Imipramine-Induced Hyperpigmentation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Non-Commercial Use Only
Veins and Lymphatics 2012; volume 1:e6 Ulcerated hemosiderinic three months previous to this therapy. Significant improvement in these injuries, Correspondence: Eugenio Brizzio and Alberto dyschromia and iron deposits with a reduction in the dimensions of the Lazarowski, San Martín 965, 1st floor (Zip code within lower limbs treated brown spot (9 of 9) at Day 90, and complete 1004) Buenos Aires, Argentina. with a topical application scarring with a closure time ranging from 15 Tel. +54.11.4311.5559. to 180 days (7 of 9) were observed. The use of E-mail: [email protected]; of biological chelator [email protected]; topical lactoferrin is a non-invasive therapeu- [email protected]; tic tool that favors clearance of hemosiderinic 1 2 [email protected] Eugenio Brizzio, Marcelo Castro, dyschromia and scarring of the ulcer. The 3 2 Marina Narbaitz, Natalia Borda, success of this study was not influenced Key words: ulcerated haemosiderinic dyschro- Claudio Carbia,2 Laura Correa,4 either by the hemochromatosis genetics or mia, liposomal Lactoferrin, scarring, hemo- Roberto Mengarelli,5 Amalia Merelli,2 the iron metabolism profile observed. siderin-ferritin. Valeria Brizzio,2 Maria Sosa,6 Acknowledgments: the authors would like to Biagio Biancardi,7 Alberto Lazarowski2 thank P. Girimonte for her assistance with the statistical analysis of the results. We also wish to Introduction thank the patients who made this study possible. 1International Group of Compression and Conference presentation: part of the present Argentina Medical Association, Buenos Chronic venous insufficiency (CVI) is one of study has been presented at the following con- 2 Aires, Argentina; Department of Clinical the most significant health problems in devel- gresses: i) XX Argentine Congress of Hematology, Biochemistry, Institute of oped countries. -
Formation of Lipofuscin-Like Autofluorescent Granules in the Retinal Pigment Epithelium Requires Lysosome Dysfunction
Retinal Cell Biology Formation of Lipofuscin-Like Autofluorescent Granules in the Retinal Pigment Epithelium Requires Lysosome Dysfunction Cristina Escrevente,1 Ana S. Falcão,1 Michael J. Hall,2 Mafalda Lopes-da-Silva,1 Pedro Antas,1 Miguel M. Mesquita,1 Inês S. Ferreira,1 M. Helena Cardoso,1 Daniela Oliveira,1 Ana C. Fradinho,1 Thomas Ciossek,3 Paul Nicklin,3 Clare E. Futter,2 Sandra Tenreiro,1 and Miguel C. Seabra1,2 1iNOVA4Health, CEDOC – Chronic Diseases Research Center, NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal 2UCL Institute of Ophthalmology, London, United Kingdom 3Research Beyond Borders, Boehringer Ingelheim, Biberach, Germany Correspondence: Miguel C. Seabra, PURPOSE. We aim to characterize the pathways required for autofluorescent granule (AFG) CEDOC - NOVA Medical School, formation by RPE cells using cultured monolayers. Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; METHODS. We fed RPE monolayers in culture with a single pulse of photoreceptor outer [email protected]. segments (POS). After 24 hours the cells started accumulating AFGs that were compa- rable to lipofuscin in vivo. Using this model, we used a variety of light and electron Received: January 24, 2021 microscopical techniques, flow cytometry and Western blot to analyze the formation of Accepted: June 29, 2021 Published: July 27, 2021 AFGs. We also generated a mutant RPE line lacking cathepsin D by gene editing. Citation: Escrevente C, Falcão AS, RESULTS. AFGs seem to derive from incompletely digested POS-containing phagosomes Hall MJ, et al. Formation of and after 3 days are surrounded by a single membrane positive for lysosome markers. We lipofuscin-like autofluorescent show by various methods that lysosome-phagosome fusion is required for AFG formation, granules in the retinal pigment and that impairment of lysosomal pH or catalytic activity, particularly cathepsin D activity, epithelium requires lysosome enhances AF accumulation. -
Health Sciences Center
