Magnetism of Carbon Nanostructures and in Situ TEM Dynamic Transformations of Carbon-Based Nanomaterials
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Predicting Experimentally Stable Allotropes: Instability of Penta-Graphene
Predicting experimentally stable allotropes: Instability of penta-graphene Christopher P. Ewelsa,1, Xavier Rocquefelteb, Harold W. Krotoc,1, Mark J. Raysond,e, Patrick R. Briddone, and Malcolm I. Heggied aInstitut des Matériaux Jean Rouxel, CNRS UMR 6502, Université de Nantes, 44322 Nantes, France; bInstitut des Sciences Chimiques de Rennes, UMR 6226 CNRS, Université de Rennes 1, 35042 Rennes, France; cDepartment of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306; dDepartment of Chemistry, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom; and eSchool of Electrical and Electronic Engineering, University of Newcastle, Newcastle upon Tyne NE1 7RU, United Kingdom Contributed by Harold W. Kroto, October 14, 2015 (sent for review September 25, 2015; reviewed by Peter John Frederick Harris and Humberto Terrones) In recent years, a plethora of theoretical carbon allotropes have been Results and Discussion proposed, none of which has been experimentally isolated. We Thermodynamic Stability: Relative Energy. The first test of any new discuss here criteria that should be met for a new phase to be poten- proposed structure is of its thermodynamic stability. Considering tially experimentally viable. We take as examples Haeckelites, 2D penta-graphene, although real phonon energies (positive eigen- 2 networks of sp -carbon–containing pentagons and heptagons, and values from the Hessian matrix) indicate that it is at least a local “penta-graphene,” consisting of a layer of pentagons constructed structural minimum (4), its formation enthalpy shows that it is a 2 3 from a mixture of sp -andsp -coordinated carbon atoms. In 2D pro- very high-energy structure. We have performed a number of calcu- jection appearing as the “Cairo pattern,” penta-graphene is elegant lations on penta-graphene and structural derivatives, using density and aesthetically pleasing. -
3 ,)! (Ŗ #(. , .#)(Ŗ1#."Ŗ , )(Ŗ ( ()-.,/ ./, -Ŗ
%FQBSUNFOUPG"QQMJFE1IZTJDT " BM #') ŗ U P % % ŗ 3,)!(ŗ " 0#& <#( #(.,.#)(ŗ1#."ŗ (ŗ ,)(ŗ 3,) ! (ŗ#(. (()-.,/./,-ŗ , . #) (ŗ1 5JNP7FIWJM»JOFO #. " ŗ ,) (ŗ(() -. ,/ . /, -ŗ 9HSTFMG*aeegjj+ 9HSTFMG*aeegjj+ *4#/ #64*/&44 *4#/ QEG &$0/0.: *44/- *44/ "35 *44/ QEG %&4*(/ "3$)*5&$563& " B "BMUP6OJWFSTJUZ M U 4DIPPMPG4DJFODF 4$*&/$& P %FQBSUNFOUPG"QQMJFE1IZTJDT 5&$)/0-0(: 6 XXXBBMUPGJ OJ W $304407&3 F S T %0$503"- J %0$503"- U %*44&35"5*0/4 Z %*44&35"5*0/4 Aalto University publication series DOCTORAL DISSERTATIONS 5/2012 Hydrogen interaction with carbon nanostructures Timo Vehviläinen Doctoral dissertation for the degree of Doctor of Science in Technology to be presented with due permission of the School of Science for public examination and debate in Auditorium K at the Aalto University School of Science (Espoo, Finland) on the 19th of January 2012 at 13 o’clock. Aalto University School of Science Department of Applied Physics Electronic Properties of Materials Supervisor Prof. Risto Nieminen Instructor Dr. Maria Ganchenkova Preliminary examiners Prof. Tapani Pakkanen, University of Eastern Finland Prof. Gotthard Seifert, Technische Universität Dresden Opponent Prof. Kim Bolton, University of Borås Aalto University publication series DOCTORAL DISSERTATIONS 5/2012 © Timo Vehviläinen ISBN 978-952-60-4469-9 (printed) ISBN 978-952-60-4470-5 (pdf) ISSN-L 1799-4934 ISSN 1799-4934 (printed) ISSN 1799-4942 (pdf) Unigrafia Oy Helsinki 2012 Finland The dissertation can be read at http://lib.tkk.fi/Diss/ Publication orders (printed -
