<<

(19) TZZ ZZ_T

(11) EP 2 499 090 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C01B 7/07 (2006.01) C01B 7/075 (2006.01) 26.10.2016 Bulletin 2016/43 C01B 31/28 (2006.01) B01D 3/14 (2006.01)

(21) Application number: 10774238.9 (86) International application number: PCT/EP2010/067233 (22) Date of filing: 10.11.2010 (87) International publication number: WO 2011/058069 (19.05.2011 Gazette 2011/20)

(54) METHOD FOR PURIFYING A SUPPLY VERFAHREN ZUR REINIGUNG EINER CHLOREINSPEISUNG PROCÉDÉ DE PURIFICATION D’UNE CHARGE DE CHLORE

(84) Designated Contracting States: (56) References cited: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB EP-A1- 1 972 609 WO-A1-2004/018355 GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO DE-A1-102006 008 606 GB-A- 767 792 PL PT RO RS SE SI SK SM TR US-A- 2 199 797 US-A- 3 668 078 US-A- 3 702 234 US-A- 5 437 711 (30) Priority: 13.11.2009 US 261176 P US-A1- 2007 180 855

(43) Date of publication of application: • Schneider, Wolfgang et al.: "Phosgene", 19.09.2012 Bulletin 2012/38 Ullmann’s Encyclopedia of Industrial Chemistry, 15 June 2000 (2000-06-15), page 1-10, (73) Proprietor: BASF SE XP002618922, Internet DOI: 67056 Ludwigshafen am Rhein (DE) 10.1002/14356007.a19_411 [retrieved on 2011-01-26] (72) Inventors: • ULRICH H ET AL: "ISOCYANATES, ORGANIC", 1 • GAGNON, Steven Dallas January 1989 (1989-01-01), ULLMANN’S Prairieville, LA 70769 (US) ENCYCLOPEDIA OF INDUSTRIAL CHEMISTRY. • JACOBS, Johannes IMMOBILIZED BIOCATALYSTS TO ISOPRENE; NL-4641 PE Ossendrecht (NL) [ULLMANN’S ENCYCLOPEDIA OF INDUSTRIAL • DOERR, Robert A. CHEMISTRY], WEINHEIM, VCH VERLAG, DE, Baton Rouge, LA 70817 (US) PAGE(S) 611 - 625, XP002918926, page 616 • BORDELON, Kenneth K. • SEADER, J.D. ET AL.: "Distillation", PERRY’S Geismar, LA 70734 (US) CHEMICAL ENGINEERS’ HANDBOOK, 1 March • GRZANKA, Thomas A. 2001 (2001-03-01), pages 13-1-13-5, Houston, TX 77284 (US) XP002618923, ISBN: 978-0-07-049841-9

(74) Representative: Herzog, Fiesser & Partner Patentanwälte PartG mbB Isartorplatz 1 80331 München (DE)

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). EP 2 499 090 B1

Printed by Jouve, 75001 PARIS (FR) EP 2 499 090 B1

Description

FIELD OF THE INVENTION

5 [0001] The present invention generally relates to a method for purifying a chlorine supply including a chlorine compo- nent, a bromine component, and trichloride. More specifically, the method includes utilizing a particular distillation system to form purified chlorine gas and to decompose the nitrogen trichloride.

DESCRIPTION OF THE RELATED ART 10 [0002] Chlorine gas is typically commercially produced using one or more well known electrolysis processes such as mercury cell electrolysis, diaphragm cell electrolysis, membrane cell electrolysis, and/or electrolysis of fused salts according to the Downs Process. The electrolysis processes typically produce chlorine through electrochemical reactions in brine solutions (e.g. NaCl and KCl solutions) as follows: 15 Cathode: 2 H+ (aq) + 2 e- → H2 (g)

- - Anode: 2 Cl (aq) → Cl2 (g) + 2 e

20 [0003] Overall process: 2 NaCl (or KCl) + 2 H 2O → Cl2 (g) + H2 + 2 NaOH (or KOH) After formation, the chlorine gas can be treated with water and/or steam and then dried by cooling or treatment with sulfuric to minimize chlorine hydrate formation.

[0004] At various points during the formation of chlorine gas, nitrogen trichloride (NCl3) is also typically formed. It is believed that NCl3 forms from side reactions of chlorine atoms and anhydrous or ammonium salts (e.g. am- 25 monium hydroxide, ammonium chloride, and ammonium sulfate) that are present at one or more points in the process. These side reactions typically occur as follows:

+ - NH3 + 3Cl2 → NCl3 + 3H + 3Cl

30 + + - NH4 + 3Cl2 → NCl3 + 4H + 3Cl

+ - + - NH4 + Cl + 3HClO → NCl3 + H + Cl + 3H2O

The formation of nitrogen trichloride typically occurs due to brine contamination, steam contamination, and/or water 35 contamination. Any that is present in the brine, steam, or water can hydrolyze to form ammonium which can then be converted into nitrogen trichloride. Alternatively, salts used to form the brine can be contaminated with that can be converted into nitrogen trichloride. Sodium hydroxide that is typically used to form the brine can also be contaminated with ammonia depending on purification processes. In some cases, sulfuric acid used to dry the chlorine gas can be contaminated with ammonia. In still other cases, direct contact cooling water or steam can be treated with 40 amines, ammonia based flocculants, or chloramines which can lead to formation of nitrogen trichloride. Even ground water can include ammonia compounds that can be converted into nitrogen trichloride. [0005] As is well known in the art, nitrogen trichloride is sensitive to heat, light, sound, and shock and can quickly degrade at a rate sufficient to cause an explosion. Accordingly, nitrogen trichloride is preferably removed from chlorine gas but is typically done so in a complex, time consuming, and expensive manner. As set forth in Figure 1, which 45 represents the prior art, dried chlorine gas formed from electrolysis is typically washed with liquid chlorine in a washing column to minimize an amount of the nitrogen trichloride and cool the chlorine gas thereby increasing safety. In addition, the washing column also separates chlorinated organic compounds from the chlorine gas thereby increasing the purity of the chlorine gas. The washing column is typically connected to an external condenser and reboiler to increase the efficiency of the washing process, as also set forth in Figure 1. In the washing column, the nitrogen trichloride and the 50 various chlorinated organic compounds typically condense or dissolve in the liquid chlorine and may be recycled through the external condenser and reboiler, as described above. The reboiler is typically operated cold (0°C - 5°C) or hot (45°C - 60°C) and can act as a storage vessel for the nitrogen trichloride or as a point of decomposition. Carbon tetrachloride

(CCl4) is typically added to the washing column to extract the nitrogen trichloride and allow for its removal from the washing column and subsequent disposal. Upon addition of the carbon tetrachloride, the nitrogen trichloride is separated 55 from the chlorine, which is vaporized in the reboiler and returned to the washing column. After the chlorine gas is washed and separated from the nitrogen trichloride and the various chlorinated organic compounds, the chlorine gas is typically compressed using liquid ring compression, reciprocating compression, or centrifugal compression, cooled using inter- and after-coolers, and then liquefied into liquid chlorine. The liquid chlorine then can be scrubbed and sold commercially.

2 EP 2 499 090 B1

However, even after drying, washing, compression, cooling, and liquefaction, trace amounts of both the carbon tetra- chloride and the nitrogen trichloride, in addition to trace amounts of scrubbing compounds, typically leach into the liquid chlorine and act as impurities when the liquid chlorine and/or chlorine gas is used in downstream commercial synthetic processes. 5 [0006] In addition to the nitrogen trichloride, commercial production of chlorine gas tends to produce a variety of

byproducts including molecular bromine (Br 2), bromine-chloride (Br-Cl), and various organic compounds. These byprod- ucts, in addition to the carbon tetrachloride and the nitrogen trichloride, are also impurities when the chlorine gas is used in commercial processes. As is known in the art, when chlorine gas is used to synthesize phosgene, which in turn is used to synthesize isocyanates, presence of the carbon tetrachloride, nitrogen trichloride, and brominated compounds 10 typically add color to the isocyanates which makes the isocyanates less commercially desirable. Accordingly, these byproducts are typically removed using distillation and other separation techniques because chlorine gas is more volatile than many of the byproducts. However, entire chlorine streams are typically evaporated to achieve such distillations. One example of a distillation process is schematically set forth in Figure 1, as first introduced above. In this distillation process, and in many similar processes, external condensers and reboilers are used and connected via long lengths of 15 pipes to form effective distillation systems. However, use of these types of systems is very expensive, untimely, and complex. In addition, the long lengths of pipes used in these systems only increase a number of points at which the systems can fail, thus increasing safety risks and concerns. Furthermore, many of these systems also fail to effectively reduce amounts of nitrogen trichloride to sufficient levels. [0007] Some distillation systems utilize high pressure steam heated reboilers which have a tendency to lead to film 20 boiling, hot spots, and superheated chlorine gas, all of which are undesirable. Moreover, many distillation systems have a tendency to suffer from chlorine and nitrogen trichloride "holdup," i.e., accumulation of excess amounts of chlorine gas and nitrogen trichloride in the distillation systems, which leads to safety and environmental concerns. [0008] Other distillation systems do not effectively control amounts of incoming chlorine in relation to the efficiency of distillation and separation of desired compounds. This lack of control tends to reduce efficiency of the distillation systems 25 and does not allow for customization of distillation processes to maximize separation of desired compounds. In addition, this lack of control contributes to the holdup of the chlorine and nitrogen trichloride, thus further increasing safety concern s. [0009] US Patent No. 2,199,797 describes a method for purifying chlorine containing small amounts of organic impu- rities such as , carbon tetrachloride, hexachloro-ethane and hexachloro-. [0010] Accordingly, there remains an opportunity to develop a cost-effective and energy efficient method for removing 30 by-products from a chlorine supply that can be used safely and with decreased environmental concerns.

SUMMARY OF THE INVENTION AND ADVANTAGES

[0011] The instant invention provides a method for purifying a chlorine supply. The chlorine supply includes a chlorine 35 component, a bromine component, and nitrogen trichloride. The chlorine supply is purified in a distillation system to form purified chlorine gas having less than 20 parts by weight of the bromine component per one million parts by weight of the purified chlorine gas and to form a distillate comprising liquid chlorine and the bromine component. The distillation system is fluidly connected to a vaporizer and includes a distillation tower that has an upper end, a lower end, a vertical axis extending through the upper and lower ends, and a vapor-liquid contact device to provide a vapor-liquid interface 40 between a vapor and a condensate. The distillation system also includes a reflux condenser disposed above the distillation tower and in fluid communication with the upper end of the distillation tower. The reflux condenser shares the vertical axis with the distillation tower. The distillation system also includes a reboiler disposed below the distillation tower and in fluid communication with the lower end of the distillation tower. The method includes the steps of introducing the chlorine supply into the vaporizer, heating the chlorine supply in the vaporizer to form the vapor, and introducing the 45 vapor into the distillation system to provide purified chlorine gas, a distillate including the liquid chlorine and the bromine component, and a bottoms component including nitrogen trichloride. The method also includes the step of condensing the vapor in the reflux condenser to form the condensate which flows from the reflux condenser into the upper end of the distillation tower such that the condensate interacts with the vapor at vapor-liquid contact device thereby forming the purified chlorine gas and the distillate. Furthermore, the method includes the steps of heating the condensate in the 50 reboiler, removing the purified chlorine gas from the distillation system, and removing the distillate from the distillation system. [0012] The method of this invention purifies the chlorine supply with increased energy efficiency, increased cost savings, and increased safety, thereby reducing environmental concerns. This method also efficiently separates chlorine gas from various by-products while simultaneously reducing holdup of the nitrogen trichloride, liquid chlorine and the 55 bromine component. This method also increases safety and reduces environmental concerns associated with distillation tower design through reduced use of piping and external condensers and reboilers.

3 EP 2 499 090 B1

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

[0013] Other advantages of the present invention will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings 5 wherein:

Figure 1 is a schematic of a chlorine purification system of the prior art wherein chlorine gas is formed from electrolysis, filtered, dried, washed and then purified in a distillation system including a distillation tower and a condenser and reboiler that are disposed apart from the distillation tower; 10 Figure 2 is a schematic of a typical distillation tower of the prior art including a condenser, pump, and reboiler that are disposed apart from the distillation tower and long lengths of piping disposed therebetween; Figure 3 is a side view of one embodiment of the distillation tower of the instant invention having an upper and a lower end wherein a width of the upper end is greater than a width of the lower end; Figure 4 is a schematic of one embodiment of the instant invention showing a distillation system including a distillation 15 tower, a reflux condenser disposed above the distillation tower, in fluid communication with an upperend of the distillation tower, and sharing a vertical axis with the distillation tower to condense a vapor into a condensate such that the condensate flows into the upper end of the distillation tower, and a reboiler disposed below the distillation tower and in fluid communication with the lower end of the distillation tower to heat the condensate; Figure 5 is a schematic of another embodiment of the instant invention showing the distillation system of Figure 4 20 in fluid communication with a neutralization tower; and Figure 6 is a side view of an embodiment of the neutralization tower having a first end and a second end wherein a width of the first end is greater than a width of the second end.

