.18 _07 0 0 0 2/8 508 _Ju_ u=_ _] Yes 6 8.920 ?./13 _0_ (.3u==u._=_ i 4 Yes 10 3.4_0 2/21 610 0 0 0 2/13 611 _u;u _. 2 Yes 5 1.750 2/21 _12 _e_! 4 Yes 5 4.320 1_13 O_.._a _ Yes 6 1.000 3/4 514 (_ub_ u.v_ 1 Y(i$ I 1.270 2,/8 61._ _ul_ _a. 7 YOs 7 7.820 ?./17 616 L)u;_u=, I_ YeS 7 6.00( I ?J1:3 617 (3utc_"o_ 9 Y(l_ 4 9.830 I ?JH 618 Out(;_-o._ 0 _ 0 i ?./8

62_190 (.3ub_o._ _0 Ye _ ,0" 6.1000 i ?J3'413 §21 Ou_.-. 3 Yes 10 2.900 i ?/17 U22 O_1_= 6 Yes 0 _.180 I _'24 523 (_ub:a.3_._ _ Yes 3 ._.080 I 2'21 524 E)l_t=b_ 3 Yes 6 ?..460 I 2/24 525 _ukb u¢_.._ 4 Yes 12 4.6.30 ?/17 _' 62_ (_=.=_ _ Yes _ I]._(30 I ?.a'13 627 C)utc_0SS 6 Y_S 1 _.580 i ?/13 628 OUtCrO_ 6 Yes _ ' 5.860 i 2/21 629 0 0 0 ?./I 1 630 (3_ 4 YeS 8 4.18( , 3/4 631 Outcro_ _ Yes 7 _ 2.290 3/4 (J;32 _etf 1 YaS 4 i 1.100 _;3;] _.au_= _ Yes 51 _.890 ; ?./17 634 0 0 ; 0 ; ?.J24 _35 (_ 4 Yes 2 ; 3.450 I 2/24 63B (3utcross 1 Yes 5 .9_3 I 2.111 _37 (_utDro_ 10 Yes 4, 10.38( I 3/4 1_;38 (3UlCers 10 Y8$ I 9.9t0 I ?/24 _39 C)utcm_ 7 Yes 5 7.050 i _4 640 Outcros8 3 Ye_ 5, 2.990 _?.JI 1 641 _ 3 Yes 6 I ;3.0_0 2/I 1 _4;_ (;3ut¢;'o._ 0 0 I 0 ; 2./1 • _43 _utcro._ _ Yes 8 I 5.760 _'24 644 _utc_ 9 Yes 4 I 9.710 2/21 (545 (_ut_ 8 Yes 3 I 8.420 i EJ_ 1 646 (3utcross 0 NO 0 I 0 I 2/8 647 _3utcra_ 4 Yes 7 i 4.270 I 2/1 t 648 _elt 2 Yes 4 i 2.010 442

649 5eli 1 Yes 4 .970 6_0 _ell 2 Yes 4 2,0_0 551 OUtCtOS8 3 Yes 9 2.290 2./17 _2 59 Yes 3 54,_3(_ 65_ OUlQ'Os8 5 ,Yes 7 4,2,_0 3/4 i _54 ' 0 0 0 3/4 655 Outcro_ 0 NO 0 O ?..'17 _56 Ou_'0_s 6 Yes 0 _,o70 2/27 657 OUIQ'OSS 3 Y_$ _ 3._)70 2/10 _8 OLJ_.;_, I YeS 4 ,9OO 2/13 559 _Q1oross 2 YeS 3 I,,SK)Q ?./24 _60 O_,4 u_-_ 0 NO 0 O 2/17 681 _elf 1 YoS 2 1,340 5_2 5ell 1 Yes t 2 1, 40 563 Self 1 Yes I 2 J t ,O,3Q