Faculty of Allied Health Sciences Handbook: 2020-2021 KUWAIT UNIVERSITY HEALTH SCIENCES CENTRE 1 | P a g e KUWAIT UNIVERSITY HEALTH SCIENCES CENTRE FACULTY OF ALLIED HEALTH SCIENCES Established: 1982 HANDBOOK 2020-2021 2 | P a g e Department of MEDICAL LABORATORY SCIENCES [MLS] 3 | P a g e DEPARTMENT OF MEDICAL LABORATORY SCIENCES Medical Laboratory Sciences offers opportunities for those interested in biological and chemical sciences, leading to a career in the health service or in research. Medical laboratory scientists are professionals who perform laboratory tests and analyses that assist physicians in the diagnosis and treatment of patients. They also assist in research and the development of new laboratory tests. The various studies include chemical and physical analysis of body fluids (clinical chemistry and urinalysis); examination of blood and its component cells (haematology); isolation and identification of bacteria, fungi, viruses and parasites (clinical microbiology and parasitology); testing of blood serum for antibodies indicative of specific diseases (immunology and serology) and collection, storage of blood, pretransfusion testing and other immunohaematological procedures (blood banking). In addition, medical laboratory scientists prepare tissues for histopathological, cytological and cytogenetic examination. They must know the theory and scientific fundamentals as well as the procedures for testing. Medical laboratory scientists work in hospital clinical laboratories, medical schools, research institutions, public health agencies and related organizations. MISSION AND OBJECTIVES Mission The mission of the Department of Medical Laboratory Sciences is to educate and train skillful, knowledgeable and committed Medical Laboratory Scientists who have breadth of knowledge and competence in the various aspects of Medical Laboratory Sciences, who shall adhere to professional ethics, and who can contribute successfully as Medical Laboratory Scientists in the health care team. -
Mini-Review on Lipofuscin and Aging: Focusing on the Molecular Interface, the Biological Recycling Mechanism, Oxidative Stress, and the Gut-Brain Axis Functionality
medicina Review Mini-Review on Lipofuscin and Aging: Focusing on The Molecular Interface, The Biological Recycling Mechanism, Oxidative Stress, and The Gut-Brain Axis Functionality Ovidiu-Dumitru Ilie 1,* , Alin Ciobica 1,2,*, Sorin Riga 2, Nitasha Dhunna 3, Jack McKenna 4, Ioannis Mavroudis 5,6, Bogdan Doroftei 7 , Adela-Magdalena Ciobanu 8 and Dan Riga 2 1 Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 20A, 700505 Iasi, Romania 2 Academy of Romanian Scientists, Splaiul Independentei, no. 54, sector 5, 050094 Bucharest, Romania; [email protected] (S.R.); [email protected] (D.R.) 3 Mid Yorkshire Hospitals NHS Trust, Pinderfields Hospital, Wakefield WF1 4DG, UK; [email protected] 4 York Hospital, Wigginton road Clifton, York YO31 8HE, UK; [email protected] 5 Leeds Teaching Hospitals NHS Trust, Great George St, Leeds LS1 3EX, UK; [email protected] 6 Laboratory of Neuropathology and Electron Microscopy, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece 7 Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, no 16, 700115 Iasi, Romania; [email protected] 8 Discipline of Psychiatry, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Dionisie Lupu Street, no 37, 020021 Bucharest, Romania; [email protected] * Correspondence: [email protected] (O.-D.I.); [email protected] (A.C.) Received: 17 September 2020; Accepted: 17 November 2020; Published: 19 November 2020 Abstract: Intra-lysosomal accumulation of the autofluorescent “residue” known as lipofuscin, which is found within postmitotic cells, remains controversial. Although it was considered a harmless hallmark of aging, its presence is detrimental as it continually accumulates. -
NCL Description for Cocker Spaniels
NCL Description for Cocker Spaniels Age of onset of clinical signs: 1.5 - 6 years Age of death or euthanasia: 1.5 - 6 years Abnormalities often observed by the owner: Mental changes: Aggression, irritability, dementia Changes in gait and posture: progressive difficulty walking; weakness and uncoordinated movement. Visual abnormalities: blindness may be present in some cases Seizures/convulsions: reported in some cases Other changes: Jaw champing, head tremors, emaciation Abnormalities observed upon clinical examinations: Clinical neurologic changes: Gait abnormalities, weakness, uncoordinated movement (hypermetric ataxia, proprioceptive deficits, exaggerated spinal reflexes) Clinical ophthalmic changes: ophthalmic changes have been reported Visual abnormalities: blindness has been reported Retinal changes: retinal atrophy has been reported Electroretinography (ERG): not described in reported cases Other clinical findings: none reported Histopathology Brain: Yellow-brown granules were present in neuronal cytoplasm of some neurons in the brain and spinal cord. Storage granules were most abundant in the spinal cord and cerebellum. Cells