Latent Semantic Indexing: an Overview

Total Page:16

File Type:pdf, Size:1020Kb

Latent Semantic Indexing: an Overview Latent Semantic Indexing: An Overview Latent Semantic Indexing: An overview INFOSYS 240 Spring 2000 Final Paper Barbara Rosario 1) Introduction Typically, information is retrieved by literally matching terms in documents with those of a query. However, lexical matching methods can be inaccurate when they are used to match a user's query. Since there are usually many ways to express a given concept (synonymy), the literal terms in a user's query may not match those of a relevant document. In addition, most words have multiple meanings (polysemy), so terms in a user's query will literally match terms in irrelevant documents. A better approach would allow users to retrieve information on the basis of a conceptual topic or meaning of a document. Latent Semantic Indexing (LSI) [Deerwester et al] tries to overcome the problems of lexical matching by using statistically derived conceptual indices instead of individual words for retrieval. LSI assumes that there is some underlying or latent structure in word usage that is partially obscured by variability in word choice. A truncated singular value decomposition (SVD) is used to estimate the structure in word usage across documents. Retrieval is then performed using the database of singular values and vectors obtained from the truncated SVD. Performance data shows that these statistically derived vectors are more robust indicators of meaning than individual terms. Section 2 is a review of basic concepts needed to understand LSI. In Section 3, a description of some of the advantages and disadvantages of LSI. The effectiveness of LSI has been demonstrated empirically in several text collections as increased average retrieval precision but a theoretical (and quantitative) understanding beyond empirical evidence is desirable. Section 4 describes some of the attempts that have been done in this direction. Finally, in Section 5 some applications of LSI. 1 Latent Semantic Indexing: An Overview 2) Basic concepts Latent Semantic Indexing is a technique that projects queries and documents into a space with “latent” semantic dimensions. In the latent semantic space, a query and a document can have high cosine similarity even if they do not share any terms - as long as their terms are semantically similar in a sense to be described later. We can look at LSI as a similarity metric that is an alternative to word overlap measures like tf.idf. The latent semantic space that we project into has fewer dimensions than the original space (which has as many dimensions as terms). LSI is thus a method for dimensionality reduction. A dimensionality reduction technique takes a set of objects that exist in a high-dimensional space and represents them in a low- dimensional space, often in a two-dimensional or three-dimensional space for the purpose of visualization. Latent semantic indexing is the application of a particular mathematical technique, called Singular Value Decomposition or SVD, to a word-by-document matrix. SVD (and hence LSI) is a least-squares method. The projection into the latent semantic space is chosen such that the representations in the original space are changed as little as possible when measured by the sum of the squares of the differences. SVD takes a matrix A and represents it as Aˆ in a lower dimensional space such that the “distance” between the two matrices as measured by the 2-norm is minimized: ∆ = A − Aˆ 2 The 2-norm for matrices is the equivalent of Euclidean distance for vectors. SVD project an n-dimensional space onto a k-dimensional space where n > > k. In our application (word-document matrices), n is the number of word types in the collection. Values of k that are frequently chosen are 100 and 150. The projection transforms a document's vector in n-dimensional word space into a vector in the k-dimensional reduced space. There are many different mappings from high dimensional to low-dimensional spaces. Latent Semantic Indexing chooses the mapping that is optimal in the sense that it minimizes the distance ∆ . This setup has the consequence that the 1 dimensions of the reduced space correspond to the axes of greatest variation. 1 This is closely related to Principal Componet Analysis (PCA), another technique for dimensionality reduction. One difference between the two techniques is that PCA can only be applied to a square matrix whereas LSI can be applied to any matrix. 2 Latent Semantic Indexing: An Overview The SVD projection is computed by decomposing the document-by-term A T S D matrix t×d into the product of three matrices, t×n , n×n , d×n : = T At×d Tt×n Sn×n (Dd×n ) = where t is the number of terms, d is the number of documents, n min(t,d), T T = T and D have orthonormal columns, i.e. TT = D D = I , rank(A) r , = σ σ σ σ > 0 for 1 ≤ i ≤ r,σ = 0 for j ≥ r +1 S diag( 1, 2 ,..., n ,) , i j . We can view SVD as a method for rotating the axes of the n-dimensional space such that the first axis runs along the direction of largest variation among the documents, the second dimension runs along the direction with the second largest variation and so forth. The matrices T and D represent terms and documents in this new space. The diagonal matrix S contains the singular values of A in th descending order. The i singular value indicates the amount of variation along th the i axis. By restricting the matrixes T, S and D to their first k < n rows one obtains T , S ,(D )T the matrixes t×k k×k d×k . Their product Aˆ Aˆ = T S (D )T t×k t×k k×k d×k is the best square approximation of