HI 664 3elf 1 Yes I 51 1,04,0

866 6elf 2 YeS 2,320 888657 :SelfNell 31 YeSYes I i i 3.41,2_O70 i 668 Self 5 Yes, 9 5,550 8e9 se. 1 Yes_ 3, 1.aao 87(3 6o1[ I YeS t 2 ; 1.240 • 671 Nelt 1 YeS I 2 I 1,320 672 Q_ 0 NO 0 0 2,/10 673 0 0 0 _24 ":":" ' 674 QutCrt)SS 0 0 0 2/10 -.: 876 0 0 0 2/11 676 O_¢;_OSS O NO O O 2/'17 877 Q_ 6 YO_ 0 6.080 2/17 i 878 OUtC=OS,S 3 Yes 2,670 2/11 679 Oulcross 2 Yes 3 1.690 2/13 660 Outctoss 3 Yes 2 2.560 2/13 881 Outctoss i 7 Yes 0 8.630 2/24 862 QUtCtGS8 g Yes 0 7.490 2/11 663 UUtCtOSS 4 Yes 3.630 2./11 564 (.}_ 3 Yes 4 2.310 3/4 865 OUlCtOSS 8 Yes 0 7.530 2/22 6_8 Qutc21::_.lSi 4 Yes 0 3.520 2/10 887 OL_cross i Yes 0 ,810 2/17 888 Omcro.s$ i 0 0 0 2/10 589 Ou'_a'oss i 8 Yes 0 7.390 2/24 690 (_UtCJ_SS I 3 Yes 0 2.l_O ?./24 691 OUtCtOSS 2 YeS 0 2.060 3/4 892 OUtCrOPS 7 YeS 8.120 2/11 693 Outo'o._ ; 6 Yes 2 4.550 2/13 "_. 694 (..)L.'tCROSSI 2 YeS 4 1,630 ?.J13 "" 896 _cms,s 3 : Yes 3 2._20 3/4 598 Outmoss 5, Yes 4.340,2/11 887 Outcro,%s 31 YeS 0 2.760 2/24 '. 898 Ot,ICS'EtS.S 31 Yea 4 2.43_ 3/4 698 Outoross 1 i Yes 6 .970 2/21 443

I NO .675 .604 ._e0 I 2 'NO .732 .286 .564J 3 NO .561 6 0I 4 NO .647 .500 .766; 5 NO .673 .260 .5241 6 NO .6o7 .625 .s121 7 NO .53G .429 .714, 8 NO .678 .250 .624 9 NO .714 .222 .481 10 NO .63_ .625 .612 It NO .B_ ._L3,3 .615i 12 NO .675 .500 ._6J t3 NO Set Yes .I 14 NO Set YeS 15 NOSet Yes 15 NO Set Yes ,, 17 NO 18 "NO Set Yes

1920 N050, YNOeS ,6_I ' .12 ; .36 ; 21 NO .660 .857 1.163 22 NO

2324 'NO,o .667 .62 ; .91 ; 25 NO .728 .286 .564 26 NO .706 .667 .966 27 NO 5el Yes 26 NO .560 .667 .955 29 NO ,545 .687 .966 30 NO 5or Yes 31 NO 1.0(]{ 1.571 32 NO 33 NO

3534 NO .668 .666 .84 36 NO 37 NO .560 .857 1.t83 38 NO .760 .429 ,714 39 NO ,663 .625 .912 40 NO .678 .250 324 41 NO .712 .500 .785 42 NO .6_0 .571 .857 43 'NO .665 .778 1.060 44 i,, NO .801 .671 .667 45 NO .770 .750 1.047 46 NO .356 .687 .956 47 NO .843 .250 .524 46 NO .656 .555 .641 49 NO .615 ._29 .7_ 50 NO .857 .557 .965 51 NO .573 .333 .615 6362 NONo .766 .26°.300 .580.62, 54 ' NI .60/ .727 1.021 65 NO 56 NO 57 NO 68 MOSt 0I seeas rnsg 'Yes .74o .500 .765 59 NO .595 .500 .7_5 56 NO .8611 .222 .491 61 NO "1 5_ NO .6771 ,625 ,612 63 NO 64 NOi ,612 .645 ,631 55 N0i .673 ' .333 .615 661 NO .638 .100 .3Z2. 67 "m$g? Yes .800 0 O 68 NO .719 .273 ,549 69 NO .670 .556 ._41 70= NO .783 .222 .491 71i NO .712 ,600 ,866 72' NO .968 .333 ._15 444