in the cerebral cortex, brain stem, and Purkinje cells were less affected. Affected neurons were swollen, and often had an eccentric nucleus due to displacement by accumulation of granules. These granules exhibited yellow-green autofluorescence and staining patterns consistent with ceroid and lipofuscin. Degenerative changes within the CNS were also described (neuronal necrosis, Wallerian degeneration, and axonal dystrophy). Eyes: mild irregular loss of photoreceptor cells; massive accumulation of fluorescent material in the retinal pigmented epithelium. Other organs and structures: Storage product also accumulated within the smooth muscle cells of the intestines, pancreas, urinary bladder, and walls of small arteries. Mode of inheritance: Autosomal recessive inheritance is suspected. -
Simple Technique to Identify Haemosiderin in Immunoperoxidase Stained Sections
J Clin Pathol: first published as 10.1136/jcp.37.10.1190 on 1 October 1984. Downloaded from 1190 Technical methods Phosphate buffer at pH 8*0 gave the sharpest 2 Rozenszajn L, Leibovich M, Shoham D, Epstein J. The esterase staining reactions, although there was little differ- activity in megaloblasts, leukaemic and normal haemopoietic cells. Br J Haematol 1968; 14:605-19. ence at pH 7-0 or pH 7-5. As the buffer pH was 3Hayhoe FGJ, Quaglino D. Haematological cytochemistry. Edin- increased above pH 8-0 staining with both substrates burgh: Churchill Livingstone, 1980. became progressively weaker, especially above pH 4Li CY, Lam KW, Yam LT. Esterases in human leucocytes. J 9.0. Below pH 7-0 staining with a-naphthyl butyrate Histochem Cytochem 1973;21:1-12. Yam LT, Li CY, Crosby WH. Cytochemical identification of became weaker, and below pH 5*0 staining with monocytes and granulocytes. Am J Clin Pathol 1971;55:283- naphthol AS-D chloroacetate began to disappear. 90. 6 Armitage RJ, Linch DC, Worman CP, Cawley JC. The morphol- This work was supported by a Medical Research ogy and cytochemistry of human T-cell subpopulations defined by monoclonal antibodies and Fc receptors. Br J Haematol Council project grant. I thank Professor FGJ 1983;51:605-13. Hayhoe for valuable advice. References Requests for reprints to: Dr DM Swirsky, Department of Gomori G. Chloroacyl esters as histochemical substrates. J His- Haematological Medicine, University Clinical School, Hills tochem Cytochem 1953;1:469-70. Road, Cambridge CB2 2QL, England. Simple technique to identify identification of the two compounds on the same haemosiderin in slide. -
Amyloid Precursor Protein, Lipofuscin Accumulation and Expression of Autophagy Markers in Aged Bovine Brain D
De Biase et al. BMC Veterinary Research (2017) 13:102 DOI 10.1186/s12917-017-1028-1 RESEARCH ARTICLE Open Access Amyloid precursor protein, lipofuscin accumulation and expression of autophagy markers in aged bovine brain D. De Biase1, A. Costagliola1*, T.B. Pagano1, G. Piegari1, S. Wojcik2, J. Dziewiątkowski2, E. Grieco3, G. Mattace Raso4, V. Russo1, S. Papparella1 and O. Paciello1 Abstract Background: Autophagy is a highly regulated process involving the bulk degradation of cytoplasmic macromolecules and organelles in mammalian cells via the lysosomal system. Dysregulation of autophagy is implicated in the pathogenesis of many neurodegenerative diseases and integrity of the autophagosomal - lysosomal network appears to be critical in the progression of aging. Our aim was to survey the expression of autophagy markers and Amyloid precursor protein (APP) in aged bovine brains. For our study, we collected samples from the brain of old (aged 11–20 years) and young (aged 1–5 years) Podolic dairy cows. Formalin-fixed and paraffin embedded sections were stained with routine and special staining techniques. Primary antibodies for APP and autophagy markers such as Beclin-1 and LC3 were used to perform immunofluorescence and Western blot analysis. Results: Histologically, the most consistent morphological finding was the age-related accumulation of intraneuronal lipofuscin. Furthermore, in aged bovine brains, immunofluorescence detected a strongly positive immunoreaction to APP and LC3. Beclin-1 immunoreaction was weak or absent. In young controls, the immunoreaction for Beclin-1 and LC3 was mild while the immunoreaction for APP was absent. Western blot analysis confirmed an increased APP expression and LC3-II/LC3-I ratio and a decreased expression of Beclin-1 in aged cows. -
Brain – Necrosis
