Solaris PC Netlink 2.0 Administration Guide

Total Page:16

File Type:pdf, Size:1020Kb

Solaris PC Netlink 2.0 Administration Guide Solaris™ PC NetLink 2.0 Administration Guide Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303-4900 U.S.A. 650-960-1300 Part No. 816-0266-10 March 2002, Revision A Send comments about this document to: [email protected] Copyright 2002 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, CA 94303-4900 U.S.A. All rights reserved. This product or document is distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers. Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. Sun, Sun Microsystems, the Sun logo, AnswerBook2, docs.sun.com, Java, and Solaris are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. PostScript is a trademark or registered trademark of Adobe Systems, Inc., which may be registered in certain jurisdictions. The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements. Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions. DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. Copyright 2002 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, CA 94303-4900 Etats-Unis. Tous droits réservés. Ce produit ou document est distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun. Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd. Sun, Sun Microsystems, le logo Sun, AnswerBook2, docs.sun.com, Java, et Solaris sont des marques de fabrique ou des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc. PostScript est une marque de fabrique d’Adobe Systems, Inc., laquelle pour rait être déposée dans certaines juridictions. L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun. LA DOCUMENTATION EST FOURNIE “EN L’ETAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A L’ABSENCE DE CONTREFAÇON. Please Recycle Contents 1. Introduction to Solaris PC NetLink Administration 1 What’s New in PC NetLink Version 2.0 1 About Your New Server 2 About Your New Administration Role 3 Windows NT Administration Tools Overview for Experienced Solaris System Administrators 4 User Manager for Domains 5 Server Manager 6 Event Viewer 6 System Policy Editor 7 User Profile Editor 7 PC NetLink Server Manager or the Solaris Command Line: Your Choice 8 PC NetLink Server Manager 9 Command-Line Interface for All Tasks 12 2. PC NetLink Administration at the Solaris Command Line 13 About the Show Commands Feature 14 ▼ How to Use the PC NetLink Server Manager Show Commands Feature 14 About PC NetLink Commands 16 About the net Command 18 iii Administering Local and Remote Physical Hosts 18 ▼ How to Administer a Local PC NetLink Physical Host 19 ▼ How to Administer a Remote PC NetLink Physical Host 19 ▼ How to Use PC NetLink Commands on a Windows Client 21 PC NetLink Command Usage 21 Specifying a PC NetLink Virtual Server 21 Paging Through Screens 21 Using Passwords With Commands 22 Using Command Confirmation 22 Using Abbreviations 23 Using Special Characters With Commands 23 Typing Path Names With Solaris net Commands 24 Typing Path Names at Client Computers 24 Understanding Command Syntax 24 Getting Help on net Commands 25 PC NetLink net Command Options 26 About lanman.ini File Entries 28 File Syntax 29 ▼ How to Change a lanman.ini File Parameter 30 File Parameters 30 3. Configuring and Managing PC NetLink Software 37 About Logon and Logoff 39 Windows NT and Solaris Root Logon Privileges 39 ▼ How to Start PC NetLink Server Manager 40 ▼ How to Add a Solaris Server to PC NetLink Server Manager 41 ▼ How to Log On to a Solaris Server Using PC NetLink Server Manager 42 ▼ How to Log On to a Solaris Server From the Command Line 44 iv Solaris PC NetLink 2.0 Administration Guide • March 2002 ▼ How to Log Off a Solaris Server Using PC NetLink Server Manager 45 ▼ How to Log Off a Solaris Server From the Command Line 45 About Starting and Stopping Services 46 ▼ How to Start a PC NetLink Virtual Server Using PC NetLink Server Manager 46 ▼ How to Stop a PC NetLink Virtual Server Using PC NetLink Server Manager 47 ▼ How to Start a PC NetLink Virtual Server From the Command Line 49 ▼ How to Stop a PC NetLink Virtual Server From the Command Line 49 ▼ How to Schedule Virtual