Comments saeasmsg? vleantna, seeclwz.(r_j.) pro00nlonofaDorzeclseeos ACrs_ne0r0D. aooneclsee_s 73 NO .580 ,55G ,841 74 NO .BIB .444 ,730 75 NO .1;]7 ,l_til ,955 76 NO 17 NO .918 .,500 ,785 78 NO ,740 ,500 ,185 79 NO .550 .4Z9 .114 80 ¸ NO .174 .222 .491 81 NO .792 ,315 ,559 821 NO ,640 i ,_OO .785 831 NO

_]41 NO ,7121 ,2._0 ,524 8_ I WL 1101taken • t .I_Z2 .908 8(_ NO .585 i .556 .841 87 NO ,561 I .3U4 ,847 88 NO .508 I .4(0 ,585 89 NO ,_)1 I .400 .685 9(: NO ._13 I ,G§/ .955 91 NO ,580 .800 1.107 92 NO .525 .5CO ,886 93 NO ,610 .714 1,007 94 NO .630 ,900 1.249 95 NO ,553 .417 .702 96 NO 97 NO 98 Flower MZSslng Yes 99 NO 100 NO .510 .909 1.265 101 NO .595 .800 1.107 102 NO ,590 .5CO .785 103 NO .593 .700 .991 104 NO .610 .364 .547 I(]5 NO 106 NO .630 .625 .912 107 NO .650 .800 I. 107 108 NO 109 NO 110 NO 111 No | 12 NO .496 .500 .785 113 NO ,604 ,444 .730 114 NO 115 NO .,_87 .727 1.QZ1 116 NO .520 .700 .991 1 1• NO .880 ._67 .955 11B NO

:.: 120 NO i." 119121 NO .655 .B1 8 1.130 ;.i_ , 122 NO 123 NO .', ,24 NO .480 .778 1.080 125 NO ,540 .545 ,831 126 NO .506 .444 .730 127 NO .531 .364 .647 128 -i or 2 seeos rnsg- Yes ,5B5 .778 1.080 129 NO .G19 .906 130 NO 131 NO 132 NO 1.000 1.571 133 NO .170 .250 .524 134 tlatl see_s msg Yes 1.000 1.571 135 NO .713 .700 .991 136 NO ,868 .333 ,615 137 NO 138 NO .B60 .857 1.183 139 "msoJextra" Yes .700 ,889 1.231 140 NO 141 NO 142 NO 143 NO * 144 NO ,744 .SO0 .785 445

145 NO • 146 NO .820 .600 ._86 147 NO ,B_O ,_ .841 148 NO 148 NO .890 ,889 1.231 150 NO ,7E6 .500 .705 151 NO ,54;3 ,_ ,524 152 NO .Z62 .500 ,Z85 153 NO 154 Mis$1n_ Seea$ Yes 1.000 1.571 15_ NO 156 NO ,eTO .50(3 .785 157 NO .135 ,556 .841 158 NO 1.000 1.571 159 rnsq Yes - 1.(X30 1.571 150 NO .858 .444 .Z30 181 NO ./60 .57] .857 162 NO ' ,946 .4.,¢4 ,730 163 NO .SO .3"/5 ,559 54 No .950 .500 .785 165 NO 1.080 .750 1,047 156 NO .725 0 0 157 NO .925 .500 .785 168 NO ,89Q .5_ ,841 '.' 1_ NO _.11_ ,444 ,,_0 170 NO ,953 .4oo .68.5 171 NO '.970 .500 .785 172 NO _et Yes 173 NO 5el YeS 174 No_et YeS *J

176 No 5el YeS 175 NO _et Yes _Jj 177 NO Set Yee " = 175 NO *l 179 NO -- ,i 180 NO '1,025 .429 .714 J 161 NO 152 NO .930 .500 .785 183 NO 164 NO 1.095 .750 1.047 185 NO ,847 .429 ,714 185 NO 1.020 .500 ,785 187 NO ,960 .3/b .559 188 NO .923 .3_;3 .615 t89 NO ,545 .830 190 NO ,9Z0 .5e5 .541 ." 191 NO .850 .429 .714 192 NO ,990 ,611 .857 193 NO ..•,_i," 184 NO .995 ,428 ,714 195 NO 1.150 .§(X3 .888 ,,; 196 NO .965 .867 .955 197 NO 198 NO 1,030 ,500 ,885 199 NO .998 .655 .841 200 NO .944 .125 .361 201 NO .480 .Z_5 2_32 NO o I 203 NO * I 204 NO • 205 Plower rnsg YeS 206, Allms(] YeS 207 JAll msg Yes 208 i All mSCJ Yes