DETAILED DESCRIPTION OF THE INVENTION 25

[0014] The present invention provides a method for purifying a chlorine (Cl 2) supply and producing a purified chlorine gas (also known as an "overhead stream" in the art) in a distillation system (10). The purified chlorine gas is formed via distillation/fractionation procedures. The chlorine supply is not particularly limited and is not dependent on any particular

method of formation. The chlorine supply may include liquid chlorine (Cl2(l)) or gaseous chlorine (Cl2(g)) such as those 30 types used in commercial or industrial applications. The chlorine supply (also known as a "feed in" in the art) may be a finite supply or a continuous supply and may be provided from continuous or batch chlorine supply processes and/or in discrete units, such as from commercial tanker trunks or locomotive tanks. In one embodiment, the chlorine supply is provided in a semi-batch process. Typically, the chlorine supply is provided as a liquid via a pipeline to one or more storage locations and then purified and used. However, even when provided as a liquid, some chlorine gas tends to be 35 present. The pipeline is typically supplied from railcars. Alternatively, the chlorine supply may be provided from as a gas or a mixture of a liquid and a gas. [0015] The chlorine supply includes a chlorine component which may include, consist essentially of, or consist of liquid chlorine (Cl2(l)) gaseous chlorine (Cl2(g)), ferric chloride (iron (III) chloride), and/or chlorinated hydrocarbons such as carbon tetrachloride, chloroform, and methylene chloride. The terminology "consisting essentially of" limits the chlorine 40 component, in one embodiment, from including an amount any other compound, such as organic compounds, that materially affects the basic and novel characteristics of the chlorine component. It is to be understood that trace amounts of these other compounds, such as trace amounts of the organic compounds, can be included so long as the trace amounts do not materially affects the basic and novel characteristics of the chlorine component. The chlorine supply also includes nitrogen trichloride (NCl3). The nitrogen trichloride may be present as a liquid or a gas or as a mixture of 45 a liquid and a gas. [0016] Further, the chlorine supply also includes a bromine component which may include, consist essentially of, or

consist of liquid bromine (Br2(l)), gaseous bromine (Br2(g)), bromine monochloride (Br-Cl), and/or brominated hydrocar- bons. The terminology "consisting essentially of" limits the bromine component, in one embodiment, from including any other compound, such as organic compounds, that materially affects the basic and novel characteristics of the bromine 50 component. It is to be understood that trace amounts of these other compounds, such as trace amounts of the organic compounds, can be included so long as the trace amounts do not materially affects the basic and novel characteristics of the bromine component. In one embodiment, the bromine component includes liquid bromine (Br 2(l)), gaseous bromine (Br2(g)), and bromine monochloride (Br-Cl). [0017] The chlorine supply typically includes greater than 95, more typically greater than 97, still more typically greater 55 than 99, even more typically greater than 99.5, and most typically at least 99.9, parts by weight of the chlorine component per 100 parts by weight of the chlorine supply. The chlorine supply also typically includes from 1 to 500, more typically of from 1 to 300, still more typically from 50-300, and even more typically from 50 to 200, parts by weight of the bromine component per one million parts by weight of the chlorine supply. In one embodiment, the chlorine supply includes

4 EP 2 499 090 B1

approximately 200 parts by weight of the bromine component per one million parts by weight of the chlorine supply. The chlorine supply further typically includes less than about 5 and more typically of from 2 to 5, parts by weight of the nitrogen trichloride per one million parts by weight of the chlorine supply. The chlorine supply may also include water. In various embodiments, the water is present in an amount of less than about 30, and more typically in amounts of from 5 to 25, 5 parts by weight per one million parts by weight of the chlorine supply. [0018] In one embodiment, the chlorine supply includes the chlorine component, the bromine component, and the nitrogen trichloride. In another embodiment, the chlorine supply includes the chlorine component, the bromine component, the nitrogen trichloride, and the water. In st ill another embodiment, the chlorine s upply consists essentially of the chlorine component, the bromine component, and the nitrogen trichloride. In yet another embodiment, the chlorine supply consists 10 essentially of the chlorine component, the bromine component, the nitrogen trichloride, and the water. In these embod- iments, the terminology "consisting essentially of" limits the chlorine supply from including any other compound, such as organic compounds, that materially affects the basic and novel characteristics of the chlorine component, the bromine component, the nitrogen trichloride, and/or the water. It is to be understood that trace amounts of these other compounds, such as trace amounts of the organic compounds, can be included so long as the trace amounts do not materially affects 15 the basic and novel characteristics of the chlorine component, the bromine component, the nitrogen trichloride, and/or the water. In a further embodiment, the chlorine supply consists of the chlorine component, the bromine component, and the nitrogen trichloride. In still another embodiment, the chlorine supply consists of the chlorine component, the bromine component, the nitrogen trichloride, and the water. [0019] In addition to the chlorine component, the bromine component, the nitrogen trichloride, and/or the water, the 20 chlorine supply may also include carbon tetrachloride (CCl 4), as described above. In various embodiments, the chlorine supply typically includes less than about 20, more typically less than about 15, and most typically of about 10, parts by weight of the carbon tetrachloride per one million parts by weight of the chlorine supply. [0020] Although the chlorine supply may include chlorine component, the bromine component, the nitrogen trichloride,

the water, and/or carbon tetrachloride (CCl4), the purified chlorine gas formed in the method of this invention typically 25 includes less than 20, more typically less than 15, still more typically less than 10, and even more typically less than 5, parts by weight of the bromine component per one millions parts by weight of the purified chlorine gas. It is also con- templated that the purified chlorine gas may include about 4, 3, 2, or 1, part by weight of the bromine component per one millions parts by weight of the purified chlorine gas. [0021] The method for purifying the chlorine supply includes the steps of introducing the chlorine supply into a vaporizer 30 (12) and heating the chlorine supply in the vaporizer (12) to form a vapor. Typically, the chlorine supply is pumped from a storage unit at a temperature of from 0°C to 20°C, from 5°C to 20°C, from 5°C to 15°C, or at about 10°C, into the vaporizer (12). The chlorine supply is also typically pumped at a pressure of from 1 to 20, from 5 to 15, from 10 to 15, or from about 12 to about 14, bar, into the vaporizer (12). The chlorine supply is typically introduced into the vaporizer (12) as a liquid but may be introduced into the vaporizer (12) as a mixture of a liquid and a gas. 35 [0022] The vaporizer (12) may be any known in the art and typically operates via thermal conduction, convection, or thermal radiation. Typically, the vaporizer (12) heats the chlorine supply beyond its boiling point to form the (chlorine) vapor. Most typically, the vaporizer (12) heats the chlorine supply to a temperature of from 50°C to 120°C, even more typically of from 70°C to 110°C, and still more typically of from 90°C to 100°C, and most typically of from 95°C to 100°C. In one embodiment, the vaporizer (12) heats the chlorine supply to a temperature of about 92°C to 98°C. The step of 40 heating the chlorine supply may be further defined as vaporizing and super-heating the chlorine supply to facilitate decomposition of nitrogen trichloride. Without intending to be bound by any particular theory, it is believed that at temperatures above 121 °C, carbon steel experiences a rapid increase in corrosion, as is well known in the European Chlorine Industry ("Euro Chlor") and the Chlorine Institute. Typically, the vaporizer (12) forms the vapor at a pressure of 5 to 20, from 10 to 20, or from 10 to 15, bar. In one embodiment, the vaporizer (12) forms the vapor at a pressure of 45 from about 10 to 14 bar. [0023] In another embodiment, flow of the chlorine supply into the vaporizer (12) is controlled by pressure. Liquid chlorine may be vaporized at 12.5 bar gage and superheated to 95 °C through use of steam at 1 to 12, 1 to 5, or 1 to 2 bar. Most preferably, the steam is pressurized to 1.2 bar such that that liquid chlorine, and chlorine vapor, do not reach atemperature above120°C. It isbelieve that at temperatures above120°C, chlorine-iron reactivity increasessubstantially. 50 Typically, the steam is automatically throttled to achieve a chlorine superheat temperature of from about 85°C to 105°C. In one embodiment, an operating pressure of from about 10 to 14 bar is required to ensure adequate performance of a distillation tower (14). [0024] The method also includes introducing the vapor into the distillation system (10) that is fluidly connected to the vaporizer (12). The vapor is typically introduced into the distillation system (10) at a pressure of from 5 to 20, from 10 55 to 20, or from 10 to 15, bar. In one embodiment, the vapor is introduced into the distillation system (10) at a pressure of from about 10 to 14 bar. The vapor is typically introduced into the distillation tower (14) through a vapor input (not shown in the Figures). The vapor input may be any type of valve, regulator, nozzle, spout, faucet, or the like. The vapor input typically fluidly connects the distillation tower (14) and the vaporizer (12) through a vapor line, pipe, or tube. The vapor

5 EP 2 499 090 B1

input can be controlled with a flow controlling device that is described in greater detail below. [0025] Typically, the step of introducing the vapor into the distillation system (10) produces liquid chlorine and purified chlorine gas in the distillation system (10). The step of introducing the vapor into the distillation system (10) also typicall y produces an overhead vapor including up to about 5ppmw of the bromine component and a bottoms product of the 5 chlorine component including up to about 15 wt% of the bromine component. The distillation system (10) may be any known in the art suitable for distillation and/or fractionation purposes. Typically, the distillation system (10) includes the distillation tower (14), first described above, which is also known in the art as a fractionation tower. The distillation syste m (10) also includes a reflux condenser (24) and a reboiler (26), which are described in greater detail below. The distillation system (10) may also include the flow controlling device. The distillation tower (14) may have one or more than one 10 valve, control device, regulator, nozzle, spout, faucet, or the like, different from the vapor input, for adding or removing any component from the distillation tower (14) as desired by one of skill in the art. [0026] The distillation tower (14) may be of any size and shape and may be designed using the McCabe-Thiele method, the Fenske equation, or various simulation models, as are well known in the art. Typically, the distillation tower (14) has a shape as set forth in Figure 3, but is not limited to this shape. The distillation tower (14) is typically a column having 15 an upper end (16) and a lower end (18). The upper end (16) and lower end (18) typically have varying widths, e.g. diameters (D1, D2, respectively). In other words, the distillation tower (14) typically has varying widths at different points along the tower, as shown in Figures 3-5. [0027] In various embodiments, a ratio of a width of the upper end (16) to a width of the lower end (18) is about 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, or 8:1. It is also contemplated that these ratios may vary 6 60%, 6 50%, 6 40%, 6 30%, 6 20 25%, 6 20%, 6 10%, 6 5%. It is also contemplated that any range therebetween one or more of the aforementioned values may also be utilized. The distillation tower (14) typically has a height of from 4 to 30 meters (13 to 98 feet). In various embodiments, the distillation tower (14) has a height of from 9 to 21 meters (30 to 70 feet), more typically of from 9 to 18 meters (30 to 60 feet), and most typically of from 12 to 15 meters (40 to 50 feet). In one embodiment, the upper end (16) has a diameter of greater than or equal to 0.5 meters and the lower end (18) has a diameter less than 25 0.5 meters. In various embodiments, the distillation tower (14) has a width and/or height6 60%, 6 50%, 6 40%, 6 30%, 6 25%, 6 20%, 6 10%, 6 5%, or any range therebetween, of the aforementioned values. Typically, the diameter and height of the distillation tower (14) vary depending on a variety of factors including, but not limited to, volatility differences in components, amounts/rates of bromine and chlorine to be separated, a purity of the incoming chlorine supply, operating temperatures, energy requirements, desired separation levels, and the like. Also, the height of the 30 distillation tower (14) typically varies depending on a number of theoretical plates needed and a quality of distillation needed, as selected by one of skill in the art. Accordingly, one or more of these factors may be manipulated in the instant invention as determined by those of skill in the art. Typically, one or more of these factors is manipulated based on simulations derived from the McCabe-Thiele method and/or the Fenske equation which can be used to customize dimensions of the distillation tower (14). 35 [0028] The distillation tower (14) has an upper end (16) and a lower end (18) and both are typically cylindrical, as shown in Figure 3. The upper and lower ends (16, 18) may be right circular cylinders, elliptical cylinders, parabolic cylinders, or hyperbolic cylinders. The upper and lower ends (16, 18) may have the same shape or different shapes and neither must be cylindrical. Said differently, the upper and lower ends (16, 18) can be of any shape. Typically the upper end (16) is a right circular cylinder that has a greater diameter than the lower end (18) that is also typically a right circul ar 40 cylinder, as shown in Figure 3. [0029] The upper end (16) is disposed above the lower end (18) relative to gravity and the earth. The distillation tower

(14) typically has a vertical axis (V1) that extends through the upper and lower ends (16, 18), as shown in Figure 3. Typically, the upper and lower ends (16, 18) extend along the vertical axis (V 1). In one embodiment, the distillation tower (14) has two pairs of shoulders that extend radially from the vertical axis. A first pair of shoulders (34) is typically near 45 the upper end (16) and forms an acute angle with the vertical axis. A second pair of shoulders (36) is typically disposed at the lower end (18) and forms an obtuse angle with the vertical axis (V 1). The distillation tower (14) also typically has a horizontal axis (H1) that extends between the upper and lower ends (18), as also shown in Figure 3. Additionally, the upper end (16) of the distillation tower (14) typically defines a first orifice (not shown) for removing the purified chlorine gas while the lower end (18) of the distillation tower (14) typically defines a second orifice (not shown) for removing other 50 components produced from this method, as described in greater detail below. [0030] The distillation tower (14) also typically includes at least one vapor-liquid contact device. In one embodiment, the at least one vapor-liquid contact device is disposed substantially transverse to the vertical axis (V 1) and substantially parallel to the horizontal axis (H 1). The at least one vapor-liquid contact device provides a vapor-liquid interface between the vapor rising up the distillation tower (14) and a condensate flowing down the distillation tower (14) from the reflux 55 condenser (24). It is contemplated that the condensate may include purified chlorine and portions of a distillate, described in greater detail below. The condensate and the reflux condenser (24) are described in greater detail below. At the vapor- liquid interface, a vapor-liquid equilibrium exists such that the condensate purifies the vapor by absorbing impurities. Without intending to be bound by any particular theory, it is believed that the vapor-liquid interface in the distillation towe r