Server Restart, Stop, or Start 50 ▼ How to Start Individual Services 56 ▼ How to Stop Individual Services 58 ▼ How to Configure Startup for Individual Services 60 About Domain Configuration and Management 62 Adding, Removing, Renaming, and Moving Servers Within a Domain 64 Creating a New PC NetLink Virtual Server 64 Adding a Domain Workstation or Server Computer 65 Removing a Computer From a Domain 65 Changing the Name of a Domain or Server 66 Moving a Computer to a Different Domain 66 ▼ How to Create an IP Address for a PC NetLink Virtual Server 66 ▼ How to Create a New PC NetLink Virtual Server 67 ▼ How to Delete a PC NetLink Virtual Server 74 ▼ How to Rename a PC NetLink Virtual Server 75 ▼ How to Move a Virtual Server to Another Domain 80 ▼ How to Promote a BDC Within Its Domain 89 ▼ How to Change the Role of a Server Within Its Domain 91 ▼ How to Create a Directory Share 95 Contents v ▼ How to Modify a Directory Share 96 ▼ How to Delete a Directory Share 97 About Managing Policies 98 About Managing Virtual Server Policies 98 Computer Browsing 98 File Name Mapping 99 File Name Mapping Rules 100 Considerations for Using Mixed-Case Support 100 Tuning PC NetLink Parameters for Optimum Performance 101 Processes and Virtual Circuits 101 Client Workload 102 Solaris File System Integration 102 Ownership of Files and Directories 105 Managing Access Control List (ACL) Data 106 UPS Power Failure Notification 107 User Accounts 107 Copying User Accounts Using PC NetLink Server Manager 108 ▼ How to Change Computer Browsing Policy 109 ▼ How to Set Up File Name Mapping 111 ▼ How to Tune PC NetLink for Optimum Performance 112 ▼ How to Set Solaris File System Integration Policies 114 ▼ How to Use UPS Power Failure Notification 116 ▼ How to Edit User Accounts Policies 118 ▼ How to Map Existing User Accounts 120 ▼ How to Copy User Accounts From Solaris to PC NetLink Using PC NetLink Server Manager 121 ▼ How to Copy User Accounts From PC NetLink to Solaris Using PC NetLink Server Manager 128 vi Solaris PC NetLink 2.0 Administration Guide • March 2002 User Account Management Utilities 134 ▼ How to Use the ldifmerge Utility 137 About Managing General Policies 138 NetBIOS 138 WINS Servers 138 WINS and NetBIOS Nodes 139 WINS Proxy 139 LAN Adapter (Lana) Numbers 139 NetBIOS Scope 140 Solaris Name Resolution and Domain Name Service (DNS) 140 PC NetLink Server Manager
Recommended publications
  • Beej's Guide to Unix IPC
    Beej's Guide to Unix IPC Brian “Beej Jorgensen” Hall [email protected] Version 1.1.3 December 1, 2015 Copyright © 2015 Brian “Beej Jorgensen” Hall This guide is written in XML using the vim editor on a Slackware Linux box loaded with GNU tools. The cover “art” and diagrams are produced with Inkscape. The XML is converted into HTML and XSL-FO by custom Python scripts. The XSL-FO output is then munged by Apache FOP to produce PDF documents, using Liberation fonts. The toolchain is composed of 100% Free and Open Source Software. Unless otherwise mutually agreed by the parties in writing, the author offers the work as-is and makes no representations or warranties of any kind concerning the work, express, implied, statutory or otherwise, including, without limitation, warranties of title, merchantibility, fitness for a particular purpose, noninfringement, or the absence of latent or other defects, accuracy, or the presence of absence of errors, whether or not discoverable. Except to the extent required by applicable law, in no event will the author be liable to you on any legal theory for any special, incidental, consequential, punitive or exemplary damages arising out of the use of the work, even if the author has been advised of the possibility of such damages. This document is freely distributable under the terms of the Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. See the Copyright and Distribution section for details. Copyright © 2015 Brian “Beej Jorgensen” Hall Contents 1. Intro................................................................................................................................................................1 1.1. Audience 1 1.2. Platform and Compiler 1 1.3.