21009 I All msg YNOes .e0 ,557" .85"5 211 MOS( msg Yes 1.000 1.571 212 msq Yes .982 .375 .559 213 msg YeS 1.000 ,S33 1.150 214 ! msg Yes .820 .Too .885 215 pmsg Yes .914 ,375 .559 216 Imsg Y es 1.050 .857 I. 183 446

217 rnsq Yes 1.030 ,692 ,98,,3 216 msg Yes 1.100 ._00 .785 219 msg Yes ,927 " .759 1.070 ;220 rnsg Yes t.OCQ .51_3 .755 221 msg Yes .993 .IZ1 1.021 222 MOSl msq Yes 723 MOSI msg Yes ,680 .81_ 1,107 224 MOSt msg Yes Z26 Most msq Yes 1._40 .667 ,955 226 MOSt msg Yes .755 ._33 ,615 227 MOSl mSQ Yes .@42 .429 .Z14 226 -msgT" Yes 1.026 .=83 ._Sg ;329 "msg7" Yes .977 .6Z5 .912 Z_O "rnsgt" Yes 1.025 ,5(X] .7B5 231 "msgT" Yes .920 .364 .647 232 "rnSgT" Yes ,980 .600 .7_5 233 haft seec_smissing Yes 1,080 .s67 .955 Z34 _all seeas mi_ln_ Yes .930 ,ssz 1.18; 736 Naltsee_s mlss_ng Yes 1.160 ,909 1.265 Z3fi nallseeasm_ssmg Yes .660 .3_ .615 ..:- 237 halfsee0s missing Yes ,907 .600 .785 238 6_f seeds missing Yes .975 ,_67 .955 239 tlaff see_s mcs.smg Yes .667 ,SO<3 1.107 240 NO ,375 .669 J 241 N0 5st Yes 242 NO * 2,3 No ; "1 No,o 1.16.ooo 246 NO .861 ,417 .702 247 NO .8:_ ,127 1.021 ; 246 All ms(] YeS 240 All mscJ Yes 25C NO 251 All m51] Y88 252 "ALlmsg'; NOset Yes 253 "AI4msg'; NOset Yes 254J "AJImsg'; NOset Yes 255 "Allmsg'; NO SOl Yes 25_ "Allrn,_j";NOset YeS 257 "All msg': NOset Yes 268 "ALlmscJ';NOset Yes 259i "All msg': NOsel Yes 26(; "Allmsg'; No SOl Yes * 261 Most mscJ Yes ,800 ./S0 1.047 262 Most msg Yes 1.CO0 1.571 263 MOStmsg Yes .910 ,333 .616 264 MOStmsg Yes .500 ,SC.O .78,6 . 265iMosImsg YeS 1.000 1.571 2661 "msgT" Yes .832 ! ,333 ,615 2671 "msg!" Yes .sy31 .625 ,912 268 "msgT" Yes .844 ,125 ,351 269 msg Yes .927 .671 ,_k.57 270 msg Yes .843 ,625 .912 271 msg Yes ,873 ,671 .Sbl 272 msq Yes .897 .333 ,516 273 msq Yes .697 ._71 .667 274 flail seecJsmsq Yes . _.':=0 .667 ,966 275 _alt see_s msg Yes .753 .50o .785 276 nail see_s msg Yes .773 ,400 .685 277 bsll seeds msO Yss_ .750 .2.66 .564 278 NO i ,,33,.3 ,615 279 "most msg" YeSl .630 .3_ .615 280 NOi 281 PIOWSrmsg Yesi * * 282 NO .Z67 ,536 .324 283 NO 284 NO 285 NO 286 NO 5el YeS 287 NO 5el Yes 286 NO _e( Yes 4.7