6 EP 2 499 090 B1

(14) allows liquid chlorine to "scrub" chlorine vapor. More specifically, the liquid chlorine interacts with the vapor rising from the reboiler (26). Interaction of the vapor and the condensate is believed to form the purified chlorine gas through both rectification and separation. In other words, the condensate provides necessary cooling to condense the vapor rising from the reboiler (26), thereby increasing the effectiveness of the distillation tower (14). Increased interaction of 5 the condensate and the vapor increases the effectiveness of the distillation tower (14) and the formation of the purified chlorine gas. In addition to forming the purified chlorine gas, the condensate typically interacts with the vapor at the vapor-liquid contact device to form the distillate (also known as a "feed out" in the art). Both the purified chlorine gas and the distillate can be removed from the distillation tower (14). [0031] The vapor-liquid contact device may be any known in the art and typically includes a plurality of trays (20) 10 and/or packing material (22), as is well known in the art. In one embodiment, the distillation tower (14) includes a first vapor-liquid contact device within the upper end (16) and a second vapor-liquid contact device within the lower end (18). In this embodiment, the first vapor-liquid contact device is typically further defined as a body of packing material (22) while the second vapor-liquid contact device is typically further defined as a plurality of trays (20), as shown in Figure 3. [0032] Typically, the vapor condenses on the plurality of trays (20) and/or packing material (22) and runs down the 15 distillation tower (14). The tray (20) that has the highest temperature is typically disposed in the distillation tower (14) in a lowermost position relative to the ground. The tray (20) with the lowest temperature is typically disposed in an uppermost position relative to the ground. As is well known in the art, at steady state conditions, vapor and liquid on each tray (20) are at thermal equilibrium. [0033] The plurality of trays (20) may include any number of trays (20), as determined by one of skill in the art. However, 20 the plurality of trays (20) typically includes from 3 to 30, from 5 to 25, from 5 to 20, from 5 to 15, or from 5 to 10, trays (20). It is also contemplated that any number of trays (20) within the aforementioned ranges may be utilized. Moreover, any type of tray (20) may be used in the instant invention, as selected by one of skill in the art. In one embodiment, the

plurality of trays (20) is disposed substantially transverse to the vertical axis (V 1) and substantially parallel to the horizontal axis (H1). In another embodiment, the plurality of trays (20) is further defined as horizontal trays (20). 25 [0034] Typically, each of the plurality of trays (20) has a diameter of from 0.25 to 0.76 meters (10 to 30 inches), from 0.25 to 0.50 meters (10 to 20 inches), or from 0.38 to 0.64 meters (15 to 25 inches). However, each of the plurality of trays (20) is not limited in size and shape. Moreover, each of the plurality of trays (20) is typically spaced from one another at a distance of from 0.25 to 0.76 meters (10 to 30 inches), from 0.25 to 0.50 meters (10 to 20 inches), or from 0.38 to 0.64 meters (15 to 25 inches). Again, this distance is not limited and may be varied by one of skill in the art. It is 30 also contemplated that the diameter and spacing described above may vary 6 60%, 6 50%, 6 40%, 6 30%, 6 25%, 6 20%, 6 10%, 6 5%, or any range therebetween, of the aforementioned values. [0035] The packing material (22) is typically utilized when low pressure drops across the distillation tower (14) are used, such as when a vacuum is employed. In one embodiment, the packing material (22) is used to the exclusion of the trays (20). In another embodiment, both packing material (22) and trays (20) are used. Typically, the packing material 35 (22) is random dumped packing material (22) (e.g. 0.3-0.9 meters (1-3 feet) wide) such as Raschig rings or structured sheet metal. Liquids formed in the distillation tower (14), such as the condensate and the distillate, typically wet the packing material (22) while the vapor passes across the packing material (22), thus allowing mass transfer and purification of the vapor to take place. As is well known in the art, a vapor liquid equilibrium curve forms when using packing material (22) is continuous, as opposed to when a plurality of trays (20) is utilized wherein each tray (20) represents a separate 40 point of vapor liquid equilibrium. [0036] To maximize surface area per unit volume for an optimal liquid vapor interface, structured packing material (22) can be utilized in the upper portion of the distillation tower (14). As is known in the art, selection of ideal packing material (22) size involves a balancing between maximum efficiency and maximum capacity. In one embodiment of this invention, Flexipac 1YHC structure packing material (22) is utilized. Alternately a variety of random and/or dump packing 45 material (22) may be utilized as well. The packing material (22) is not particularly limited in this invention and may include any known in the art. In one embodiment, the packing material (22) includes stainless steel, ceramic, nickel, chromium, manganese, iron, and/or chlorine stable polymers such as perfluorinated polymers (e.g. PTFE). In another embodiment, the packing material (22) is commercially available under the trade name Hastelloy. [0037] Typically, the packing material (22) has a surface area to volume ratio of at least 50:1 and preferably higher. 50 In various embodiments, the packing material (22) has a surface area to volume ratio of about 75:1, 100:1, 150:1, 200:1, 250:1, 300:1, 350:1, 400:1, 450:1, or 500:1. It is also contemplated that any ratio of surface area to volume within the aforementioned ratios may be utilized. The packing material (22) can be disposed within the distillation tower (14) in any amount. Typically, the amount of the packing material (22) disposed in the distillation tower (14) is optimized based on simulations derived from the McCabe-Thiele method and/or the Fenske equation. In various embodiments, the packing 55 material (22) is disposed in the distillation tower (14) at a height of from 1.5 to 7.6 meters (5 to 25 feet), from 3 to 7.6 meters (10 to 25 feet), from 3 to 6 meters (10 to 20 feet), or from 3.6 to 4.9 meters (12 to 16 feet). It is also contemplated that the height described immediately above may vary 6 60%, 6 50%, 6 40%, 6 30%, 6 25%, 6 20%, 6 10%, 6 5%, or any range therebetween, of the aforementioned values.

7 EP 2 499 090 B1

[0038] The packing material (22) of this invention typically reduces the drag of the vapor on the condensate in the distillation tower allowing the condensate to move down the column to successively lower trays (20) without excessive accumulation. The packing material (22) typically reduces any liquid hold-up at the vapor-liquid interface and an open area for vapor flow is increased. The condensate and vapor typically flow in vertical countercurrent directions within the 5 distillation tower (14) reducing a shear effect at a bottom edge of the packing material (22). This is thought to result in a significantly higher flooding capacity and a reduced pressure drop in a loading region of the packing material (22). In addition, a vertical region at the vapor-liquid interface tends to enlarge a turning radius for vapor flow and tends to reduce pressure drop associated with rotation between the plurality of trays (20). A smooth transition between the plurality of trays (20) enhances vapor handling capacity of the distillation tower (14). In one embodiment, increased column efficiency 10 can be realized without a loss in capacity through use of packing material (22) with decreased crimp sizes with lower HETP and higher NTSM. [0039] Referring now to the reflux condenser (24), this condenser is disposed above the distillation tower (14) and is

typically flanged to the distillation tower (14). The reflux condenser (24) typically shares the vertical axis 1(V) of the distillation tower (14). The reflux condenser (24) may be disposed in direct contact with the distillation tower (14) or may 15 be disposed apart from the distillation tower (14). In one embodiment, the reflux condenser (24) is disposed on, and in direct contact with, the first pair of shoulders (34) of the central body. The reflux condenser (24) typically has a height of from 0.3 to 3 meters (1 to 10 feet), of from 0.9 to 3 meters (3 to 10 feet), or from 1.8 to 3 meters (6 to 10 feet). The reflux condenser (24) also typically has a diameter equal to or slightly larger than the diameter of the upper end (16) of the distillation tower (14). In various embodiments, the reflux condenser (24) has a diameter of from 0.2 to 2.5 meters 20 (10 to 100 inches), of from 0.5 to 2 meters (20 to 80 inches), or of from 0.6 to 1 meter (25 to 40 inches). In one embodiment, the reflux condenser (24) has a diameter of about 0.6 to 0.9 meters (25 to 35 inches). It is also contemplated that the height and diameters described above may vary 6 60%, 6 50%, 6 40%, 6 30%, 6 25%, 6 20%, 6 10%, 6 5%, or any range therebetween, of the aforementioned values. [0040] The reflux condenser (24), first introduced above, is typically in fluid communication with the upper end (16) of 25 the distillation tower (14) to condense the vapor and form the condensate, introduced above. Typically, the condensate flows (e.g. is distributed) into the upper end (16) of the distillation tower (14). The reflux condenser (24) is typically disposed in direct contact with the distillation tower (14) such that the condensate flows directly back into the upper end (16) of the distillation tower (14). This allows for minimized tubing and piping to be used, thereby increasing safety, efficiency, and cost-effectiveness. 30 [0041] The reflux condenser (24) is typically further defined as close-coupled and may be further defined as an integral overhead reflux condenser (24) or an overhead internal knockback condenser. The knockback condenser may be any known in the art and may be an upflow or a downflow knockback condenser. As is known in the art, knockback condensers typically utilize vapor risers to introduce a flow of the vapor into a headspace above a heat exchanger thereby establishing a flow of condensate. In the instant invention, the flow of condensate is typically distributed directly back into the upper 35 end (16) of the distillation tower (14), as described above, while a portion is removed as the distillate, described in greater detail below. In one embodiment, the reflux condenser (24) is cooled using liquid coolant, which may be any known in the art. As is known in the art, portions of the vapor that are not refluxed as the condensate can be removed as the purified chlorine gas. The purified chlorine gas may be removed from the distillation system (10) at any temperature equal to or higher than the boiling point of chlorine under tower operating pressures. 40 [0042] Referring back to the reboiler (26) described above, the reboiler (26) is typically disposed below the distillation tower (14) and in fluid communication with the lower end (18) of the distillation tower (14). The reboiler (26) can be used to heat the condensate and decompose the nitrogen trichloride, but such step is not required in the instant invention. In one embodiment, the temperature of the reboiler (26) is below a temperature of decomposition of the nitrogen trichloride. As is well known in the art, reboilers (26) are heat exchangers and are typically used to provide heat to the bottom of 45 the distillation tower (14). In one embodiment, the reboiler (26) provides heat to the distillation tower (14) such that the upper end (16) of the distillation tower (14) is maintained at a temperature of about 90°C to 1 10°C while the lower end (18) is maintained at a temperature of about 70°C to 90°C. In another embodiment, the upper end (16) and the lower end (18) are maintained at temperatures that differ by about 1°C, 3°C, 5°C, 10°C, 15°C, 20°C, or 25°C. In other words, the reboiler (26) uses energy to drive the vapor up the distillation tower (14). Thus, the total amount of vapor in the 50 distillation tower (14) is a function of the vapor entering from the vaporizer through the vapor input and the vapor formed from the reboiler (26). In one embodiment, the bottom of the distillation tower operates at a slightly higher temperature than the top due to an elevated content of high boiling point components and the use of superheated steam operating at saturation temperatures. In various embodiments, the reboiler (26) of this invention is coupled (e.g. electronically) with the reflux condenser (24) and the vapor input to control the amount of vapor entering the distillation tower (14). 55 Typically, the reboiler (26) is a type of heat exchanger (e.g. schell and tube or plate and frame) that includes a heated fluid. The heated fluid is passed over or next to a liquid (such as the condensate) in the distillation tower (14) and exchanges energy or heat with the liquid without liquid /fluid contact. [0043] The reboiler(26) of this invention typically vaporizesor boils the condensate andmay simultaneously decompose

8 EP 2 499 090 B1

the nitrogen trichloride while forming and heating the vapor in the distillation tower (14). However, the vapor can be heated in the distillation tower (14) by any means known in the art. The vapor may be heated via other means including through heating means disposed in contact with the distillation tower (14), other than the reboiler (26). In one embodiment, the vapor in the distillation system (10) is heated by additional chlorine vapor entering the distillation system (10). 5 [0044] In one embodiment, the heat of the reboiler (26) decomposes the nitrogen trichloride safely and in a manner that reduces a total amount of nitrogen trichloride present in the distillation system (10) at any one time. Without intending to be bound by any particular theory, it is believed that the nitrogen trichloride decomposes pursuant to the following equations such that inert nitrogen is formed and chlorine gas is formed that re-enters the distillation towel (14) and can be incorporated into the purified chlorine gas: 10

NCl3 → •NCl2 + Cl• (Initiation)

Cl2 → 2 Cl• (Initiation)

15 Cl• + NCl3 → •NCl2 + Cl2 (Propagation)

•NCl2 + NCl3 → N2 + 2 Cl2 + •Cl (Propagation)