A by a matrix of rank k in the sense defined in ∆ = A − Aˆ the equation 2 . Choosing the number of dimensions (k) for Aˆ is an interesting problem. While a reduction in k can remove much of the noise, keeping too few dimensions or factors may loose important information. As discussed in [Deerwester et al] using a test database of medical abstracts, LSI performance can improve considerably after 10 or 20 dimensions, peaks between 70 and 100 dimensions, and then begins to diminish slowly. This pattern of performance (initial large increase and slow decrease to word-based performance) is observed with other datasets as well. Eventually performance must approach the level of performance attained by standard vector methods, since with k = n factors Aˆ will exactly reconstruct the original term by document matrix A. That LSI works well with a relatively small (compared to the number of unique terms) number of dimensions or factors k shows that these dimensions are, in fact, capturing a major portion of the meaningful structure. [Berry et al.] 3 Latent Semantic Indexing: An Overview One can also prove that SVD is unique, that is, there is only one possible decomposition of a given matrix. That SVD finds the optimal projection to a low- dimensional space is the key property for exploiting word co-occurrence patterns. It is important for the LSI method that the derived Aˆ matrix does not reconstruct the original term document matrix A exactly. The truncated SVD, in one sense, captures most of the important underlying structure in the association of terms and documents, yet at the same time removes the noise or variability in word usage that plagues word-based retrieval methods. Intuitively, since the number of dimensions, k, is much smaller than the number of unique terms, t, minor differences in terminology will be ignored. Terms which occur in similar documents, for example, will be near each other in the k-dimensional factor space even if they never co-occur in the same document. This means that some documents, which do not share any words with a user’s query, may nonetheless be near it in k-space. This derived representation, which captures term-term associations, is used for retrieval. 2.1) Queries For purposes of information retrieval, a user's query must be represented as a vector in k-dimensional space and compared to documents. A query (like a document) is a set of words. For example, the user query can be represented by T −1 = × qˆ q Tt×k S k k where q is simply the vector of words in the users query, multiplied by the appropriate term weights. The sum of these k-dimensional terms vectors is qTT reflected by the term t×k in the above equation, and the right multiplication by −1 S k×k differentially weights the separate dimensions. Thus, the query vector is located at the weighted sum of its constituent term vectors. The query vector can then be compared to all existing document vectors, and the documents ranked by their similarity (nearness) to the query. One common measure of similarity is the cosine between the query vector and document vector. Typically, the z closest documents or all documents exceeding some cosine threshold are returned to the user. 4 Latent Semantic Indexing: An Overview 2.2) Updating One remaining problem for a practical application is how to fold queries and new documents into the reduced space. The SVD computation only gives us reduced representations for the document vectors in matrix A. We do not want to do a completely new SVD every time a new query is launched or new documents and terms are added to the collection. There are two alternatives for incorporating new documents and terms currently: recomputing the SVD of a new term-document matrix or folding-in the new terms and documents. Lets define some terms that are used when discussing updating.
Recommended publications
  • Document and Topic Models: Plsa
    10/4/2018 Document and Topic Models: pLSA and LDA Andrew Levandoski and Jonathan Lobo CS 3750 Advanced Topics in Machine Learning 2 October 2018 Outline • Topic Models • pLSA • LSA • Model • Fitting via EM • pHITS: link analysis • LDA • Dirichlet distribution • Generative process • Model • Geometric Interpretation • Inference 2 1 10/4/2018 Topic Models: Visual Representation Topic proportions and Topics Documents assignments 3 Topic Models: Importance • For a given corpus, we learn two things: 1. Topic: from full vocabulary set, we learn important subsets 2. Topic proportion: we learn what each document is about • This can be viewed as a form of dimensionality reduction • From large vocabulary set, extract basis vectors (topics) • Represent document in topic space (topic proportions) 푁 퐾 • Dimensionality is reduced from 푤푖 ∈ ℤ푉 to 휃 ∈ ℝ • Topic proportion is useful for several applications including document classification, discovery of semantic structures, sentiment analysis, object localization in images, etc. 4 2 10/4/2018 Topic Models: Terminology • Document Model • Word: element in a vocabulary set • Document: collection of words • Corpus: collection of documents • Topic Model • Topic: collection of words (subset of vocabulary) • Document is represented by (latent) mixture of topics • 푝 푤 푑 = 푝 푤 푧 푝(푧|푑) (푧 : topic) • Note: document is a collection of words (not a sequence) • ‘Bag of words’ assumption • In probability, we call this the exchangeability assumption • 푝 푤1, … , 푤푁 = 푝(푤휎 1 , … , 푤휎 푁 ) (휎: permutation) 5 Topic Models: Terminology (cont’d) • Represent each document as a vector space • A word is an item from a vocabulary indexed by {1, … , 푉}. We represent words using unit‐basis vectors.