    [Show full text]
  • Mmap and Dma
    CHAPTER THIRTEEN MMAP AND DMA This chapter delves into the area of Linux memory management, with an emphasis on techniques that are useful to the device driver writer. The material in this chap- ter is somewhat advanced, and not everybody will need a grasp of it. Nonetheless, many tasks can only be done through digging more deeply into the memory man- agement subsystem; it also provides an interesting look into how an important part of the kernel works. The material in this chapter is divided into three sections. The first covers the implementation of the mmap system call, which allows the mapping of device memory directly into a user process’s address space. We then cover the kernel kiobuf mechanism, which provides direct access to user memory from kernel space. The kiobuf system may be used to implement ‘‘raw I/O’’ for certain kinds of devices. The final section covers direct memory access (DMA) I/O operations, which essentially provide peripherals with direct access to system memory. Of course, all of these techniques requir e an understanding of how Linux memory management works, so we start with an overview of that subsystem. Memor y Management in Linux Rather than describing the theory of memory management in operating systems, this section tries to pinpoint the main features of the Linux implementation of the theory. Although you do not need to be a Linux virtual memory guru to imple- ment mmap, a basic overview of how things work is useful. What follows is a fairly lengthy description of the data structures used by the kernel to manage memory.
    [Show full text]
  • An Introduction to Linux IPC
    An introduction to Linux IPC Michael Kerrisk © 2013 linux.conf.au 2013 http://man7.org/ Canberra, Australia [email protected] 2013-01-30 http://lwn.net/ [email protected] man7 .org 1 Goal ● Limited time! ● Get a flavor of main IPC methods man7 .org 2 Me ● Programming on UNIX & Linux since 1987 ● Linux man-pages maintainer ● http://www.kernel.org/doc/man-pages/ ● Kernel + glibc API ● Author of: Further info: http://man7.org/tlpi/ man7 .org 3 You ● Can read a bit of C ● Have a passing familiarity with common syscalls ● fork(), open(), read(), write() man7 .org 4 There’s a lot of IPC ● Pipes ● Shared memory mappings ● FIFOs ● File vs Anonymous ● Cross-memory attach ● Pseudoterminals ● proc_vm_readv() / proc_vm_writev() ● Sockets ● Signals ● Stream vs Datagram (vs Seq. packet) ● Standard, Realtime ● UNIX vs Internet domain ● Eventfd ● POSIX message queues ● Futexes ● POSIX shared memory ● Record locks ● ● POSIX semaphores File locks ● ● Named, Unnamed Mutexes ● System V message queues ● Condition variables ● System V shared memory ● Barriers ● ● System V semaphores Read-write locks man7 .org 5 It helps to classify ● Pipes ● Shared memory mappings ● FIFOs ● File vs Anonymous ● Cross-memory attach ● Pseudoterminals ● proc_vm_readv() / proc_vm_writev() ● Sockets ● Signals ● Stream vs Datagram (vs Seq. packet) ● Standard, Realtime ● UNIX vs Internet domain ● Eventfd ● POSIX message queues ● Futexes ● POSIX shared memory ● Record locks ● ● POSIX semaphores File locks ● ● Named, Unnamed Mutexes ● System V message queues ● Condition variables ● System V shared memory ● Barriers ● ● System V semaphores Read-write locks man7 .org 6 It helps to classify ● Pipes ● Shared memory mappings ● FIFOs ● File vs Anonymous ● Cross-memoryn attach ● Pseudoterminals tio a ● proc_vm_readv() / proc_vm_writev() ● Sockets ic n ● Signals ● Stream vs Datagram (vs uSeq.