[0045] The reboiler (26) may be any type known in the art and may operate via thermal conduction, convection, or 20 thermal radiation. In one embodiment, the reboiler (26) is steam operated. In another embodiment, the reboiler (26) utilizes hot oil or a synthetic organic heat transfer fluid such as Dowtherm ®, commercially available from the Dow Chemical Company. In still another embodiment, low pressure steam (e.g. steam at a pressure of from 1.2 to 10 bar) is used which minimizes the possibility that the condensate will reach a temperature in excess of 120°C. Typically, low pressure steam is recovered from a higher pressure steam condensate and then redistributed. Alternately, steam at a pressure of greater 25 than 1.2 bar can be used in a cross exchanger. Typically, the reboiler (26) is further defined as a shell and tube heat exchanger. However, the instant invention is not limited to such a reboiler (26). It is contemplated that the reboiler (26) may be further defined as a kettle reboiler (26), a thermosyphon reboiler (26), a fired reboiler (26), or a forced circulation reboiler (26). In one embodiment, the reboiler (26) is heated with steam at 1 to 3 bar that is controlled or throttled to achieve a desired balance of components in the distillation tower (14). 30 [0046] In various embodiments, a specified amount of various boiling liquids is maintained in the reboiler (26). These liquids can require further purification or can be treated as waste. Typically, the level of liquids is maintained in reboiler (26) via a level control valve that manipulates the flow out of reboiler (26) to either an additional distillation system or an impurity destruction device. [0047] In one alternative embodiment, the reflux condenser (24), the reboiler (26), and the vapor input are coupled to 35 a flow controlling device (not shown in Figures) for controlling a rate of introducing the vapor into the distillation system (10), as first described above. The flow controlling device may be any known in the art. In one embodiment, the flow controlling device is a flow control valve which is automated and allows a rate of feed of the vapor to change with demand. The flow controlling device may be connected to a computer. In another embodiment, the flow controlling device is an orifice plate which is a flat piece of metal which defines an orifice. A size of the orifice determines feed rate depending 40 on a differential pressure across the orifice plate. In still another embodiment, the flow controlling device is a manual block valve. When the flow controlling device is utilized, the method typically further comprises the step of controlling a rate of introducing the vapor into the distillation system (10) as a function of an amount of condensate distributed into the upper end (16) of the distillation tower (14) from the reflux condenser (24) and as a function of an amount of vapor formed from the reboiler (26). 45 [0048] The distillation system (10) may also include a neutralization tower (28) that is fluidly connected to the distillation tower (14). The distillate formed in the distillation tower (14) may be introduced into the neutralization tower (28) or may be used for other purposes, such as the formation of by using hydrogen in a "chlorine burner", formation of phosgene for processes wherein an elevated bromine level does not significantly impact quality of a final product, or direct chlorination of other processes wherein bromine does not significantly impact a final product quality or overall 50 yield, without use of the neutralization tower (28). [0049] The neutralization tower (28) may be of any size and shape as is known in the art. Typically, the neutralization tower (28) has a shape as set forth in Figures 5 and 6, but is not limited to these shapes. The neutralization tower (28) is typically a column having a first end (30) and a second end (32). The first end (30) and a second end (32) typically

have varying widths, e.g. diameters (D3, D4), as shown in Figures 5 and 6. In other words, the neutralization tower (28) 55 typically has varying widths at different points. Typically, the varying widths or diameters (D3, D4) are of from 6 inches to 5 feet. The neutralization tower (28) typically has a height of from 1 meter to 100 meters. In one embodiment, the first end (30) is cylindrical and has a diameter of about 10 inches. In another embodiment, the second end (32) is also cylindrical and has a diameter of about 3 feet. In various embodiments, the neutralization tower (28) has a width and/or

9 EP 2 499 090 B1

height 6 60%, 6 50%, 6 40%, 6 30%, 6 25%, 6 20%, 6 10%, 6 5%, or any range therebetween, of the aforementioned values. [0050] The first end (30) of the neutralization tower (28) is disposed above the second end (32) relative to gravity and the earth. The neutralization tower (28) typically has a vertical axis (V2) that extends through the first and second end 5 (30, 32), as shown in Figures 5 and 6. Typically, the first and second ends (30, 32) extend along the vertical axis (V2). In one embodiment, the neutralization tower (28) has a third pairs of shoulders (38) that extend radially from the vertical

axis (V2) and form an obtuse angle with the vertical axis (V 2). The neutralization tower (28) may also have a horizontal axis (H2) that may or may not separate the first and second ends (30, 32) [0051] The neutralization tower (28) may be the same as the distillation tower (14) or may be different. The neutralization 10 tower (28) may have the same dimensions described above relative to the distillation tower (14) or may have different dimensions. [0052] Typically, the neutralization tower (28) is used to neutralize the liquid chlorine and the bromine component, e.g. the molecular bromine and the bromine monochloride. In one embodiment, the neutralization tower (28) contains a reducing agent and a reducing catalyst. Typically, the reducing agent is selected from the group of metal hydroxides, 15 metal sulfites, and combinations thereof. In one embodiment, the reducing agent is selected from the group of alkali metal hydroxides, alkaline earth metal hydroxides, and combinations thereof. In another embodiment, the reducing agent is selected from the group of alkali metal sulfites, alkaline earth metal sulfites, and combinations thereof. In yet another

embodiment, the reducing agent is selected from the group of sodium hydroxide (NaOH), sodium bisulfite (NaHSO3), and combinations thereof. The reducing catalyst may be any known in the art and is typically further defined as a metal 20 reducing catalyst. Typical metal reducing catalysts include, but are not limited to, palladium, platinum, nickel, and com- binations thereof. For descriptive purposes only, typical reduction reactions (and other side reactions) of the liquid chlorine, the molecular bromine, and the bromine monochloride are set forth below:

(1) Br2 + Cl2 ↔ 2BrCl 25

(2) Br2(l) + 2 NaOH(aq) → NaBr(aq)+ NaOBr(aq) + H2O(l)

- - - (3) 3 BrO (aq) → 2 Br (aq) + BrO3 (aq)

30 - - (4) Cl2(aq) + 2 Br (aq) → 2 Cl (aq) + Br2(aq)

(5) Cl2(l) + 2 NaOH(aq) → NaCl(aq) + NaOCl(aq) + H2O(l)

- - - (6) 3 ClO (aq) → 2 Cl (aq) +ClO3 (aq) 35 - - (7) Br2(aq) + 2 Cl (aq) → 2 Br (aq) + Cl2(aq)

(8) NaOBr(aq) + NaHSO3 + NaOH → Na2SO4 + NaBr + H2O

40 (9) NaOCl(aq) + NaOH → Na2SO4 + NaCl + H2O

[0053] In one embodiment, the liquid chlorine and bromine components are converted to through treat- ment with caustic agents, such as those described above. Hypochlorites can be decomposed to form alkali halides and oxygen. Without intending to be bound by any particular theory, it is believed that the primary may be 45 represented by the following equation:

50 In one embodiment, chlorine gas is reacted with sodium hydroxide to form sodium chloride and sodium that can then be further treated, such as with the Hydecat process, described below. Typically, the catalyst used to treat the and sodium chloride includes a metal oxide or hydroxides of cobalt, copper, iron magnesium, molybdenum, and/or nickel. These catalysts may be supported or unsupported. The catalyst used to convert the sodium hypochlorite to the sodium chloride is not particularly limited in this invention. Without intending to be bound by any 55 particular theory, it is believed that time, temperature, pH and concentrations of catalyst and hypochlorite influence the reaction described above. Typically, below a pH of 7, hypochlorites readily decompose to release free chlorine. [0054] In one embodiment, the instant invention utilizes a catalyst as described in U.S. Patent No. 4,764,286, which

10 EP 2 499 090 B1

is expressly incorporated herein by reference. In another embodiment, the instant invention utilizes a catalyst as described in U.S. Patent No. 4,963,341, which is also expressly incorporated herein by reference. Moreover, the instant invention may also utilize the Hydecat® process as described in WO9218235, which is also expressly incorporated herein by reference. 5 [0055] The distillation system (10) may also include additional components, as are known in the art. For example, the distillation system (10) may include additional condensers, additional distillation tower (14), additional reboiler (26), and suitable valves, piping, and any other suitable components described in Perry’s Chemical Engineer’s Handbook, McGraw- Hill Professional; 8th edition (October 23, 2007), which is expressly incorporated herein by reference relative to distillation and distillation systems (10) and components. 10 [0056] Referring back to the method, the method also includes the step of introducing the vapor into the distillation system (10) to provide the purified chlorine gas, the distillate including liquid chlorine and the bromine component, and a bottoms component including nitrogen trichloride. The method also includes the step of condensing the vapor in the reflux condenser (24) to form the condensate which flows from the reflux condenser (24) into the upper end (16) of the distillation tower (14) such that the condensate interacts with the vapor at the vapor-liquid contact device thereby forming 15 the purified chlorine gas and the distillate. The method also includes the step of heating the condensate in the reboiler (26). This step may decompose the nitrogen trichloride in the bottoms component. Moreover, the method includes the step of removing the purified chlorine gas from the distillation system (10) and removing the distillate from the distillation system (10). As described above, the distillate may be removed from the distillation system (10) and introduced into the neutralization tower (28) or may be used for other purposes. In one embodiment, the vaporizer (12) adds heat into the 20 distillation system (10) such that the size of the distillation tower (14) and/or reboiler (26) can be reduced. In this em- bodiment, the reboiler (26) uses less energy than otherwise would be required because the vaporizer (12) heats the chlorine to the appropriate temperature while the reboiler (26) maintains this temperature. In this embodiment, super- heated chlorine gas enters the distillation tower (14) from the vaporizer (12). Without intending to be bound by any particulartheory, it is believed that thisembodiment, and thisinvention, reducesenergy consumption and increases safety. 25 [0057] As described above, the distillate typically includes liquid chlorine and the bromine component and a bottoms component including nitrogen trichloride. In one embodiment, the distillate includes Br 2 and BrCl. The distillate is typically heated in the reboiler (26) which may decompose the nitrogen trichloride. When the distillate is removed from the distillation tower (14), the bromine component is typically removed as well. The bromine component may be removed from the distillation system (10) at any temperature, as selected by one of skill in the art. In one embodiment, the distillati on 30 system (10) is in fluid communication with the neutralization tower (28), as described above, such that the bromine component is reduced and discarded. In another embodiment, the distillation system (10) is in fluid communication with a storage tank such that the bromine component may be used in various downstream applications. [0058] The instant invention also provides a method of controlling a flow of the vapor from the vaporizer (12) to the distillation system (10). In this method, the reflux condenser (24), the reboiler (26), and the vapor input are typically 35 electronically coupled with a flow controlling device. The method includes the steps of introducing the vapor into the distillation tower (14), condensing the vapor in the reflux condenser (24) to form the condensate, heating the condensate in the reboiler (26), and controlling a rate of introducing the vapor into the distillation tower (14) as a function of an amou nt of condensate flowing into the upper end (16) of the distillation tower (14) from the reflux condenser (24) and as a fonction of an amount of vapor formed from the reboiler (26) to minimize a buildup of the condensate in the distillation tower (14). 40 [0059] In one embodiment, the distillation system (10) is in fluid communication with a phosgene reactor such that the

purified chlorine gas can be reacted with carbon monoxide to form phosgene gas (Cl 2 + CO → COCl2). [0060] The instant invention also provides a method of forming an isocyanate including the reaction product of an amine and phosgene, which may be produced as described immediately above. The isocyanate may include diisocy- anates, polyisocyanates, biurets of isocyanates and polyisocyanates, isocyanurates of isocyanates and polyisocyanates, 45 and combinations thereof In one embodiment, the isocyanate is an n-functional isocyanate. In this embodiment, n is a number preferably from 2 to 5, more preferably from 2 to 4, and most preferably from 2 to 3. It is to be understood that n may be an integer or may have intermediate values from 2 to 5. Alternatively, the isocyanate may be selected from the group of aromatic isocyanates, aliphatic isocyanates, and combinations thereof. In another embodiment, the isocy- anate is an aliphatic isocyanate such as hexamethylene diisocyanate or H12MDI. The isocyanate component may also 50 be further defined as a modified multivalent aliphatic isocyanate, i.e., a product which is obtained through chemical reactions of aliphatic diisocyanates and/or aliphatic polyisocyanates. Examples include, but are not limited to, , biurets, allophanates, carbodiimides, uretonimines, isocyanurates, urethane groups, dimers, trimers, and combinations thereof. In one embodiment, the isocyanate is further defined as an aromatic isocyanate. Typically, aromatic isocyanates

correspond to the formula R’(NCO)z wherein R’ is aromatic and z is an integer that corresponds to the valence of R’. 55 Preferably, z is at least two. Suitable examples of aromatic isocyanates include, but are not limited to, tetramethylxylylene diisocyanate (TMXDI), 1,4-diisocyanatobenzene, 1,3-diisocyanato-o-xylene, 1,3-diisocyanato-p-xylene, 1,3-diisocy- anato-m-xylene, 2,4-diisocyanato-1-chlorobenzene, 2,4-diisocyanato-1-nitro-benzene, 2,5-diisocyanato-1-nitroben- zene, m-phenylene diisocyanate, p-phenylene diisocyanate, 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, mix-

11 EP 2 499 090 B1

tures of 2,4- and 2,6-toluene diisocyanate, 1,5-naphtalene diisocyanate, 1-methoxy-2,4-phenylene diisocyanate, 4,4’- diphenylmethane diisocyanate, 2,4’- diphenylmethane diisocyanate, 4,4’-biphenylene diisocyanate, 3,3’-dimethyl-4,4’- diphenylmethane diisocyanate, 3,3’-dimethyldiphenylmethane-4,4’-diisocyanate, triisocyanates such as 4,4’,4"-triphe- nylmethane triisocyanate polymethylene polyphenylene polyisocyanate and 2,4,6-toluene triisocyanate, tetraisocy- 5 anates such as 4,4’-dimethyl-2,2’-5,5’-diphenylmethane tetraisocyanate, toluene diisocyanate, 2,2’-diphenylmethane- diisocyanate, 2,4’-diphenylmethane diisocyanate, 4,4’-diphenylmethane diisocyanate, polymethylene polyphenylene polyisocyanate, corresponding isomeric mixtures thereof, and combinations thereof. Alternatively, the aromatic isocy- anate may include a triisocyanate product ofm -TMXDI and 1,1,1-trimethylolpropane, a reaction product of toluene diisocyanate and 1,1,1-trimethylolpropane, and combinations thereof. In one embodiment, the isocyanate is selected 10 from the group of methylene diphenyl diisocyanates, toluene diisocyanates, hexamethylene diisocyanates, H12MDIs, and combinations thereof. [0061] The amine that reacts with the phosgene to form the isocyanate may be any known in the art. In one embodiment, the amine reacts with the phosgene to form an intermediate isocyanate which then further reacts to form one or more of the isocyanates described above. Typically, amines reacts with phosgene according to the following equation: 15