Brain – Necrosis 1 Brain – Necrosis 2 Brain – Necrosis Figure Legend: Figure 1 Appearance of a thalamic infarct at low magnification, identified by pallor within the zone of the black arrows, in an F344/N rat. The dentate gyrus of the hippocampus is identified by a white arrow. This infarct was the result of an arterial embolus (arrowhead), shown at higher magnification in Figure 2. Figure 2 Arterial embolus from Figure 1 at higher magnification, in an F344/N rat. Figure 3 Acute necrosis of the posterior colliculus, a bilaterally symmetrical lesion (arrows), in the whole mount of a section in a male F344/N rat from an acute study. This resulted from the selective vulnerability of this brain region to toxin- induced impaired energy metabolism. The arrowhead identifies necrosis of the nucleus of the lateral lemniscus. Figure 4 Similar regionally selective bilateral brain necrosis of the parietal cortex area 1 (blue arrow), thalamus (arrowhead), and retrosplenial cortex (white arrow) in a treated male F344/N rat from an acute study, all resulting from the same toxic compound as used in Figure 3. Figure 5 Unusual form of malacia (total regional necrosis) of the spinal cord in the dorsal spinal funiculi (arrow) in a female F344/N rat from a chronic study. Figure 6 A cortical infarct with gliosis and capillary hyperplasia (arrow) from a male B6C3F1 mouse in a chronic study. Figure 7 A more advanced stage of cortical infarction (arrows) in a treated female B6C3F1 mouse from a chronic chronic inhalation study. Figure 8 Morphology of an infarct of known duration (arrow) in an F344/N rat with experimental infarction. -
Immune Clearance of Senescent Cells to Combat Ageing and Chronic Diseases
cells Review Immune Clearance of Senescent Cells to Combat Ageing and Chronic Diseases Ping Song * , Junqing An and Ming-Hui Zou Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street SE, Atlanta, GA 30303, USA; [email protected] (J.A.); [email protected] (M.-H.Z.) * Correspondence: [email protected]; Tel.: +1-404-413-6636 Received: 29 January 2020; Accepted: 5 March 2020; Published: 10 March 2020 Abstract: Senescent cells are generally characterized by permanent cell cycle arrest, metabolic alteration and activation, and apoptotic resistance in multiple organs due to various stressors. Excessive accumulation of senescent cells in numerous tissues leads to multiple chronic diseases, tissue dysfunction, age-related diseases and organ ageing. Immune cells can remove senescent cells. Immunaging or impaired innate and adaptive immune responses by senescent cells result in persistent accumulation of various senescent cells. Although senolytics—drugs that selectively remove senescent cells by inducing their apoptosis—are recent hot topics and are making significant research progress, senescence immunotherapies using immune cell-mediated clearance of senescent cells are emerging and promising strategies to fight ageing and multiple chronic diseases. This short review provides an overview of the research progress to date concerning senescent cell-caused chronic diseases and tissue ageing, as well as the regulation of senescence by small-molecule drugs in clinical trials and different roles and regulation of immune cells in the elimination of senescent cells. Mounting evidence indicates that immunotherapy targeting senescent cells combats ageing and chronic diseases and subsequently extends the healthy lifespan. Keywords: cellular senescence; senescence immunotherapy; ageing; chronic disease; ageing markers 1. -
Role of Histopathological Examination in Medicolegal Autopsies in Unravelling Pathology Section Precise Causes of Mortality
DOI: 10.7860/NJLM/2021/48233:2522 Original Article Role of Histopathological Examination in Medicolegal Autopsies in Unravelling Pathology Section Precise Causes of Mortality DIVYA SHARMA1, ANSHU GUPTA2, KHUSHBOO DEWAN3, KARSING PATIRI4, KUSUM GUPTA5, USHA RANI SINGH6 ABSTRACT Histopathological examination was performed in 96 cases out of Introduction: Medicolegal autopsies are performed to determine which 10 were excluded due to autolysis (n=86). Haemotoxilin the cause and manner of death. Histopathological examination and Eosin (H&E)-stained slides were examined and special is reserved for only those cases where Cause Of Death (COD) is stains and Immunohistochemistry (IHC) applied wherever not readily apparent on autopsy. However, there are conflicting required. Gross and histopathological findings were recorded views regarding the utility of histopathological examination in along with autopsy findings and clinical history. The results were medicolegal