    [Show full text]
  • Table of Contents
    TABLE OF CONTENTS Chapter 1 Introduction ............................................................................................. 3 Chapter 2 Examples for FPGA ................................................................................. 4 2.1 Factory Default Code ................................................................................................................................. 4 2.2 Nios II Control for Programmable PLL/ Temperature/ Power/ 9-axis ....................................................... 6 2.3 Nios DDR4 SDRAM Test ........................................................................................................................ 12 2.4 RTL DDR4 SDRAM Test ......................................................................................................................... 14 2.5 USB Type-C DisplayPort Alternate Mode ............................................................................................... 15 2.6 USB Type-C FX3 Loopback .................................................................................................................... 17 2.7 HDMI TX and RX in 4K Resolution ........................................................................................................ 21 2.8 HDMI TX in 4K Resolution ..................................................................................................................... 26 2.9 Low Latency Ethernet 10G MAC Demo .................................................................................................. 29 2.10 Socket
    [Show full text]
  • ETS4P4 Terminal Server
    ETS4P4 Terminal Server Installation Guide Thank you for purchasing this Lantronix ETS Ethernet Terminal Server. As the newest addition to our successful Ethernet terminal server family, the ETS uses software for multiprotocol Ethernet connections that has over 5 years of real-world feedback and de- velopment behind it. Lantronix is constantly improving the capabilities of our prod- ucts, and we encourage you to take advantage of new features through our FREE software upgrades (available via ftp over the Internet or BBS.) Our Flash ROM products, including this ETS, provide the sim- plest means for upgrades and installation. I hope you find this manual easy to use, and thorough in its explanation of the power- ful features you can now access on your network. Brad Freeburg President Contents 1 Introduction Overview...........................................................................1-1 Configuration ................................................1-1 Software ..........................................................1-2 About the Manuals ..........................................................1-2 2 Installation Overview...........................................................................2-1 ETS Components..............................................................2-1 Installation ........................................................................2-2 Selecting a Location for the ETS ..................2-2 Connecting to the Ethernet...........................2-2 Connecting a Terminal..................................2-3
    [Show full text]
  • IPC: Mmap and Pipes
    Interprocess Communication: Memory mapped files and pipes CS 241 April 4, 2014 University of Illinois 1 Shared Memory Private Private address OS address address space space space Shared Process A segment Process B Processes request the segment OS maintains the segment Processes can attach/detach the segment 2 Shared Memory Private Private Private address address space OS address address space space space Shared Process A segment Process B Can mark segment for deletion on last detach 3 Shared Memory example /* make the key: */ if ((key = ftok(”shmdemo.c", 'R')) == -1) { perror("ftok"); exit(1); } /* connect to (and possibly create) the segment: */ if ((shmid = shmget(key, SHM_SIZE, 0644 | IPC_CREAT)) == -1) { perror("shmget"); exit(1); } /* attach to the segment to get a pointer to it: */ data = shmat(shmid, (void *)0, 0); if (data == (char *)(-1)) { perror("shmat"); exit(1); } 4 Shared Memory example /* read or modify the segment, based on the command line: */ if (argc == 2) { printf("writing to segment: \"%s\"\n", argv[1]); strncpy(data, argv[1], SHM_SIZE); } else printf("segment contains: \"%s\"\n", data); /* detach from the segment: */ if (shmdt(data) == -1) { perror("shmdt"); exit(1); } return 0; } Run demo 5 Memory Mapped Files Memory-mapped file I/O • Map a disk block to a page in memory • Allows file I/O to be treated as routine memory access Use • File is initially read using demand paging ! i.e., loaded from disk to memory only at the moment it’s needed • When needed, a page-sized portion of the file is read from the file system
    [Show full text]
  • A Machine-Independent DMA Framework for Netbsd
    AMachine-Independent DMA Framework for NetBSD Jason R. Thorpe1 Numerical Aerospace Simulation Facility NASA Ames Research Center Abstract 1.1. Host platform details One of the challenges in implementing a portable In the example platforms listed above,there are at kernel is finding good abstractions for semantically- least three different mechanisms used to perform DMA. similar operations which often have very machine- The first is used by the i386 platform. This mechanism dependent implementations. This is especially impor- can be described as "what you see is what you get": the tant on modern machines which share common archi- address that the device uses to perform the DMA trans- tectural features, e.g. the PCI bus. fer is the same address that the host CPU uses to access This paper describes whyamachine-independent the memory location in question. DMA mapping abstraction is needed, the design consid- DMA address Host address erations for such an abstraction, and the implementation of this abstraction in the NetBSD/alpha and NetBSD/i386 kernels. 1. Introduction NetBSD is a portable, modern UNIX-likeoperat- ing system which currently runs on eighteen platforms covering nine processor architectures. Some of these platforms, including the Alpha and i3862,share the PCI busasacommon architectural feature. In order to share device drivers for PCI devices between different platforms, abstractions that hide the details of bus access must be invented. The details that must be hid- den can be broken down into twoclasses: CPU access Figure 1 - WYSIWYG DMA to devices on the bus (bus_space)and device access to host memory (bus_dma). Here we will discuss the lat- The second mechanism, employed by the Alpha, ter; bus_space is a complicated topic in and of itself, is very similar to the first; the address the host CPU and is beyond the scope of this paper.