    [Show full text]
  • Redalyc.Latent Dirichlet Allocation Complement in the Vector Space Model for Multi-Label Text Classification
    International Journal of Combinatorial Optimization Problems and Informatics E-ISSN: 2007-1558 [email protected] International Journal of Combinatorial Optimization Problems and Informatics México Carrera-Trejo, Víctor; Sidorov, Grigori; Miranda-Jiménez, Sabino; Moreno Ibarra, Marco; Cadena Martínez, Rodrigo Latent Dirichlet Allocation complement in the vector space model for Multi-Label Text Classification International Journal of Combinatorial Optimization Problems and Informatics, vol. 6, núm. 1, enero-abril, 2015, pp. 7-19 International Journal of Combinatorial Optimization Problems and Informatics Morelos, México Available in: http://www.redalyc.org/articulo.oa?id=265239212002 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative © International Journal of Combinatorial Optimization Problems and Informatics, Vol. 6, No. 1, Jan-April 2015, pp. 7-19. ISSN: 2007-1558. Latent Dirichlet Allocation complement in the vector space model for Multi-Label Text Classification Víctor Carrera-Trejo1, Grigori Sidorov1, Sabino Miranda-Jiménez2, Marco Moreno Ibarra1 and Rodrigo Cadena Martínez3 Centro de Investigación en Computación1, Instituto Politécnico Nacional, México DF, México Centro de Investigación e Innovación en Tecnologías de la Información y Comunicación (INFOTEC)2, Ags., México Universidad Tecnológica de México3 – UNITEC MÉXICO [email protected], {sidorov,marcomoreno}@cic.ipn.mx, [email protected] [email protected] Abstract. In text classification task one of the main problems is to choose which features give the best results. Various features can be used like words, n-grams, syntactic n-grams of various types (POS tags, dependency relations, mixed, etc.), or a combinations of these features can be considered.
    [Show full text]
  • Evaluating Vector-Space Models of Word Representation, Or, the Unreasonable Effectiveness of Counting Words Near Other Words
    Evaluating Vector-Space Models of Word Representation, or, The Unreasonable Effectiveness of Counting Words Near Other Words Aida Nematzadeh, Stephan C. Meylan, and Thomas L. Griffiths University of California, Berkeley fnematzadeh, smeylan, tom griffi[email protected] Abstract angle between word vectors (e.g., Mikolov et al., 2013b; Pen- nington et al., 2014). Vector-space models of semantics represent words as continuously-valued vectors and measure similarity based on In this paper, we examine whether these constraints im- the distance or angle between those vectors. Such representa- ply that Word2Vec and GloVe representations suffer from the tions have become increasingly popular due to the recent de- same difficulty as previous vector-space models in capturing velopment of methods that allow them to be efficiently esti- mated from very large amounts of data. However, the idea human similarity judgments. To this end, we evaluate these of relating similarity to distance in a spatial representation representations on a set of tasks adopted from Griffiths et al. has been criticized by cognitive scientists, as human similar- (2007) in which the authors showed that the representations ity judgments have many properties that are inconsistent with the geometric constraints that a distance metric must obey. We learned by another well-known vector-space model, Latent show that two popular vector-space models, Word2Vec and Semantic Analysis (Landauer and Dumais, 1997), were in- GloVe, are unable to capture certain critical aspects of human consistent with patterns of semantic similarity demonstrated word association data as a consequence of these constraints. However, a probabilistic topic model estimated from a rela- in human word association data.