L;0mment$ seeas meg7 Mean in(]. seeO wt, (mcj. I DroQorllon ot aOortect seeos Acrslne groo. alx)rteo see0s 289 NO Se! Yes • 290 NO ,910 ,7501 1.047 291 NO ,106 .091 I .306 292 NO .848 ,385 .869 293 NO ./]60 ,667 .955 294 NO .896 .66? .955 295 From two Itowers Yes .829 .273 .549 296 hall seeOs msg Yes .900 ,_(_O .,'8.5 297 halt see03 meg Yes .3,5,3 .Z(X} ,464 298 _dt see¢_ meg Yes .680 .200 ,464 299 i_alt e6eOs ms_l Yes ,942 ,429 ,714 300 ms(] Yes .B37 .4_ .114 ;301 meg Ye6 .8_0 ._6 .841 302 Bey Yes .975 .eti? .955 ;303 meg Yes .722. .33,3 .615 304 msg Yes .786 .12_ .361 305 ms 0 Yes .800 .286 .564 306 me(] Yes ,99_ .364 .547 307 msg Ye_; .868 .3,56 ,841 308 me_ Yes ; .770 .66? ,955 1I, 309 m_;g Yesl 1.050 ,/79 1.050 310 ms(] Yeel .590 .500 .586 311 NO ,532 .444 ,/30 312 NO ,818 ,400 .685 r 313 NO .904 .583 .859 314 NO .198 .308 .588 315 NO .?58 .385 ,669 316 NO .904 _ .500 .786 317 _ NO .729 ! .500 .785 3161 NO ,8291 .333 .615 319 NO .786 ,515 .902 326 NO .938 .52,5 .912 321 NO ,760 ,S?5 1,209 322 NO ,/77 ,083 .293 323 NO .553 ."27 1.021 324 NO 325 NO ,846 .269 ,564 326 NO .266 .564 327 NO .815 .200 .464 329 NO .860 .500 .789 329 "rnSgY" Yes ,847 .3(30 .590 330 NO ,933 .5(_O .686 331 NO .599 ._GO .765 3;32 i "NO SelT Yes 333 ms(] Yes .880 .625 ,912 3;34 NO .617 .467 .752 i 3;35 NO Set Yes ;3:;6 NO Se! YeS ii ;3;37 NO Set Yes 338 NO Set Y6e ''_. 338 NO :.':i 340 NO . ,, ;341 NO

343423 t_al! see_s msg YesNO .9 5(_ .567 .955" 344 NO .S77 .33;3 ,515 ;345 meg'/ Yes .978 .583 .969 ;346 msg Yes .970 .6(_3 1.107 341 meg Yes .914 .500 .785 346 meg Yes .960 ,?{_ .991 349 ms(]? Yes .965 .455 .740 ;350 NO ;351 NO .929 .333 .615, 352 NO ! .010 .714 1.007 35;3 NO ,881 .400 .685 ;354 NO ,831 .429 .714 ! 355 NO .77Q .?78 1.OeO 356 NO .906 .500 .765, 357 NO .978 .333 .5|5 ; 369 NO .613 ,727 1,021 359 NO .967 .769 1.070 360 NO 1.015 .571 .657 i 44,8

Comments seeds mscj? Mean _na. seed wL (rag.; )rogortlon of aborted see_s ACtSme aroD. aDortecl seeos 361 NO .906 .543 .9301 362 NO .98;] .500 .785 I ;]83 NO .975 ,500 .785 t 364 NO _94.x _5(}0 _78,5 3e,5 NO 1_080 _9Q0 _249 366 NO _500 _785 387 NO 368 NO 389 NO / 370 NO _93! 0"_ 0 371 ha_ $seO.s rr_rSCj Yet; 1_20_ _567 _955 372 NO 373 NO _952 _267 _543 3,'4 _ail $ee¢ls meg Yee _683 0 0 3._5 /_a_l seeos mscj Yea _850 _11t _340 3,'5 _aif seeds meg Yea _815 _200 _4_4 377 NO _908 0 O I `378 NO _S88 _071 _271 I ;3.'8 NO _983 _57 _421 350 NO _83_ _0,'1 _271 381 NO _93 _067 _2611 3e2 NO _920 _071 _271 38,3 NO _790 0 0 384 NO 1_020 _,3,3,3 _815 385 NO •872 • 14,3 _388 ,385 NO _80I _067 _251 ,387 NO _88 _077 _281 358 I Ne _815 _'_43 _368