    [Show full text]
  • Interprocess Communication
    06 0430 CH05 5/22/01 10:22 AM Page 95 5 Interprocess Communication CHAPTER 3,“PROCESSES,” DISCUSSED THE CREATION OF PROCESSES and showed how one process can obtain the exit status of a child process.That’s the simplest form of communication between two processes, but it’s by no means the most powerful.The mechanisms of Chapter 3 don’t provide any way for the parent to communicate with the child except via command-line arguments and environment variables, nor any way for the child to communicate with the parent except via the child’s exit status. None of these mechanisms provides any means for communicating with the child process while it is actually running, nor do these mechanisms allow communication with a process outside the parent-child relationship. This chapter describes means for interprocess communication that circumvent these limitations.We will present various ways for communicating between parents and chil- dren, between “unrelated” processes, and even between processes on different machines. Interprocess communication (IPC) is the transfer of data among processes. For example, a Web browser may request a Web page from a Web server, which then sends HTML data.This transfer of data usually uses sockets in a telephone-like connection. In another example, you may want to print the filenames in a directory using a command such as ls | lpr.The shell creates an ls process and a separate lpr process, connecting 06 0430 CH05 5/22/01 10:22 AM Page 96 96 Chapter 5 Interprocess Communication the two with a pipe, represented by the “|” symbol.A pipe permits one-way commu- nication between two related processes.The ls process writes data into the pipe, and the lpr process reads data from the pipe.
    [Show full text]
  • Real-Time Streaming Video and Image Processing on Inexpensive Hardware with Low Latency
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Theses, Dissertations, and Student Research Electrical & Computer Engineering, Department from Electrical & Computer Engineering of Spring 5-2018 Real-Time Streaming Video and Image Processing on Inexpensive Hardware with Low Latency Richard L. Gregg University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/elecengtheses Part of the Computer Engineering Commons, and the Other Electrical and Computer Engineering Commons Gregg, Richard L., "Real-Time Streaming Video and Image Processing on Inexpensive Hardware with Low Latency" (2018). Theses, Dissertations, and Student Research from Electrical & Computer Engineering. 93. https://digitalcommons.unl.edu/elecengtheses/93 This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Theses, Dissertations, and Student Research from Electrical & Computer Engineering by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Real-Time Streaming Video And Image Processing On Inexpensive Hardware With Low Latency by Richard L. Gregg A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Telecommunications Engineering Under the Supervision of Professor Dongming Peng Lincoln, Nebraska May 2018 REAL-TIME STREAMING VIDEO AND IMAGE PROCESSING ON INEXPENSIVE HARDWARE WITH LOW LATENCY Richard L. Gregg, M.S. University of Nebraska, 2018 Advisor: Dongming Peng The use of resource constrained inexpensive hardware places restrictions on the design of streaming video and image processing system performance.