RNH2 + COCl2 → RN=C=O + 2 HCl

in the presence of a base such as pyridine. [0062] The method of forming the isocyanate typically includes the steps of introducing the chlorine supply into the 20 vaporizer (12), heating the chlorine supply in the vaporizer (12) to form the vapor, and introducing the vapor into the distillation tower (14) that is fluidly connected with the vaporizer (12). The chlorine supply, the vaporizer (12), the vapor, and the distillation tower (14) are typically as described above but are not limited to the above descriptions. This method typically includes the step of distilling the vapor in the distillation tower (14) to form the purified chlorine gas having les s than 5 parts by weight of the bromine component per one million parts by weight of the purified chlorine gas. The method 25 further typically includes the steps of heating the condensate and decomposing the nitrogen trichloride in the reboiler (26), removing the purified chlorine gas from the distillation tower (14), removing the distillate from the distillation tower (14), reacting the purified chlorine gas with carbon monoxide to form the phosgene, and reacting the phosgene with the amine to form the isocyanate. The steps of this method may be the same or different than those described above. [0063] The invention has been described in an illustrative manner, and it is to be understood that the terminology 30 which has been used is intended to be in the nature of words of description rather than of limitation. Obviously, many modifications and variations of the present invention are possible in light of the above teachings, and the invention may be practiced otherwise than as specifically described.

35 Claims

1. A method for purifying a chlorine supply comprising a chlorine component, a bromine component, and nitrogen trichloride in a distillation system to form purified chlorine gas having less than 20 parts by weight of the bromine component per one million parts by weight of the purified chlorine gas and to form a distillate comprising liquid 40 chlorine and the bromine component, wherein the distillation system is fluidly connected to a vaporizer and comprises a distillation tower that has an upper end and a lower end, a vertical axis extending through the upper and lower ends, and a vapor-liquid contact device to provide a vapor-liquid interface between a vapor and a condensate, a reflux condenser that is in fluid communication with the upper end of the distillation tower, disposed above the distillation tower, and that shares the vertical axis with the distillation tower, and wherein the distillation system also 45 comprises a reboiler disposed below the distillation tower and in fluid communication with the lower end of the distillation tower, said method comprising the steps of:

A. introducing the chlorine supply into the vaporizer; B. heating the chlorine supply to a temperature of from 50°C to 120°C in the vaporizer to form the vapor; 50 C. introducing the vapor into the distillation system to provide purified chlorine gas, a distillate comprising the liquid chlorine and the bromine component, and a bottoms component including nitrogen trichloride; D. condensing the vapor in the reflux condenser to form the condensate which flows from the reflux condenser into the upper end of the distillation tower such that the condensate interacts with the vapor at vapor-liquid contact device thereby forming the purified chlorine gas and the distillate; 55 E. heating the condensate in the reboiler; F. removing the purified chlorine gas from the distillation system; and G. removing the distillate from the distillation system.

12 EP 2 499 090 B1

2. A method as set forth in claim 1 wherein the chlorine supply further comprises water and carbon tetrachloride.

3. A method as set forth in claim 2 wherein the chlorine component comprises liquid molecular chlorine and gaseous molecular chlorine. 5 4. A method as set forth in claim 1 wherein the bromine component comprises molecular bromine and bromine mon- ochloride.

5. A method as set forth in claim 1 wherein the chlorine supply consists essentially of the chlorine component, the 10 bromine component, the nitrogen trichloride, water, and carbon tetrachloride, wherein the chlorine component com- prises liquid molecular chlorine and gaseous molecular chlorine, and wherein the bromine component comprises molecular bromine and bromine monochloride.

6. A method as set forth in claim 1 wherein the reflux condenser is further defined as a knockback condenser. 15 7. A method as set forth in claim 1 wherein the upper end of the distillation tower defines a first orifice for removing the purified chlorine gas and the lower end of the distillation tower defines a second orifice for removing the distillate, wherein the step of removing the purified chlorine gas is further defined as removing the purified chlorine gas from the upper end of the distillation tower through the first orifice, and wherein the step of removing the distillate is further 20 defined as removing the distillate from the lower end of the distillation tower through the second orifice.

8. A method as set forth in claim 7 further comprising the step of neutralizing the liquid chlorine and the bromine component.

25 9. A method as set forth in claim 8 wherein the step of neutralizing is further defined as reacting the liquid chlorine and the bromine component with a reducing agent in the presence of a reducing catalyst to form salts.

10. A method as set forth in claim 9 wherein the reducing agent is selected from the group of metal hydroxides, metal sulfites, and combinations thereof, and the reducing catalyst is a metal. 30 11. A method as set forth in claim 10 wherein the reducing agent comprises sodium hydroxide and sodium bisulfite.

12. A method as set forth in claim 1 wherein the step of removing the purified chlorine gas and the step of removing the distillate occur simultaneously. 35 13. A method as set forth in claim 1 wherein the vapor-liquid contact device is further defined as a plurality of horizontal trays.

14. A method as set forth in claim 1 wherein the vapor-liquid contact device is further defined as structured packing. 40 15. A method as set forth in claim 1 wherein the dist illation tower is cylindrical and the upper end of the distillation tower has a diameter greater than a diameter of the lower end of the distillation tower to minimize an amount of the liquid chlorine and the nitrogen trichloride present in a bottom of the dist illation tower.

45 16. A method as set forth in claim 15 wherein a ratio of the diameters of the upper and lower ends of the distillation tower is from 2:1 to 8:1.

17. A method as set forth in claim 1 wherein the step of heating the condensate in the reboiler is further defined as heating to a temperature of from 90°C to 110°C. 50 18. A method as set forth in claim 1 wherein the reflux condenser, the reboiler, and a vapor input to the distillation tower are electronically coupled to a flow controlling device for controlling a rate of introducing the vapor into the distillation system and the method further comprises the step of controlling a rate of introducing the vapor into the distillation system through the vapor input as a function of an amount of condensate that flows from the reflux condenser into 55 the upper end of the distillation tower and as a function of an amount of vapor formed from the reboiler.

19. A method of forming phosgene comprising the step of reacting carbon monoxide and purified chlorine gas obtained from the method set forth in claim 1, wherein the distillation system is in fluid communication with a phosgene reactor.

13 EP 2 499 090 B1

20. A method of forming an isocyanate comprising the reaction product of an amine and the phosgene formed from the method set forth in claim 19.

21. A method as set forth in claim 1 for purifying a chlorine supply consisting essentially of a chlorine component 5 comprising molecular chlorine, a bromine component comprising molecular bromine and bromine monochloride, nitrogen trichloride, water, and carbon tetrachloride, in a distillation system to form purified chlorine gas having less than 20 parts by weight of the bromine component per one million parts by weight of the purified chlorine gas and to form a distillate comprising liquid chlorine and the bromine component, wherein the distillation system is fluidly connected to a vaporizer and comprises a distillation tower that has an upper end, a lower end, a vertical axis 10 extending through the upper and lower ends, wherein the upper end has a diameter that is greater than a diameter of the lower end, and wherein the distillation tower comprises a plurality of horizontal trays to provide a vapor-liquid interface between a vapor and a condensate, a knockback condenser disposed above the distillation tower, in fluid communication with the upper end of the distillation tower, and sharing the vertical axis with the distillation tower, and a reboiler disposed below the distillation tower and in fluid communication with the lower end of the distillation 15 tower, wherein the knockback condenser, the reboiler, and a vapor input to the distillation tower are electronically coupled to a flow controlling device for controlling a rate of introducing the vapor into the distillation system and the method further comprises the step of controlling a rate of introducing the vapor into the distillation system through the vapor input as a function of an amount of condensate that flows from the knockback condenser into the upper end of the distillation tower and as a function of an amount of vapor formed from the reboiler, said method comprising 20 the steps of:

A. introducing the chlorine supply into the vaporizer; B. heating the chlorine supply to a temperature of from 50°C to 120°C in the vaporizer to form the vapor; C. introducing the vapor into the distillation system to provide purified chlorine gas, a distillate comprising the 25 liquid chlorine and the bromine component, and a bottoms component including nitrogen trichloride such that a rate of introducing the vapor into the distillation system is controlled as a function of an amount of condensate formed from the knockback condenser and as a function of an amount of vapor formed from the reboiler; D. condensing the vapor in the reflux condenser to form the condensate which flows from the reflux condenser into the upper end of the distillation tower such that the condensate interacts with the vapor at vapor-liquid 30 contact device thereby forming the purified chlorine gas and the distillate; E. heating the condensate in the reboiler to a temperature of from 90°C to 110°C; and F. simultaneously removing the purified chlorine gas and the dist illate from the distillation system.

22. A method as set forth in claim 21 further comprising the step of reacting the distillate and a reducing agent to form salts. 35 23. A method as set forth in claim 22 wherein the step of reacting the distillate and the reducing agent is further defined as reacting the distillate and the reducing agent in the present of a reducing catalyst and wherein the reducing agent is selected from the group of metal hydroxides, metal sulfites, and combinations thereof, and the reducing catalyst is a metal. 40 24. A method of forming phosgene comprising the step of reacting carbon monoxide and the purified chlorine gas obtained from the method set forth in claim 22.

25. A distillation system for purifying a chlorine supply comprising a chlorine component, a bromine component, and 45 nitrogen trichloride, said distillation system forming purified chlorine gas having less than 20 parts by weight of said bromine component per one million parts by weight of said purified chlorine gas and forming a distillate comprising liquid chlorine and said bromine component, said system comprising:

A. a distillation tower that has an upper end, a lower end, a vertical axis extending through said upper and lower 50 ends, wherein said upper end has a diameter that is greater than a diameter of said lower end, and wherein said distillation tower comprises a plurality of horizontal trays to provide a vapor-liquid interface between a vapor and a condensate, B. a reflux condenser disposed above said distillation tower, in fluid communication with said upper end of said distillation tower, and sharing the vertical axis with said distillation tower, 55 C. a reboiler disposed below said distillation tower and in fluid communication with said lower end of the distillation tower, wherein said reflux condenser, said reboiler, and a vapor input to said distillation tower are electronically coupled to a flow controlling device for controlling a rate of introducing a vapor into the distillation system through the vapor input as a function of an amount of condensate that flows from said reflux condenser into said upper

14 EP 2 499 090 B1

end of said distillation tower and as a function of an amount of vapor formed from said reboiler, and D. a vaporizer that is fluidly connected to said distillation tower via said vapor input and that heats the chlorine supply to a temperature of from 50°C to 120°C to form the vapor.

5 26. A distillation tower as set forth in claim 25 wherein said reflux condenser is further defined as a knockback condenser.

27. A distillation system as set forth in claim 25 wherein a ratio of the diameters of said upper and lower ends of said distillation tower is from 2:1 to 8:1.

10 28. A distillation system as set forth in claim 25 further comprising a neutralization tower that is fluidly connected to said distillation tower for neutralizing said distillate.

29. A distillation system as set forth in claim 28 wherein said neutralization tower contains a reducing agent selected from the group of metal hydroxides, metal sulfites, and combinations thereof and a metal reducing catalyst for 15 neutralizing said liquid chlorine, said molecular bromine, and said bromine monochloride.

30. A distillation system as set forth in claim 25 that is in fluid communication with a phosgene reactor for reacting said purified chlorine gas and carbon monoxide to form phosgene.

20 31. A method of controlling a flow of vapor from a vaporizer to a distillation system as set forth in claim 25 comprising a distillation tower that has an upper end, a lower end, and a vapor-liquid contact device, a reflux condenser disposed above the distillation tower and in fluid communication with the upper end of the distillation tower to condense the vapor into a condensate such that the condensate flows into the upper end of the distillation tower, a reboiler disposed below the distillation tower and in fluid communication with the lower end of the distillation tower to heat the con- 25 densate, wherein the reflux condenser, the reboiler, a vapor input to the distillation tower are electronically coupled to a flow controlling device for controlling a rate of introducing the vapor into the distillation system, and a vaporizer that is fluidly connected to the distillation tower via the vapor input and that heats the chlorine supply to a temperature of from 50°C to 120°C to form the vapor, said method comprising the steps of:

30 A. introducing the vapor into the distillation tower; B. condensing the vapor in the reflux condenser to form the condensate; C. heating the condensate in the reboiler; and D. controlling a rate of introducing the vapor into the distillation tower with the flow controlling device as a function of an amount of condensate that flows from the reflux condenser into the upper end of the distillation tower and 35 as a function of an amount of vapor formed from the reboiler to minimize a buildup of the condensate in the distillation tower.

32. A method as set forth in claim 31 wherein the distillation tower has a vertical axis extending through the upper and lower ends and a horizontal axis extending between the upper and lower ends, wherein the upper end has a diameter 40 that is greater than a diameter of the lower end, and wherein the vapor-liquid contact device is further defined as a plurality of horizontal trays to provide a vapor-liquid interface between the vapor and the condensate.