38088 I Alill msgmeg YeYeas ° ,'381 NO 1_000 8 o ,392 i All meg Yes ,39,3 All msg Yes i, 394 Al_msg Yes 395 All ms(] Yes 385 All ms(] Yes ,387 All mscJ Yes 388 All r_ Yes ,389 All meg Yea -- 400 mscJ? Yes .838 .081 .308 '"401 magr? Yea .802 8 0 4(32 msl_r=' Yes 403 ms(]'." Yes .818 8 0 404 ms cJ'! Yes .870 8 0 405 ms(J? Yes •825 0 0 406 ms(J Yes .868 8 0 ,'.': 407 ms(J Yes! 1.0,30 0 0 ":' "' 408 mscj Yea l 1.007 •417 .,'02 .'i 408 msc_ Yea I ,987 .400 .s&e _i i 410 ms(J Yeai .901 0 0 411 NOI •.:- 412 ms(_? Yes .864 I .58,3 .868 • 41,3 NO ..I

414 NO • iI 415 NO " I 415 ¢'_SCJ Yee "_•OGOI ,55T .858 ...... 417: ms(J Yes .603 .3e_ .868 418 i Nail see(Is msg? Yes .950 .63,3 ]. 150 ' 419i I'ta[rsaeOsmsg Yes .854 .444 .730 4201 NO _el Yea 421 NO 5st Yea 422 NO _e! Yes °= 423 NO 5el Yea • I 424 NO ,Set Yes o "I 425 NO .658 .3571 .641 428 NO .992 ,615 .902 427 NO ,707 ,533 .819 425 NO .805 ,4C0 .885 428 NO ,865 .3,33 .815 4`30 NO .884 .615 .802 4,31 NO .958 .457 .752 4,32 NO .911 .312 .593 449

433 NO .997 .500 .;'85 ] 434 NO ,950 .727 1,021 ] 435 NO °I 436 NO .651 .462 ' .747 ] i 437 NO " .773 0 01 438 NO .891 .214 .48| ] 439 NO .845 .375 .659 ] 440 NO el 441 ]_10 .7,, .412 .6,7' 442 NO .926 .312 .593 i 443 NO ' ' .834 _67 .5¢3 I 444 NO 1.004 .867 • .955 ] 445 NO ' .976 .750 1,047 I 445 NO 447 NO .660 .4,38 .71.._ i 446 NO .66_ ._ .669 449 NO .669 .400 .585 450 NO .222 ,491 t 4_1 t NO 4_2 NO 453 NO 454 NO 4,55 NO 456 NO,Set Yes 457 No 5el Yes 466 NO 5ei Yes 456 NO _el Yes 46{J NO _se( Yes 461 i NO _el Yes 452 NO 5ei Yes 463 NO 591 Yes

" '4464651 msNoSge,7 YeSYes .91 ; ,4_ .585 ,i '466i ms¢_? Yes 1.0_0 .ZOO .991 467 see6s msg'? Yes 466 many seeos rnsg YeS ,983 .42J9 .714 46W vna_y see_a msg Yee ,B_O ,I_4 1,O07 , 470 ms_ YeS 1.017 .500 i .785 471 ; msg Yee 1.00( 1,571 472: msg Yes 1.093 .727 i ].021 4731 ms_ Yes .965 ,714 I.C07 414 NO .966 ._00 .658 475 NO 1.04.3 .458 .740 475 NO 1.092 .687 ,966 477 NO 1.040 .571 .657 4781 NO .9{]1 .3e4 .647 479 NO, 1.082 .579 .8_ 480 NO i 1.033 .871 .657 • 481 NO J 1.020 .600 i .886 -. • 482 NO J .904 .567 .955 483 NO J .996 ,6,35 .924 484 NO 1.100 .587 ,, .968 485 NO' .SO0 ,571 .857 488 NO 487 NO i 488 NO ,958 .412 .597 489 NO .561 .533 .819 490 NO .938 .54b .831 491 NO 1.000 .636 .924 492 NO .967 .444 .730 493 NO .984 .583 .869 494 NO 495 NO 1.000 1.571 496 twO flowers Yes 497 NO 498 NO 499 NO 500 NO ,890 .588 i .978 501 NO _O2 No 503 NO , [40 .500 ,76_ 504 NO 1,035 .5_ .824 450