    [Show full text]
  • Gensim Is Robust in Nature and Has Been in Use in Various Systems by Various People As Well As Organisations for Over 4 Years
    Gensim i Gensim About the Tutorial Gensim = “Generate Similar” is a popular open source natural language processing library used for unsupervised topic modeling. It uses top academic models and modern statistical machine learning to perform various complex tasks such as Building document or word vectors, Corpora, performing topic identification, performing document comparison (retrieving semantically similar documents), analysing plain-text documents for semantic structure. Audience This tutorial will be useful for graduates, post-graduates, and research students who either have an interest in Natural Language Processing (NLP), Topic Modeling or have these subjects as a part of their curriculum. The reader can be a beginner or an advanced learner. Prerequisites The reader must have basic knowledge about NLP and should also be aware of Python programming concepts. Copyright & Disclaimer Copyright 2020 by Tutorials Point (I) Pvt. Ltd. All the content and graphics published in this e-book are the property of Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish any contents or a part of contents of this e-book in any manner without written consent of the publisher. We strive to update the contents of our website and tutorials as timely and as precisely as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our website or its contents including this tutorial. If you discover any errors on our website or in this tutorial, please notify us at [email protected] ii Gensim Table of Contents About the Tutorial ..........................................................................................................................................
    [Show full text]
  • Deconstructing Word Embedding Models
    Deconstructing Word Embedding Models Koushik K. Varma Ashoka University, [email protected] Abstract – Analysis of Word Embedding Models through Analysis, one must be certain that all linguistic aspects of a a deconstructive approach reveals their several word are captured within the vector representations because shortcomings and inconsistencies. These include any discrepancies could be further amplified in practical instability of the vector representations, a distorted applications. While these vector representations have analogical reasoning, geometric incompatibility with widespread use in modern natural language processing, it is linguistic features, and the inconsistencies in the corpus unclear as to what degree they accurately encode the data. A new theoretical embedding model, ‘Derridian essence of language in its structural, contextual, cultural and Embedding,’ is proposed in this paper. Contemporary ethical assimilation. Surface evaluations on training-test embedding models are evaluated qualitatively in terms data provide efficiency measures for a specific of how adequate they are in relation to the capabilities of implementation but do not explicitly give insights on the a Derridian Embedding. factors causing the existing efficiency (or the lack there of). We henceforth present a deconstructive review of 1. INTRODUCTION contemporary word embeddings using available literature to clarify certain misconceptions and inconsistencies Saussure, in the Course in General Linguistics, concerning them. argued that there is no substance in language and that all language consists of differences. In language there are only forms, not substances, and by that he meant that all 1.1 DECONSTRUCTIVE APPROACH apparently substantive units of language are generated by other things that lie outside them, but these external Derrida, a post-structualist French philosopher, characteristics are actually internal to their make-up.
    [Show full text]
  • Vector Space Models for Words and Documents Statistical Natural Language Processing ELEC-E5550 Jan 30, 2019 Tiina Lindh-Knuutila D.Sc
    Vector space models for words and documents Statistical Natural Language Processing ELEC-E5550 Jan 30, 2019 Tiina Lindh-Knuutila D.Sc. (Tech) Lingsoft Language Services & Aalto University tiina.lindh-knuutila -at- aalto dot fi Material also by Mari-Sanna Paukkeri (mari-sanna.paukkeri -at- utopiaanalytics dot com) Today’s Agenda • Vector space models • word-document matrices • word vectors • stemming, weighting, dimensionality reduction • similarity measures • Count models vs. predictive models • Word2vec • Information retrieval (Briefly) • Course project details You shall know the word by the company it keeps • Language is symbolic in nature • Surface form is in an arbitrary relation with the meaning of the word • Hat vs. cat • One substitution: Levenshtein distance of 1 • Does not measure the semantic similarity of the words • Distributional semantics • Linguistic items which appear in similar contexts in large samples of language data tend to have similar meanings Firth, John R. 1957. A synopsis of linguistic theory 1930–1955. In Studies in linguistic analysis, 1–32. Oxford: Blackwell. George Miller and Walter Charles. 1991. Contextual correlates of semantic similarity. Language and Cognitive Processes, 6(1):1–28. Vector space models (VSM) • The use of a high-dimensional space of documents (or words) • Closeness in the vector space resembles closeness in the semantics or structure of the documents (depending on the features extracted). • Makes the use of data mining possible • Applications: – Document clustering/classification/… • Finding similar documents • Finding similar words – Word disambiguation – Information retrieval • Term discrimination: ranking keywords in the order of usefulness Vector space models (VSM) • Steps to build a vector space model 1. Preprocessing 2.