33. A method as set forth in claim 31 wherein the upper end of the distillation tower has a diameter of greater than or equal to 0.5 meters and the lower end of the distillation tower has a diameter less than 0.5 meters. 45 34. A method as set forth in claim 31 wherein the reflux condenser is further defined as a knockback condenser.

35. A method as set forth in claim 31 wherein the distillation system further comprises a neutralization tower fluidly connected to the distillation tower. 50 36. A method as set forth in claim 31 wherein the vapor comprises a chlorine component, a bromine component, and nitrogen trichloride and the method further comprises the step of forming a purified chlorine gas having less than 20 parts by weight of the bromine component per one million parts by weight of the purified chlorine gas and forming a distillate comprising liquid chlorine and the bromine component. 55 37. A method as set forth in claim 36 wherein the bromine component comprises molecular bromine and bromine monochloride.

15 EP 2 499 090 B1

38. A method as set forth in claim 37 wherein the vapor further comprises water and carbon tetrachloride.

39. A method as set forth in claim 38 wherein the vapor consists essentially of the chlorine component, the molecular bromine, the bromine monochloride, the nitrogen trichloride, the water, and the carbon tetrachloride. 5 40. A method as set forth in claim 37 wherein the distillation system further comprises a neutralization tower fluidly connected to the distillation tower and containing a reducing agent selected from the group of metal hydroxides, metal sulfites, and combinations thereof and a reducing catalyst for neutralizing the liquid chlorine, the molecular bromine, and the bromine monochloride. 10 41. A method as set forth in claim 36 further comprising the step of removing the purified chlorine gas and the step of removing the distillate simultaneously.

42. A method as set forth in claim 36 wherein the distillation system is in fluid communication with a phosgene reactor 15 for reacting carbon monoxide and the purified chlorine gas and wherein the method further comprises the step of reacting the carbon monoxide and the purified chlorine gas to form phosgene.

Patentansprüche 20 1. Verfahren zum Reinigen einer Chlorzufuhr, die eine Chlorkomponente, eine Bromkomponente und Stickstofftrichlorid umfasst, in einem Destillationssystem, um gereinigtes Chlorgas zu bilden, das weniger als 20 Gewichtsteile an der Bromkomponente pro einer Million Gewichtsteile des gereinigten Chlorgases aufweist, und um ein Destillat zu bilden, das flüssiges Chlor und die Bromkomponente umfasst, wobei das Destillationssystem mit einem Verdampfer in 25 Fluidverbindung steht und einen Destillationsturm, der ein oberes Ende, ein unteres Ende und eine senkrechte Achse, die durch das obere und das untere Ende verläuft, und eine Dampf-Flüssigkeit-Kontaktvorrichtung zum Bereitstellen einer Dampf-Flüssigkeit-Grenzfläche zwischen einem Dampf und einem Kondensat aufweist, einen Rückflusskondensator, der in Fluidverbindung mit dem oberen Ende des Destillationsturms steht, über dem Des- tillationsturm angeordnet ist und die senkrechte Achse mit dem Destillationsturm teilt, umfasst, und wobei das 30 Destillationssystem auch einen Reboiler umfasst, der unter dem Destillationsturm angeordnet ist und in Fluidver- bindung mit dem unteren Ende des Destillationsturms steht, wobei das Verfahren folgende Schritte umfasst:

A. Einführen der Chlorzufuhr in den Verdampfer; B. Erhitzen der Chlorzufuhr auf eine Temperatur von 50 °C bis 120 °C in dem Verdampfer, um den Dampf zu 35 bilden; C. Einführen des Dampfs in das Destillationssystem, um gereinigtes Chlorgas, ein Destillat, das das flüssige Chlor und die Bromkomponente umfasst, und eine Bodenkomponente, die Stickstofftrichlorid enthält, zu erzeu- gen; D. Kondensieren des Dampfs in dem Rückflusskondensator, um das Kondensat zu bilden, das aus dem Rück- 40 flusskondensator in das obere Ende des Destillationsturms fließt, so dass das Kondensat mit dem Dampf an der Dampf-Flüssigkeit-Kontaktvorrichtung wechselwirkt, um so das gereinigte Chlorgas und das Destillat zu bilden; E. Erhitzen des Kondensats in dem Reboiler; F. Entnehmen des gereinigten Chlorgases aus dem Destillationssystem; und 45 G. Entnehmen des Destillats aus dem Destillationssystem.

2. Verfahren gemäß Anspruch 1, wobei die Chlorzufuhr ferner Wasser und Tetrachlorkohlenstoff umfasst.

3. Verfahren gemäß Anspruch 2, wobei die Chlorkomponente flüssiges molekulares Chlor und gasförmiges moleku- 50 lares Chlor umfasst.

4. Verfahren gemäß Anspruch 1, wobei die Bromkomponente molekulares Brom und Brommonochlorid umfasst.

5. Verfahren gemäß Anspruch 1, wobei die Chlorzufuhr im Wesentlichen aus der Chlorkomponente, der Bromkom- 55 ponente, dem Stickstofftrichlorid, Wasser und Tetrachlorkohlenstoff besteht, wobei die Chlorkomponente flüssiges molekulares Chlor und gasförmiges molekulares Chlor umfasst und wobei die Bromkomponente molekulares Brom und Brommonochlorid umfasst.

16 EP 2 499 090 B1

6. Verfahren gemäß Anspruch 1, wobei der Rückflusskondensator ferner als Rückschlagkondensator definiert ist.

7. Verfahren gemäß Anspruch 1, wobei das obere Ende des Destillationsturms eine erste Öffnung zum Entnehmen des gereinigten Chlorgases definiert und das untere Ende des Destillationsturms eine zweite Öffnung zum Entneh- 5 men des Destillats definiert, wobei der Schritt des Entnehmens des gereinigten Chlorgases ferner als Entnehmen des gereinigten Chlorgases aus dem oberen Ende des Destillationsturms durch die ersten Öffnung definiert ist und wobei der Schritt des Entnehmens des Destillats ferner als Entnehmen des Destillats aus dem unteren Ende des Destillationsturms durch die zweite Öffnung definiert ist.

10 8. Verfahren gemäß Anspruch 7, ferner umfassend den Schritt des Neutralisierens des flüssigen Chlors und der Bromkomponente.

9. Verfahren gemäß Anspruch 8, wobei der Schritt des Neutralisierens ferner als Umsetzen des flüssigen Chlors und der Bromkomponente mit einem Reduktionsmittel in Gegenwart eines Reduktionskatalysators zum Erzeugen von 15 Salzen definiert ist.

10. Verfahren gemäß Anspruch 9, wobei das Reduktionsmittel ausgewählt ist aus der Gruppe von Metallhydroxiden, Metallsulfiden und Kombinationen davon und der Reduktionskatalysator ein Metall ist.

20 11. Verfahren gemäß Anspruch 10, wobei das Reduktionsmittel Natriumhydroxid und Natriumbisulfit umfasst.

12. Verfahren gemäß Anspruch 1, wobei der Schritt des Entnehmens des gereinigten Chlorgases und der Schritt des Entnehmens des Destillats gleichzeitig erfolgen.

25 13. Verfahren gemäß Anspruch 1, wobei die Dampf-Flüssigkeits-Kontaktvorrichtung ferner als Vielzahl horizontaler Böden definiert ist.

14. Verfahren gemäß Anspruch 1, wobei die Dampf-Flüssigkeits-Kontaktvorrichtung ferner als strukturierte Packung definiert ist. 30 15. Verfahren gemäß Anspruch 1, wobei der Destillationsturm zylindrisch ist und das obere Ende des Destillationsturms einen Durchmesser aufweist, der größer als der Durchmesser des unteren Endes des Destillationsturms ist, um die Menge des flüssigen Chlors und des Stickstofftrioxids, die am Boden des Destillationsturms vorhanden sind, zu minimieren. 35 16. Verfahren gemäß Anspruch 15, wobei das Verhältnis des Durchmessers des oberen und des unteren Endes des Destillationsturms von 2:1 bis 8:1 beträgt.

17. Verfahren gemäß Anspruch 1, wobei der Schritt des Erhitzens des Kondensats in dem Reboiler ferner als Erhitzen 40 auf eine Temperatur von 90 °C bis 110 °C definiert ist.

18. Verfahren gemäß Anspruch 1, wobei der Rückflusskondensator, der Reboiler und die Dampfzufuhr zu dem Destil- lationsturm elektronisch mit einer Flusssteuerungsvorrichtung zum Steuern der Rate des Einführens des Dampfs in das Destillationssystem gekoppelt sind und das Verfahren ferner den Schritt des Steuerns der Rate des Einführens 45 des Dampfs in das Destillationssystem über die Dampfzufuhr als Funktion der Menge an Kondensat, die aus dem Rückflusskondensator in das obere Ende des Destillationsturms fließt, und als Funktion der Menge an Dampf, die an dem Reboiler gebildet wird, umfasst.

19. Verfahren zum Herstellen von Phosgen, umfassend den Schritt des Umsetzens von Kohlenmonoxid und gereinigtem 50 Chlorgas, das durch das Verfahren gemäß Anspruch 1 erhalten ist, wobei das Destillationssystem in Fluidverbindung mit einem Phosgenreaktor steht.

20. Verfahren zum Herstellen eines Isocyanats, umfassend das Reaktionsprodukt eines Amins und des durch das Verfahren gemäß Anspruch 19 hergestellten Phosgens. 55 21. Verfahren gemäß Anspruch 1 zum Reinigen einer Chlorzufuhr, die im Wesentlichen aus einer Chlorkomponente, die molekulares Chlor umfasst, einer Bromkomponente, die molekulares Brom und Brommonochlorid umfasst, Stickstofftrichlorid, Wasser und Tetrachlorkohlenstoff besteht, in einem Destillationssystem, um gereinigtes Chlorgas

17 EP 2 499 090 B1

zu bilden, das weniger als 20 Gewichtsteile an der Bromkomponente pro einer Million Gewichtsteile des gereinigten Chlorgases aufweist, und um ein Destillat zu bilden, das flüssiges Chlor und die Bromkomponente umfasst, wobei das Destillationssystem mit einem Verdampfer in Fluidverbindung steht und einen Destillationsturm, der ein oberes Ende, ein unteres Ende und eine senkrechte Achse, die durch das obere und das untere Ende verläuft, aufweist, 5 wobei das obere Ende einen Durchmesser aufweist, der größer als der Durchmesser des unteren Endes ist, und wobei der Destillationsturm eine Vielzahl von horizontalen Böden aufweist, um eine Dampf-Flüssigkeit-Grenzfläche zwischen einem Dampf und einem Kondensat bereitzustellen, einen Rückschlagkondensator, der über dem Des- tillationsturmangeordnet ist, inFluidverbindung mit dem oberen Ende des Destillationsturms steht unddie senkrechte Achse mit dem Destillationsturm teilt, umfasst, und ein Reboiler unter dem Destillationsturm angeordnet ist und in 10 Fluidverbindung mit dem unteren Ende des Destillationsturms steht, wobei der Rückschlagkondensator, der Reboiler und die Dampfzufuhr zu dem Destillationsturm elektronisch mit einer Flusssteuerungsvorrichtung zum Steuern der Rate des Einführens des Dampfs in das Destillationssystem gekoppelt sind und das Verfahren ferner den Schritt des Steuerns der Rate des Einführens des Dampfs in das Destillationssystem über die Dampfzufuhr als Funktion der Menge an Kondensat, die aus dem Rückschlagkondensator in das obere Ende des Destillationsturms fließt, 15 und als Funktion der Menge an Dampf, die an dem Reboiler gebildet wird, umfasst, wobei das Verfahren folgende Schritte umfasst:

A. Einführen der Chlorzufuhr in den Verdampfer; B. Erhitzen der Chlorzufuhr auf eine Temperatur von 50 °C bis 120 °C in dem Verdampfer, um den Dampf zu 20 bilden; C. Einführen des Dampfs in das Destillationssystem, um gereinigtes Chlorgas, ein Destillat, das das flüssige Chlor und die Bromkomponente umfasst, und eine Bodenkomponente, die Stickstofftrichlorid enthält, so zu erhalten, dass die Rate des Einführens des Dampfs in das Destillationssystem als Funktion der Menge an Kondensat, die an dem Rückschlagkondensator gebildet wird, und als Funktion der Menge an Dampf, die an 25 dem Reboiler gebildet wird, gesteuert wird; D. Kondensieren des Dampfs in dem Rückflusskondensator, um das Kondensat zu bilden, das aus dem Rück- flusskondensator in das obere Ende des Destillationsturms fließt, so dass das Kondensat mit dem Dampf an der Dampf-Flüssigkeit-Kontaktvorrichtung wechselwirkt, um so das gereinigte Chlorgas und das Destillat zu bilden; 30 E. Erhitzen des Kondensats in dem Reboiler auf eine Temperatur von 90 °C bis 110 °C; und F. gleichzeitiges Entnehmen des gereinigten Chlorgases und des Destillats aus dem Destillationssystem.

22. Verfahren gemäß Anspruch 21, ferner umfassend den Schritt des Umsetzens des Destillats mit einem Reaktions- mittel, um Salze zu bilden. 35 23. Verfahren gemäß Anspruch 22, wobei der Schritt des Umsetzens des Destillats mit dem Reduktionsmittel ferner als Umsetzen des Destillats mit dem Reduktionsmittel in Gegenwart eines Reduktionskatalysators definiert ist und wobei das Reduktionsmittel ausgewählt ist aus der Gruppe von Metallhydroxiden, Metallsulfiten und Kombinationen davon und der Reduktionskatalysator ein Metall ist. 40 24. Verfahren zum Herstellen von Phosgen, umfassend den Schritt des Umsetzens von Kohlenmonoxid und des durch das Verfahren gemäß Anspruch 22 erhaltenen gereinigten Chlorgases.