cases. tabulated and statistical analysis was done using the Chi-square and Fischer’s test to look for any significance and association Aim: To examine the role of histopathological examination in between gross and microscopic findings in various organs. The unravelling specific causes of mortality in two settings: 1) where p-value of <0.05 was considered significant. collaborative clinical history and gross autopsy findings were available; 2) where definitive cause could be discovered only Results: Histopathological examination was conclusive in at the time of microscopic examination, thus altering its legal ascertaining the specific COD in 30/86 cases (35%). These were implications. categorised as pulmonary causes (27) including one case each Materials and Methods: This was a retrospective observational of fat embolism and Amniotic Fluid Embolism (AFE) and cardiac study including all medicolegal autopsy cases, in which causes (3). -
Histopathology
INTERNATIONAL CLINICAL FELLOWSHIP TRAINING IN HISTOPATHOLOGY © Royal College of Physicians of Ireland, 2019 1 This curriculum of training in Histopathology was developed in 2015 and undergoes an annual review by Prof Cecily Quinn, Clinical Lead, Leah O’Toole, Head of Postgraduate Training and Education , and by the Histopathology Training Committee. The curriculum is approved by the Faculty of Pathology. Version Date Published Last Edited By Version Comments 5.0 01 July 2019 Keith Farrington None © Royal College of Physicians of Ireland, 2019 2 Histopathology International Table of Contents Table of Contents INTRODUCTION ............................................................................................................................................... 4 GENERIC COMPONENTS ................................................................................................................................... 7 GOOD PROFESSIONAL PRACTICE ................................................................................................................................. 8 INFECTION CONTROL .............................................................................................................................................. 10 SELF-CARE AND MAINTAINING WELL-BEING ............................................................................................................... 12 COMMUNICATION IN CLINICAL AND PROFESSIONAL SETTING .......................................................................................... 14 LEADERSHIP ......................................................................................................................................................... -
Cytopathology Pathology
New York State Department of Health Clinical Laboratory Standards of Practice Specialty Requirements by Category Cytopathology Pathology Cytopathology Standard Guidance Cytopathology Standard of Practice 1 (CY S1): Staining of While the actual staining technique may vary depending on the Gynecologic Slides type of stain used and the modification of the method, any modification must include the four main steps of the standard The laboratory must use a Papanicolaou or modified Papanicolaou method: fixation, nuclear staining, cytoplasmic Papanicolaou staining method for gynecologic cytology slides. staining, and clearing. Cytopathology Standard of Practice 2 (CY S2): Prevention 10 NYCRR Subparagraph 58-1.13(b)(3)(iii) requires separate of Cross Contamination Between Specimens During the staining of gynecologic and non-gynecologic slides. Staining Process In general, all stains and solutions should be filtered or The laboratory must ensure that: changed at intervals appropriate to the laboratory’s workload to a) gynecologic and non-gynecologic cytology slides are ensure staining quality meets the laboratory’s pre-established stained separately; and criteria. Stain quality should be verified every eight (8) hours for laboratories that operate twenty-four (24) hours a day. b) non-gynecologic cytology slides that have high potential for cross-contamination are stained separately from b) A toluidine blue stain may be used to determine the other non-gynecologic slides, and the stains and cellularity of non-gynecologic specimens. solutions are filtered or changed following staining. Cytopathology Standard of Practice 3 (CY S3): Targeted Slides reviewed as part of ten (10) percent re-examination must Re-examination be included in the workload limit of the cytology supervisor or the cytotechnologist performing the re-examination.