    [Show full text]
  • Word Embeddings: History & Behind the Scene
    Word Embeddings: History & Behind the Scene Alfan F. Wicaksono Information Retrieval Lab. Faculty of Computer Science Universitas Indonesia References • Bengio, Y., Ducharme, R., Vincent, P., & Janvin, C. (2003). A Neural Probabilistic Language Model. The Journal of Machine Learning Research, 3, 1137–1155. • Mikolov, T., Corrado, G., Chen, K., & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space. Proceedings of the International Conference on Learning Representations (ICLR 2013), 1–12 • Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Distributed Representations of Words and Phrases and their Compositionality. NIPS, 1–9. • Morin, F., & Bengio, Y. (2005). Hierarchical Probabilistic Neural Network Language Model. Aistats, 5. References Good weblogs for high-level understanding: • http://sebastianruder.com/word-embeddings-1/ • Sebastian Ruder. On word embeddings - Part 2: Approximating the Softmax. http://sebastianruder.com/word- embeddings-softmax • https://www.tensorflow.org/tutorials/word2vec • https://www.gavagai.se/blog/2015/09/30/a-brief-history-of- word-embeddings/ Some slides were also borrowed from From Dan Jurafsky’s course slide: Word Meaning and Similarity. Stanford University. Terminology • The term “Word Embedding” came from deep learning community • For computational linguistic community, they prefer “Distributional Semantic Model” • Other terms: – Distributed Representation – Semantic Vector Space – Word Space https://www.gavagai.se/blog/2015/09/30/a-brief-history-of-word-embeddings/ Before we learn Word Embeddings... Semantic Similarity • Word Similarity – Near-synonyms – “boat” and “ship”, “car” and “bicycle” • Word Relatedness – Can be related any way – Similar: “boat” and “ship” – Topical Similarity: • “boat” and “water” • “car” and “gasoline” Why Word Similarity? • Document Classification • Document Clustering • Language Modeling • Information Retrieval • ..
    [Show full text]
  • UNIVERSITY of CALIFORNIA, SAN DIEGO Bag-Of-Concepts As a Movie
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Bag-of-Concepts as a Movie Genome and Representation A Thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Computer Science by Colin Zhou Committee in charge: Professor Shlomo Dubnov, Chair Professor Sanjoy Dasgupta Professor Lawrence Saul 2016 The Thesis of Colin Zhou is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2016 iii DEDICATION For Mom and Dad iv TABLE OF CONTENTS Signature Page........................................................................................................... iii Dedication.................................................................................................................. iv Table of Contents....................................................................................................... v List of Figures and Tables.......................................................................................... vi Abstract of the Thesis................................................................................................ vii Introduction................................................................................................................ 1 Chapter 1 Background............................................................................................... 3 1.1 Vector Space Models............................................................................... 3 1.1.1. Bag-of-Words........................................................................
    [Show full text]
  • Analysis of a Vector Space Model, Latent Semantic Indexing and Formal Concept Analysis for Information Retrieval
    BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 12, No 1 Sofia • 2012 Analysis of a Vector Space Model, Latent Semantic Indexing and Formal Concept Analysis for Information Retrieval Ch. Aswani Kumar1, M. Radvansky2, J. Annapurna3 1School of Information Technology and Engineering, VIT University, Vellore, India 2VSB Technical University of Ostrava, Ostrava, Czech Republic 3School of Computing Science and Engineering, VIT University, Vellore, India Email: [email protected] Abstract: Latent Semantic Indexing (LSI), a variant of classical Vector Space Model (VSM), is an Information Retrieval (IR) model that attempts to capture the latent semantic relationship between the data items. Mathematical lattices, under the framework of Formal Concept Analysis (FCA), represent conceptual hierarchies in data and retrieve the information. However, both LSI and FCA use the data represented in the form of matrices. The objective of this paper is to systematically analyze VSM, LSI and FCA for the task of IR using standard and real life datasets. Keywords: Formal concept analysis, Information Retrieval, latent semantic indexing, vector space model. 1. Introduction Information Retrieval (IR) deals with the representation, storage, organization and access to information items. IR is highly iterative in human interactive process aimed at retrieving the documents that are related to users’ information needs. The human interaction consists in submitting information needed as a query, analyzing the ranked and retrieved documents, modifying the query and submitting iteratively until the actual documents related to the need are found or the search process is terminated by the user. Several techniques including a simple keyword to advanced NLP are available for developing IR systems.