25. Destillationssystem zum Reinigen einer Chlorzufuhr, die eine Chlorkomponente, eine Bromkomponente und Stick- 45 stofftrichlorid FI umfasst, wobei das Destillationssystem das Bilden von gereinigtem Chlorgas umfasst, das weniger als 20 Ge- wichtsteile an der Bromkomponente pro einer Million Gewichtsteile des gereinigten Chlorgases aufweist, und Bilden eines Destillats, das flüssiges Chlor und die Bromkomponente umfasst, wobei das System umfasst:

50 A. einen Destillationsturm, der ein oberes Ende, ein unteres Ende und eine senkrechte Achse, die durch das obere und das untere Ende verläuft, aufweist, wobei das obere Ende einen Durchmesser aufweist, der größer als der Durchmesser des unteren Endes ist, und wobei der Destillationsturm eine Vielzahl von horizontalen Böden aufweist, um eine Dampf-Flüssigkeit-Grenzfläche zwischen einem Dampf und einem Kondensat bereit- zustellen, 55 B. einen Rückflusskondensator, der über dem Destillationsturm angeordnet ist, in Fluidverbindung mit dem oberen Ende des Destillationsturms steht und die senkrechte Achse mit dem Destillationsturm teilt, C. einen Reboiler, der unter dem Destillationsturm angeordnet ist und in Fluidverbindung mit dem unteren Ende des Destillationsturms steht, wobei der Rückflusskondensator, der Reboiler und die Dampfzufuhr zu dem De-

18 EP 2 499 090 B1

stillationsturm elektronisch mit einer Flusssteuerungsvorrichtung zum Steuern der Rate des Einführens des Dampfs in das Destillationssystem über die Dampfzufuhr als Funktion der Menge an Kondensat, die aus dem Rückflusskondensator in das obere Ende des Destillationsturms fließt, und als Funktion der Menge an Dampf, die an dem Reboiler gebildet wird, gekoppelt sind, und 5 D. einen Verdampfer, der über die Dampfzufuhr in Fluidverbindung mit dem Destillationsturm steht und die Chlorzufuhr auf eine Temperatur von 50 °C bis 120 °C erhitzt, um den Dampf zu bilden.

26. Destillationsturm gemäß Anspruch 25, wobei der Rückflusskondensator ferner als Rückschlagkondensator definiert ist. 10 27. Destillationssystem gemäß Anspruch 25, wobei das Verhältnis der Durchmesser des oberen und des unteren Endes des Destillationsturms von 2:1 bis 8:1 beträgt.

28. Destillationssystem gemäß Anspruch 25, ferner umfassend einen Neutralisationsturm, der in Fluidverbindung mit 15 dem Destillationsturm steht, zum Neutralisieren des Destillats.

29. Destillationssystem gemäß Anspruch 28, wobei der Neutralisationsturm ein Reduktionsmittel ausgewählt aus der Gruppe von Metallhydroxiden, Metallsulfiten und Kombinationen davon und einen Metall-Reduktionskatalysator zum Neutralisieren des flüssigen Chlors, des molekularen Broms und des Brommonochlorids enthält. 20 30. Destillationssystem gemäß Anspruch 25, das in Fluidverbindung mit einem Phosgenreaktor zum Umsetzen des gereinigten Chlorgases mit Kohlenmonoxid zum Herstellen von Phosgen steht.

31. Verfahren zum Steuern eines Dampfflusses von einem Verdampfer zu einem Destillationssystem gemäß Anspruch 25 25 umfassend einen Destillationsturm, der ein oberes Ende, ein unteres Ende und eine Dampf-Flüssigkeits-Kon- taktvorrichtung aufweist, einen Rückflusskondensator, der über dem Destillationsturm angeordnet ist und in Fluid- verbindung mit dem oberen Ende des Destillationsturms steht, um den Dampf zu einem Kondensat zu kondensieren, so dass das Kondensat in das obere Ende des Destillationsturms fließt, einen Reboiler, der unter dem Destillati- onsturm angeordnet ist und in Fluidverbindung mit dem unteren Ende des Destillationsturms steht, um das Kondensat 30 zu erhitzen, wobei der Rückflusskondensator, der Reboiler und die Dampfzufuhr zu dem Destillationsturm elektro- nisch mit einer Flusssteuerungsvorrichtung zum Steuern der Rate des Einführens des Dampfs in das Destillations- system gekoppelt sind, und einen Verdampfer, der über die Dampfzufuhr in Fluidverbindung mit dem Destillations- turm steht und der die Chlorzufuhr auf eine Temperatur von 50 °C bis 120 °C erhitzt, um den Dampf zu bilden, wobei das Verfahren folgende Schritte umfasst: 35 A. Einführen des Dampfs in den Destillationsturm; B. Kondensieren des Dampfs in dem Rückflusskondensator, um das Kondensat zu bilden; C. Erhitzen des Kondensats in dem Reboiler; und D. Steuern der Rate des Einführens des Dampfs in den Destillationsturm mit der Flusssteuerungsvorrichtung 40 als Funktion der Menge an Kondensat, die aus dem Rückflusskondensator in das obere Ende des Destillati- onsturms fließt, und als Funktion der Menge an Dampf, die an dem Reboiler gebildet wird, um den Aufbau des Kondensats in dem Destillationsturm zu minimieren.

32. Verfahren gemäß Anspruch 31, wobei der Destillationsturm eine senkrechte Achse aufweist, die durch das obere 45 und das untere Ende verläuft, und eine waagrechte Achse, die zwischen dem oberen und dem unteren Ende verläuft, wobei das obere Ende einen Durchmesser aufweist, der größer als der Durchmesser des unteren Endes ist, und wobei die Dampf-Flüssigkeits-Kontaktvorrichtung ferner als Vielzahl von waagrechten Böden definiert ist, um eine Dampf-Flüssigkeit-Grenzfläche zwischen dem Dampf und dem Kondensat bereitzustellen.

50 33. Verfahren gemäß Anspruch 31, wobei das obere Ende des Destillationsturms einen Durchmesser aufweist, der größer als oder gleich 0,5 Meter ist, und das untere Ende des Dest illationsturms einen Durchmesser aufweist, der kleiner als 0,5 Meter ist.

34. Verfahren gemäß Anspruch 31, wobei der Rückflusskondensator ferner als Rückschlagkondensator definiert ist. 55 35. Verfahren gemäß Anspruch 31, wobei das Destillationssystem ferner einen Neutralisationsturm umfasst, der mit dem Destillationsturm in Fluidverbindung steht.

19 EP 2 499 090 B1

36. Verfahren gemäß Anspruch 31, wobei der Dampf eine Chlorkomponente, eine Bromkomponente und Stickstofftri- chlorid umfasst und das Verfahren ferner den Schritt des Bildens eines gereinigten Chlorgases, das das weniger als 20 Gewichtsteile an der Bromkomponente pro einer Million Gewichtsteile des gereinigten Chlorgases aufweist, und Bilden eines Destillats, das flüssiges Chlor und die Bromkomponente umfasst, umfasst. 5 37. Verfahren gemäß Anspruch 36, wobei die Bromkomponente molekulares Brom und Brommonochlorid umfasst.

38. Verfahren gemäß Anspruch 37, wobei der Dampf ferner Wasser und Tetrachlorkohlenstoff umfasst.

10 39. Verfahren gemäß Anspruch 38, wobei der Dampf im Wesentlichen aus der Chlorkomponente, dem molekularen Brom, dem Brommonochlorid, dem Stickstofftrichlorid, dem Wasser und dem Tetrachlorkohlenstoff besteht.

40. Verfahren gemäß Anspruch 37, wobei das Destillationssystem ferner einen Neutralisationsturm umfasst, der mit dem Destillationsturm in Fluidverbindung steht und ein Reduktionsmittel ausgewählt aus der Gruppe von Metallhy- 15 droxiden,Metallsulfiten und Kombinationen davon und einen Reduktionskatalysator zum Neutralisieren des flüssigen Chlors, des molekularen Broms und des Brommonochlorids enthält.

41. Verfahren gemäß Anspruch 36, ferner umfassend den Schritt des Entnehmens des gereinigten Chlorgases und den Schritt des gleichzeitigen Entnehmens des Destillats. 20 42. Verfahren gemäß Anspruch 36, wobei das Destillationssystem in Fluidverbindung mit einem Phosgenreaktor zum Umsetzen von Kohlenmonoxid mit dem gereinigten Chlorgas steht und wobei das Verfahren ferner den Schritt des Umsetzens des Kohlenmonoxids mit dem gereinigten Chlorgas zum Erzeugen von Phosgen umfasst.

25 Revendications

1. Procédé de purification d’une charge de chlore comprenant un composant de chlore, un composant de brome et du trichlorure d’azote dans un système de distillation pour former du chlore gazeux purifié ayant moins de 20 parties 30 en poids du composant de brome par million de parties en poids du chlore gazeux purifié et pour former un distillat comprenant du chlore liquide et le composant de brome, le système de distillation étant relié de façon fluidique à un vaporiseur et comprenant une tour de distillation qui a une extrémité supérieure et une extrémité inférieure, un axe vertical s’étendant à travers les extrémités supérieure et inférieure, et un dispositif de contact vapeur-liquide servant à fournir une interface vapeur-liquide entre une vapeur et un condensat, un condenseur à reflux qui est en 35 communication fluidique avec l’extrémité supérieure de la tour de distillation, disposé au-dessus de la tour de distillation, et qui partage l’axe vertical avec la tour de distillation, et le système de distillation comprenant également un rebouilleur disposé au-dessous de la tour de distillation et en communication fluidique avec l’extrémité inférieure de la tour de distillation, ledit procédé comprenant les étapes consistant à :

40 A. introduire la charge de chlore dans le vaporiseur ; B. chauffer la charge de chlore jusqu’à une température de 50 °C à 120 °C dans le vaporiseur pour former la vapeur ; C. introduirela vapeur dans le systèmede distillation pourobtenir du chlore gazeuxpurifié, undistillat comprenant le chlore liquide et le composant de brome, et un composant de queue comportant du trichlorure d’azote ; 45 D. condenser la vapeur dans le condenseur à reflux pour former le condensat qui s’écoule depuis le condenseur à reflux dans l’extrémité supérieure de la tour de distillation de telle sorte que le condensat interagit avec la vapeur au niveau du dispositif de contact vapeur-liquide, formant ainsi le chlore gazeux purifié et le distillat ; E. chauffer le condensat dans le rebouilleur ; F. retirer le chlore gazeux purifié du système de distillation ; et 50 G. retirer le distillat du système de dist illation.

2. Procédé selon la revendication 1 dans lequel la charge de chlore comprend également de l’eau et du tétrachlorure de carbone.

55 3. Procédé selon la revendication 2 dans lequel le composant de chlore comprend du chlore moléculaire liquide et du chlore moléculaire gazeux.

4. Procédé selon la revendication 1 dans lequel le composant de brome comprend du brome moléculaire et du mo-

20 EP 2 499 090 B1

nochlorure de brome.

5. Procédé selon la revendication 1 dans lequel la charge de chlore est essentiellement constituée par le composant de chlore, le composant de brome, le trichlorure d’azote, de l’eau et du tétrachlorure de carbone, le composant de 5 chlore comprenant du chlore moléculaire liquide et du chlore moléculaire gazeux, et le composant de brome com- prenant du brome moléculaire et du monochlorure de brome.

6. Procédé selon la revendication 1 dans lequel le condenseur à reflux est en outre défini comme un condenseur à refoulement. 10 7. Procédé selon la revendication 1 dans lequel l’extrémité supérieure de la tour de distillation définit un premier orifice destiné à retirer le chlore gazeux purifié et l’extrémité inférieure de la tour de distillation définit un deuxième orifice destiné à retirer le distillat, dans lequel l’étape de retrait du chlore gazeux purifié est en outre définie comme le retrait du chlore gazeux purifié depuis l’extrémité supérieure de la tour de distillation par le premier orifice, et dans 15 lequel l’étape de retrait du distillat est en outre définie comme le retrait du distillat depuis l’extrémité inférieure de la tour de distillation par le deuxième orifice.

8. Procédé selon la revendication 7 comprenant également l’étape de neutralisation du chlore liquide et du composant de brome. 20 9. Procédé selon la revendication 8 dans lequel l’étape de neutralisation est en outre définie comme la réaction du chlore liquide et du composant de brome avec un réducteur en présence d’un catalyseur de réduction pour former des sels.

25 10. Procédé selon la revendication 9 dans lequel le réducteur est choisi dans le groupe constitué par les hydroxydes métalliques, les sulfites métalliques et les combinaisons de ceux-ci, et le catalyseur de réduction est un métal.

11. Procédé selon la revendication 10 dans lequel le réducteur comprend de l’hydroxyde de sodium et du bisulfite de sodium. 30 12. Procédé selon la revendication 1 dans lequel l’étape de retrait du chlore gazeux purifié et l’étape de retrait du distillat se produisent simultanément.

13. Procédé selon la revendication 1 dans lequel le dispositif de contact vapeur-liquide est en outre défini comme une 35 pluralité de plateaux horizontaux.