    [Show full text]
  • Lecture 14: Paging
    Lecture 14: Paging Fall 2018 Jason Tang Slides based upon Operating System Concept slides, http://codex.cs.yale.edu/avi/os-book/OS9/slide-dir/index.html Copyright Silberschatz, Galvin, and Gagne, 2013 "1 Topics • Memory Mappings! • Page Table! • Translation Lookaside Bu$ers! • Page Protection "2 Memory Mapped • Logical address translated not to memory but some other location! • Memory-mapped I/O (MMIO): hardware redirects read/write of certain addresses to physical device! • For example, on x86, address 0x3F8 usually mapped to first serial port! • Memory-mapped file (mmap): OS redirects read/write of mapped memory region to file on disk! • Every call to read() / write() involves a system call! • Writing to a pointer faster, and OS can translate in the background (also see upcoming lecture) "3 Memory-Mapped File • In Linux, typical pattern is to:! • Open file, using open() function! • Optional: preallocate file size, using ftruncate()! • Create memory mapping, using mmap() function! • Do work, and then release mapping using munmap() function! • Kernel might not write data to disk until munmap() "4 mmap() function void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset) • addr is target address of mapping, or NULL to let kernel decide! • length is number of bytes to map! • prot defines what mapping protection (read-only or read/write)! • flags sets other options! • fd is file descriptor that was returned by open()! • offset is o$set into file specified by fd "5 mmap() example part 1 • See man page for each of these functions
    [Show full text]
  • Process Address Spaces and Binary Formats
    2/5/20 COMP 790: OS Implementation COMP 790: OS Implementation Logical Diagram Binary Memory Process Address Spaces Threads Formats AllocatorsToday’s and Binary Formats Lecture User System Calls Kernel Don Porter RCU File System Networking Sync Memory Device CPU Management Drivers Scheduler Hardware Interrupts Disk Net Consistency 1 2 1 2 COMP 790: OS Implementation COMP 790: OS Implementation Review Definitions (can vary) • We’ve seen how paging and segmentation work on • Process is a virtual address space x86 – 1+ threads of execution work within this address space – Maps logical addresses to physical pages • A process is composed of: – These are the low-level hardware tools – Memory-mapped files • This lecture: build up to higher-level abstractions • Includes program binary • Namely, the process address space – Anonymous pages: no file backing • When the process exits, their contents go away 3 4 3 4 COMP 790: OS Implementation COMP 790: OS Implementation Address Space Layout Simple Example • Determined (mostly) by the application • Determined at compile time Virtual Address Space – Link directives can influence this hello heap stk libc.so • See kern/kernel.ld in JOS; specifies kernel starting address • OS usually reserves part of the address space to map 0 0xffffffff itself • “Hello world” binary specified load address – Upper GB on x86 Linux • Also specifies where it wants libc • Application can dynamically request new mappings from the OS, or delete mappings • Dynamically asks kernel for “anonymous” pages for its heap and stack 5 6 5 6 1 2/5/20 COMP 790: OS Implementation COMP 790: OS Implementation In practice Problem 1: How to represent in the kernel? • You can see (part of) the requested memory layout • What is the best way to represent the components of of a program using ldd: a process? $ ldd /usr/bin/git – Common question: is mapped at address x? linux-vdso.so.1 => (0x00007fff197be000) • Page faults, new memory mappings, etc.
    [Show full text]
  • Watchdt User Guide Pitney Bowes1 Is Making This Document Available to You, Free of Charge, for Use with the Software, in Order to Make Your Experience More Convenient
    P/I Enterprise Manager Version: 1.4 WatchDT User Guide Pitney Bowes1 is making this document available to you, free of charge, for use with the software, in order to make your experience more convenient. Every effort has been made to ensure the accuracy and usefulness of this document reflecting our experience. Product information may change after publication without notice. This document is being distributed on an "as is" basis and we make no representations or warranties, express or implied, with respect to its accuracy, reliability or completeness and the entire risk of its use shall be assumed by you. In no event shall we be liable to you or any other person, regardless of the cause, for the effectiveness or accuracy of this document or for any special, indirect, incidental or consequential damages arising from or occasioned by your use, even if advised of the possibility of such damages. All software described in this document is either our software and/or our licensed property. No license either expressed or implied is granted for the use of the software by providing this document and/or content. Under copyright law, neither this document nor the software may be copied, photocopied, reproduced, transmitted, or reduced to any electronic medium or machine-readable form, in whole or in part, without our prior written consent. We will continue to maintain this document and we welcome any clarifications or additional information regarding its content. Address comments concerning the content of this publication to: Pitney Bowes Building 600 6 Hercules Way Leavesden Watford WD25 7GS United Kingdom We may use or distribute the information supplied in any way we deem appropriate without incurring any obligation to the submitter of the information 1 Copyright © Pitney Bowes Software.
    [Show full text]