    [Show full text]
  • Ontology Alignment Based on Word Embedding and Random Forest Classification
    Ontology alignment based on word embedding and random forest classification Ikechukwu Nkisi-Orji1[0000−0001−9734−9978], Nirmalie Wiratunga1, Stewart Massie1, Kit-Ying Hui1, and Rachel Heaven2 1 Robert Gordon University, Aberdeen, UK {i.o.nkisi-orji , n.wiratunga, s.massie, k.hui}@rgu.ac.uk 2 British Geological Survey, Nottingham, UK [email protected] Abstract. Ontology alignment is crucial for integrating heterogeneous data sources and forms an important component of the semantic web. Accordingly, several ontology alignment techniques have been proposed and used for discovering correspondences between the concepts (or enti- ties) of different ontologies. Most alignment techniques depend on string- based similarities which are unable to handle the vocabulary mismatch problem. Also, determining which similarity measures to use and how to effectively combine them in alignment systems are challenges that have persisted in this area. In this work, we introduce a random forest classifier approach for ontology alignment which relies on word embed- ding for determining a variety of semantic similarities features between concepts. Specifically, we combine string-based and semantic similarity measures to form feature vectors that are used by the classifier model to determine when concepts match. By harnessing background knowledge and relying on minimal information from the ontologies, our approach can handle knowledge-light ontological resources. It also eliminates the need for learning the aggregation weights of a composition of similarity measures. Experiments using Ontology Alignment Evaluation Initiative (OAEI) dataset and real-world ontologies highlight the utility of our approach and show that it can outperform state-of-the-art alignment systems. Keywords: Ontology alignment · Word embedding · Machine classifi- cation · Semantic web.
    [Show full text]
  • A Structured Vector Space Model for Word Meaning in Context
    A Structured Vector Space Model for Word Meaning in Context Katrin Erk Sebastian Pado´ Department of Linguistics Department of Linguistics University of Texas at Austin Stanford University [email protected] [email protected] Abstract all its possible usages (Landauer and Dumais, 1997; Lund and Burgess, 1996). Since the meaning of We address the task of computing vector space words can vary substantially between occurrences representations for the meaning of word oc- (e.g., for polysemous words), the next necessary step currences, which can vary widely according to context. This task is a crucial step towards a is to characterize the meaning of individual words in robust, vector-based compositional account of context. sentence meaning. We argue that existing mod- There have been several approaches in the liter- els for this task do not take syntactic structure ature (Smolensky, 1990; Schutze,¨ 1998; Kintsch, sufficiently into account. 2001; McDonald and Brew, 2004; Mitchell and La- We present a novel structured vector space pata, 2008) that compute meaning in context from model that addresses these issues by incorpo- lemma vectors. Most of these studies phrase the prob- rating the selectional preferences for words’ lem as one of vector composition: The meaning of a argument positions. This makes it possible to target occurrence a in context b is a single new vector integrate syntax into the computation of word c that is a function (for example, the centroid) of the meaning in context. In addition, the model per- forms at and above the state of the art for mod- vectors: c = a b.
    [Show full text]
  • Graph-Based Word Embedding Learning and Cross-Lingual Contextual Word Embedding Learning Zheng Zhang
    Explorations in Word Embeddings : graph-based word embedding learning and cross-lingual contextual word embedding learning Zheng Zhang To cite this version: Zheng Zhang. Explorations in Word Embeddings : graph-based word embedding learning and cross- lingual contextual word embedding learning. Computation and Language [cs.CL]. Université Paris Saclay (COmUE), 2019. English. NNT : 2019SACLS369. tel-02366013 HAL Id: tel-02366013 https://tel.archives-ouvertes.fr/tel-02366013 Submitted on 15 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Explorations in word embeddings: S369 graph-based word embedding learning SACL and cross-lingual contextual word 9 embedding learning : 201 NNT Thèse de doctorat de l'Université Paris-Saclay préparée à Université Paris-Sud École doctorale n°580 Sciences et technologies de l’information et de la communication (STIC) Spécialité de doctorat : Informatique Thèse présentée et soutenue à Orsay, le 18/10/2019, par Zheng Zhang Composition du Jury : François Yvon Senior Researcher, LIMSI-CNRS Président Mathieu Lafourcade Associate Professor, Université de Montpellier Rapporteur Emmanuel Morin Professor, Université de Nantes Rapporteur Armand Joulin Research Scientist, Facebook Artificial Intelligence Research Examinateur Pierre Zweigenbaum Senior Researcher, LIMSI-CNRS Directeur de thèse Yue Ma Associate Professor, Université Paris-Sud Co-encadrant Acknowledgements Word embedding learning is a fast-moving domain.
    [Show full text]