14. Procédé selon la revendication 1 dans lequel le dispositif de contact vapeur-liquide est en outre défini comme un garnissage structuré.

40 15. Procédé selon la revendication 1 dans lequel la tour de distillation est cylindrique et l’extrémité supérieure de la tour de distillation a un diamètre plus grand que le diamètre de l’extrémité inférieure de la tour de distillation pour minimiser la quantité du chlore liquide et du trichlorure d’azote présents dans le fond de la tour de distillation.

16. Procédé selon la revendication 15 dans lequel le rapport des diamètres des extrémités supérieure et inférieure de 45 la tour de distillation est de 2:1 à 8:1.

17. Procédé selon la revendication 1 dans lequel l’étape de chauffage du condensat dans le rebouilleur est en outre définie comme un chauffage jusqu’à une température de 90 °C à 110 °C.

50 18. Procédé selon la revendication 1 dans lequel le condenseur à reflux, le rebouilleur et une entrée de vapeur de la tour de distillation sont couplés électroniquement à un dispositif de régulation de débit servant à réguler la vitesse d’introduction de la vapeur dans le système de distillation, et le procédé comprenant également l’étape de régulation de la vitesse d’introduction de la vapeur dans le système de distillation par l’entrée de vapeur en fonction de la quantité de condensat qui s’écoule depuis le condenseur à reflux dans l’extrémité supérieure de la tour de distillation 55 et en fonction de la quantité de vapeur formée depuis le rebouilleur.

19. Procédé de formation de phosgène comprenant l’étape consistant à faire réagir du monoxyde de carbone et du chlore gazeux purifié obtenu par le procédé selon la revendication 1, dans lequel le système de distillation est en

21 EP 2 499 090 B1

communication fluidique avec un réacteur de phosgène.

20. Procédé de formation d’un isocyanate comprenant le produit de réaction d’une amine et du phosgène formé par le procédé selon la revendication 19. 5 21. Procédé selon la revendication 1 destiné à purifier une charge de chlore essentiellement constituée par un composant de chlore comprenant du chlore moléculaire, un composant de brome comprenant du brome moléculaire et du monochlorure de brome, du trichlorure d’azote, de l’eau et du tétrachlorure de carbone dans un système de distillation pour former du chlore gazeux purifié ayant moins de 20 parties en poids du composant de brome par million de 10 parties en poids du chlore gazeux purifié et pour former un distillat comprenant du chlore liquide et le composant de brome, le système de distillation étant relié de façon fluidique à un vaporiseur et comprenant une tour de distillation qui a une extrémité supérieure, une extrémité inférieure, un axe vertical s’étendant à travers les extrémités supérieure et inférieure, l’extrémité supérieure ayant un diamètre qui est plus grand que le diamètre de l’extrémité inférieure, et la tour de distillation comprenant une pluralité de plateaux horizontaux servant à fournir une interface vapeur- 15 liquide entre une vapeur et un condensat, un condenseur à refoulement disposé au-dessus de la tour de distillation, en communication fluidique avec l’extrémité supérieure de la tour de distillation, et partageant l’axe vertical avec la tour de distillation, et un rebouilleur disposé au-dessous de la tour de distillation et en communication fluidique avec l’extrémité inférieure de la tour de distillation, le condenseur à refoulement, le rebouilleur et une entrée de vapeur de la tour de distillation étant couplés électroniquement à un dispositif de régulation de débit servant à réguler la 20 vitesse d’introduction de la vapeur dans le système de distillation, et le procédé comprenant également l’étape de régulation de la vitesse d’introduction de la vapeur dans le système de distillation par l’entrée de vapeur en fonction de la quantité de condensat qui s’écoule depuis le condenseur à refoulement dans l’extrémité supérieure de la tour de distillation et en fonction de la quantité de vapeur formée depuis le rebouilleur, ledit procédé comprenant les étapes consistant à : 25 A. introduire la charge de chlore dans le vaporiseur ; B. chauffer la charge de chlore jusqu’à une température de 50 °C à 120 °C dans le vaporiseur pour former la vapeur ; C. introduirela vapeur dans le systèmede distillation pourobtenir du chlore gazeuxpurifié, undistillat comprenant 30 le chlore liquide et le composant de brome et un composant de queue comportant du trichlorure d’azote, de telle sorte que la vitesse d’introduction de la vapeur dans le système de distillation est régulée en fonction de la quantité de condensat formé depuis le condenseur à refoulement et en fonction de la quantité de vapeur formée depuis le rebouilleur ; D. condenser la vapeur dans le condenseur à reflux pour former le condensat qui s’écoule depuis le condenseur 35 à reflux dans l’extrémité supérieure de la tour de distillation de telle sorte que le condensat interagit avec la vapeur au niveau du dispositif de contact vapeur-liquide, formant ainsi le chlore gazeux purifié et le distillat ; E. chauffer le condensat dans le rebouilleur jusqu’à une température de 90 °C à 110 °C ; et F. retirer simultanément le chlore gazeux purifié et le distillat du système de distillation.

40 22. Procédé selon la revendication 21 comprenant également l’étape consistant à faire réagir le distillat et un réducteur pour former des sels.

23. Procédé selon la revendication 22 dans lequel l’étape de réaction du distillat et du réducteur est en outre définie comme la réaction du distillat et du réducteur en présence d’un catalyseur de réduction et dans lequel le réducteur 45 est choisi dans le groupe constitué par les hydroxydes métalliques, les sulfites métalliques et les combinaisons de ceux-ci, et le catalyseur de réduction est un métal.

24. Procédé de formation de phosgène comprenant l’étape consistant à faire réagir du monoxyde de carbone et du chlore gazeux purifié obtenu par le procédé selon la revendication 22. 50 25. Système de distillation destiné à purifier une charge de chlore comprenant un composant de chlore, un composant de brome et du trichlorure d’azote, ledit système de distillation formant du chlore gazeux purifié ayant moins de 20 parties en poids dudit composant de brome par million de parties en poids dudit chlore gazeux purifié et formant un distillat comprenant du chlore liquide et ledit composant de brome, ledit système comprenant : 55 A. une tour de distillation qui a une extrémité supérieure, une extrémité inférieure, un axe vertical s’étendant à travers les extrémités supérieure et inférieure, ladite extrémité supérieure ayant un diamètre qui est plus grand que le diamètre de ladite extrémité inférieure, et ladite tour de distillation comprenant une pluralité de plateaux

22 EP 2 499 090 B1

horizontaux servant à fournir une interface vapeur-liquide entre une vapeur et un condensat, B. un condenseur à reflux disposé au-dessus de ladite tour de distillation, en communication fluidique avec ladite extrémité supérieure de ladite tour de distillation, et partageant l’axe vertical avec ladite tour de distillation, C. un rebouilleur disposé au-dessous de ladite tour de distillation et en communication fluidique avec ladite 5 extrémité inférieure de la tour de distillation, ledit condenseur à reflux, ledit rebouilleur et une entrée de vapeur de la tour de distillation étant couplés électroniquement à un dispositif de régulation de débit servant à réguler la vitesse d’introduction d’une vapeur dans le système de distillation par l’entrée de vapeur en fonction de la quantité de condensat qui s’écoule depuis ledit condenseur à reflux dans ladite extrémité supérieure de ladite tour de distillation et en fonction de la quantité de vapeur formée depuis ledit rebouilleur, et 10 D. un vaporiseur qui est relié de façon fluidique à ladite tour de distillation par le biais de ladite entrée de vapeur et qui chauffe la charge de chlore jusqu’à une température de 50 °C à 120 °C pour former la vapeur.

26. Tour de distillation selon la revendication 25 dans laquelle ledit condenseur à reflux est en outre défini comme un condenseur à refoulement. 15 27. Système de distillation selon la revendication 25 dans lequel le rapport des diamètres desdites extrémités supérieure et inférieure de ladite tour de distillation est de 2:1 à 8:1.

28. Système de distillation selon la revendication 25 comprenant également une tour de neutralisation qui est reliée de 20 façon fluidique à ladite tour de distillation pour neutraliser ledit distillat.

29. Système de distillation selon la revendication 28 dans lequel ladite tour de neutralisation contient un réducteur choisi dans le groupe constitué par les hydroxydes métalliques, les sulfites métalliques et les combinaisons de ceux-ci et un catalyseur de réduction métallique pour neutraliser ledit chlore liquide, ledit brome moléculaire et ledit mono- 25 chlorure de brome.

30. Système de distillation selon la revendication 25 qui est en communication fluidique avec un réacteur de phosgène pour faire réagir ledit chlore gazeux purifié et du monoxyde de carbone pour former du phosgène.

30 31. Procédé de régulation d’un débit de vapeur allant d’un vaporiseur à un système de distillation selon la revendication 25 comprenant une tour de distillation qui a une extrémité supérieure, une extrémité inférieure et un dispositif de contact vapeur-liquide, un condenseur à reflux disposé au-dessus de la tour de distillation et en communication fluidique avec l’extrémité supérieure de la tour de distillation pour condenser la vapeur en condensat de telle sorte que le condensat s’écoule dans l’extrémité supérieure de la tour de distillation, un rebouilleur disposé au-dessous 35 de la tour de distillation et en communication fluidique avec l’extrémité inférieure de la tour de distillation pour chauffer le condensat, le condenseur à reflux, le rebouilleur et une entrée de vapeur de la tour de distillation étant couplés électroniquement à un dispositif de régulation de débit servant à réguler la vitesse d’introduction de la vapeur dans le système de distillation, et un vaporiseur qui est relié de façon fluidique à la tour de distillation par le biais de l’entrée de vapeur et qui chauffe la charge de chlore jusqu’à une température de 50 °C à 120 °C pour former la 40 vapeur, ledit procédé comprenant les étapes consistant à :

A. introduire la vapeur dans la tour de distillation ; B. condenser la vapeur dans le condenseur à reflux pour former le condensat ; C. chauffer le condensat dans le rebouilleur ; et 45 D. réguler la vitesse d’introduction de la vapeur dans la tour de distillation avec le dispositif de régulation de débit en fonction de la quantité de condensat qui s’écoule depuis le condenseur à reflux dans l’extrémité supérieure de la tour de distillation et en fonction de la quantité de vapeur formée depuis le rebouilleur pour minimiser une accumulation du condensat dans la tour de distillation.

50 32. Procédé selon la revendication 31 dans lequel la tour de distillation a un axe vertical s’étendant à travers les extrémités supérieure et inférieure et un axe horizontal s’étendant entre les extrémités supérieure et inférieure, dans lequel l’extrémité supérieure a un diamètre qui est plus grand que le diamètre de l’extrémité inférieure, et dans lequel le dispositif de contact vapeur-liquide est en outre défini comme une pluralité de plateaux horizontaux servant à fournir une interface vapeur-liquide entre la vapeur et le condensat. 55 33. Procédé selon la revendication 31 dans lequel l’extrémité supérieure de la tour de distillation a un diamètre supérieur ou égal à 0,5 mètre et l’extrémité inférieure de la tour de distillation a un diamètre inférieur à 0,5 mètre.

23 EP 2 499 090 B1

34. Procédé selon la revendication 31 dans lequel le condenseur à reflux est en outre défini comme un condenseur à refoulement.

35. Procédé selon la revendication 31 dans lequel le système de distillation comprend également une tour de neutra- 5 lisation reliée de façon fluidique à la tour de distillation.

36. Procédé selon la revendication 31 dans lequel la vapeur comprend un composant de chlore, un composant de brome et du trichlorure d’azote, et le procédé comprenant également l’étape de formation de chlore gazeux purifié ayant moins de 20 parties en poids du composant de brome par million de parties en poids du chlore gazeux purifié 10 et de formation d’un distillat comprenant du chlore liquide et le composant de brome.

37. Procédé selon la revendication 36 dans lequel le composant de brome comprend du brome moléculaire et du monochlorure de brome.

15 38. Procédé selon la revendication 37 dans lequel la vapeur comprend également de l’eau et du tétrachlorure de carbone.

39. Procédé selon la revendication 38 dans lequel la vapeur est essentiellement constituée par le composant de chlore, le brome moléculaire, le monochlorure de brome, le trichlorure d’azote, l’eau et le tétrachlorure de carbone.

20 40. Procédé selon la revendication 37 dans lequel le système de distillation comprend également une tour de neutra- lisation reliée de façon fluidique à la tour de distillation et contenant un réducteur choisi dans le groupe constitué par les hydroxydes métalliques, les sulfites métalliques et les combinaisons de ceux-ci et un catalyseur de réduction pour neutraliser le chlore liquide, le brome moléculaire et le monochlorure de brome.

25 41. Procédé selon la revendication 36 comprenant également l’étape consistant à retirer le chlore gazeux purifié et l’étape consistant à retirer simultanément le distillat.

42. Procédé selon la revendication 36 dans lequel le système de distillation est en communication fluidique avec un réacteur de phosgène pour faire réagir du monoxyde de carbone et le chlore gazeux purifié, et le procédé comprenant 30 également l’étape consistant à faire réagir le monoxyde de carbone et le chlore gazeux purifié pour former du phosgène.

35

40

45

50

55

24 EP 2 499 090 B1

25 EP 2 499 090 B1

26 EP 2 499 090 B1

27 EP 2 499 090 B1

28 EP 2 499 090 B1

29 EP 2 499 090 B1

30 EP 2 499 090 B1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 2199797 A [0009] • US 4963341 A [0054] • US 4764286 A [0054] • WO 9218235 A [0054]

Non-patent literature cited in the description

• Perry’s Chemical Engineer’s Handbook. Mc- Graw-Hill, 23 October 2007 [0055]

31