505 NO 5(]6 NO 507 NO 508 NO 509 NO 510 NO 1.000 1.571 511 NO ' 512 NO 5'3 NO .58(] ,750 1.04; 514 NO .834 .4_ .730 515 NO 518 NO .9Z8 ,312 .8_ 517 NO .950 .811 .897 518 NO 819 NO .88Z .500 ,/'85 520 NO 521 NO I.COO 1.571 822 NO " 1.(X](] I._71 523 NO " .812 ,800 .785 824 NO .901 ,211 '.477 _" 5Z8 NO 526 NO 527 NO • 528J NO ,869 .600 .888 :,.:_ 529 H0wer mE, rig Yes 530 NO .953 .7Q0 .991 8,31 NO .848 ,308 .888 8321 NO '" .938 .545 .831 5331 NO .873 .083 .293 534 NO 838 NO .890 .857 1.183

536 msgi Yes ._87 .57.5 ,912 8;37 ! NO .880 .571 ,857 8381 NO .890 ,3331 ,E 15 539 NO • I 548 NO 1.000 1.871 541 NO • I 842! NO .815 ,714 1,007 ! 5431 NO • I 544 J NO * I 5451 NO .987 .750, 1.0471 ' 546] NO .874 .84.51 .831 I 547 NO .877 ,417 .702 ' 548 m0Sl _ Yes 1.QO0 1.571 549 NO .8,33 ,_ .580 ::: 888 NO 1.000 1.871 !

• !. 581882 mNOs_._ el Yes ,960 ,875 1.2(]9 ' • .: 583; NO o 8841 NO .881 ,083 .293 • "; 55_ J NO ,ZlO ,887 ,985 : 588 NO .853 .385 .889

:i, i, 557 NO .872 .4QO ,888 588 NO .813 .384 .647 859 msc_ Yes .910 .778 1,08(] 58(] NO 1.C_O 1.571 581 NO .910 .188 1.090 582 NO .880 ,BOO 1.107 " 563 NO .853 .250 .824 564 NO ,928 .400 ,885 585 "mSg?" YeS ,987 ,800 .888 588 NO ,982 .357 ,e41 5_7 NO 1.O00 1.871 588 NO 869 NO 1.102 .308 .58_ 570 NO .883 : .538 .824 871 NO 1.1 11 ,375 ,859 572 NO 573 NO 1.173; .714 1.007 574 NO 575 NO I 1,198 .444 .730 578 NO I 1.01 8 .385 .889 401

Comments soe6s ms(J/ MeeN ind. seed wl. (mg,j propol110n of aDOr_80 Seeds Acrsirte Drop, SOorTed seeds 577 'msg?" Yes 1.064 ,286 .564 578 NO .950 ,385 .569 579 NO _e( Yes 58O NO

501 NO 1,077 .535 ,924 582 NO 583 NO

584 NO ,947 .127 1.021 505 NO

585 NO 1.1_6 .592 .983 557 NO 1.139 .429 .714 588 NO 1.051 .214 ,4a1 580 "mS(JT Yes 1.05(] .ZSO 1.041 590 NO 1.150 .500 .785 591 NO 1.130 .250 .524 592 NO .963 .3,,57 .641 503 NO .990 .5,33 1,150 594 "t_qgT" Yes 1.156 .54_ .930 595 No .915 .500 1.107 596 NO 1,150 .667 .955 :':" 597 I "n_gT" Yes .990 .4(:0 .685 590 NO 1,1;38 .250 .524 599 NO 600 NO 1.027 .267 ,546 601 NO 1.056 .462 .747 502 NO 503 NO 1.010 .5381 ,524 604 NO .950 ,5001 ,785 1505 NO 1.O0O .630 i .924 500 NO .920 .8;_,.31 1.150 607 NO 508 NO I .I 15 i .429 .714 50g NO .870 i .714 1.007 610 NO • i 511 NO ,8751 J14 1.007 812 NO 1.08(3 .55§ .841 613 NO 1.157 .500 .785 614 NO 1.270 .500 ,765 515 NO 1.117 .500 .785 616 NO 1.0CO .538 ,524 617 NO 1.OO; .308 .588 (_18 NO 1.000 1,571 _19 NO 520 NO 1,017 .538 .824 021 NO ,067 ,769 1.070 .. 622 msg Yes 1,030 0 0 :;; 523 NO 1.016 .375 .559 624 ms_ Yes .820 .567 .955 625 NO 1,158 .760 1.047 526 NO 1,0_. .429 .714 527 NO 1.097 .5;_ .824 628 NO ,977 .571 .857 '!i: 529 NO 530 NO 1.045 .(_07 .955 631 NO 1.14_ .I78 1.050 632 NO 1,100 .8{_ 1.107 633 NO .982 .455 .740 534 NO 535 i_elt see_s n_g Yes .B83 ._33 .515 638 msg Yes .950 ,833 1,150 t_37 NO 1,038 .256 .564 6;_8 msg YeS .991 .091 .306 639 NO 1.007 .417 ,702 640 msg Yes .997 .6Z5 ,012 641 msg Yes 1,017 .56Z .955 642 NO 5e1 Yes 843 NO 1.152 .515 ,902 544 NO 1.079 .308 .558 545 "ms(J7" Yes 1.053 .273 .549 546 "NO 5elY" Yes 647 NO 1.067 ,636 ,924 646 NO 1.005 ,557 .955 452

E;ornrnents seeOs rnsg7 Mean in0. saeo wl. (m0. I oroDortloo ot aoonea seeOs ACts.no Drop. aDorlaO $ee0s 649 NO .970 .800 1.107 (_0 NO 1.030 .667 .g55 651 ms(] Yes .763 .1_0 1.047 _52 NO .gZ0 .048 .222 553 msg Yes +846 .583 .869 654 NO _55 all see0s msg Yes 660 N_O Ilowem YeS .645 U 0 667 ms? Yea 1.190 .2_0 ._Z4 _Ga NO .900 .aO0 1.107 659 mS? Yes .950 .600 .B86 660 aJiseq_s m._ Yes 661 NO 1.340 .1_7 ,9,_._ 662 NO 1.140 .a_ 1 .955 663 NO 1.030 .667 .965 664 NO 1.040 .a61 1.183 _165 NO 1.160 625 912 566 NO 1.160 714 1.007 6(]7 NO 1.270 667 .956 666 NO 1.1 10 .643 .930 66_ NO 1._0 .I_O 1.047 670 NO 1.240 .867 .955 671 NO 1.320 567 955 672 "NO _etr?" Yes 673 NO 674 NO Set Yes 676 NO 675 Allseeas rnsg Yes -- 677 ms_l Yes .543 U 0 676 NO .860 _60 624 679 msg Yes .84S .600; .886 680 msg YeS .653 .400_ .685 681 msg YeS .976 0, 0 682 NO 832 0; 0 663 msg Yes .908 .2001 ,484 664, msg Yes .770 .611 i ,857 685i "rl!s(j'/" YeS .941 01 0 666, nlsg Yaa .680 01 O 667: aJrr_t Wi seeOs rnsq Yes .610 OI 0 688i NO -J 6891 msg Yes .924 01 0 6901 many see0s ms(? Yes .91Q 01 0 691 i msg Yes 1.030 .8001 1.107 692 msg Yes ,674 .125 .361 593 mSg Yes ,758 .250 .524 694 NO +616 ,1_67 .955 695 msq Yes ,673 .5001 .765 696 msg Yes ,868 .1671 421 6B1 msg YeS ,920 OJ 0 696 msq Yes ,810 ,671 I .857 • 69g msq YeS .sTo .6691 1.231 • IF_-%_.: .,r •: i