Instability of Penta-Graphene
Predicting experimentally stable allotropes: Instability of penta-graphene Christopher P. Ewelsa,1, Xavier Rocquefelteb, Harold W. Krotoc,1, Mark J. Raysond,e, Patrick R. Briddone, and Malcolm I. Heggied aInstitut des Matériaux Jean Rouxel, CNRS UMR 6502, Université de Nantes, 44322 Nantes, France; bInstitut des Sciences Chimiques de Rennes, UMR 6226 CNRS, Université de Rennes 1, 35042 Rennes, France; cDepartment of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306; dDepartment of Chemistry, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom; and eSchool of Electrical and Electronic Engineering, University of Newcastle, Newcastle upon Tyne NE1 7RU, United Kingdom Contributed by Harold W. Kroto, October 14, 2015 (sent for review September 25, 2015; reviewed by Peter John Frederick Harris and Humberto Terrones) In recent years, a plethora of theoretical carbon allotropes have been Results and Discussion proposed, none of which has been experimentally isolated. We Thermodynamic Stability: Relative Energy. The first test of any new discuss here criteria that should be met for a new phase to be poten- proposed structure is of its thermodynamic stability. Considering tially experimentally viable. We take as examples Haeckelites, 2D penta-graphene, although real phonon energies (positive eigen- 2 networks of sp -carbon–containing pentagons and heptagons, and values from the Hessian matrix) indicate that it is at least a local “penta-graphene,” consisting of a layer of pentagons constructed structural minimum (4), its formation enthalpy shows that it is a 2 3 from a mixture of sp -andsp -coordinated carbon atoms. In 2D pro- very high-energy structure. We have performed a number of calcu- jection appearing as the “Cairo pattern,” penta-graphene is elegant lations on penta-graphene and structural derivatives, using density and aesthetically pleasing. -
Nanomaterials Introduction Nanomaterials•Top-Down Science •Bottom-Up Science
nanomaterials introduction Nanomaterials•Top-down Science •Bottom-up Science What are nanomaterials? Nanomaterials are materials are materials possessing grain sizes on the order of a billionth of a meter.(10 -9 M) A material in which at least one side is between 1 and 1000 nm. Nanomaterial research literally exploded in mid -1980’s Some slides by Maya Bhatt history • Big bang • Fires • 1950- fused silica • Why such a buzz word today? Examples • Several biological materials are nanomaterials- bone, hair, wing scales on a butterfly etc. • Viruses are nanomaterials • Clays • Pigments • Volcanic ash Engineered nanomaterials (ENM or EN) Materials manufactured for their properties • Sunscreens • Paints • Cosmetics • Fillers • Catalysts INCIDENTAL: ultrafine airborne particles NATURAL • Conventional materials have grain size anywhere from 100 µm to 1mm and more • Particles with size between 1-100(0) nm are normally regarded as Nanomaterials • The average size of an atom is in the order of 1-2 Angstroms in radius. • 1 nanometer =10 Angstroms • 1 nm there may be 3-5 atoms Two principal factors cause the properties of nanomaterials to differ significantly from Bulk materials: • Increased relative surface area: a greater amount of the material comes into contact with surrounding materials and increases reactivity • Quantum effects. These factors can change or enhance properties such as reactivity, strength and electrical characteristics. Surface Effects • As a particle decreases in size, a greater proportion of atoms are found at the surface compared to those inside. For example, a particle of • Size-30 nm-> 5% of its atoms on its surface • Size-10 nm->20% of its atoms on its surface • Size-3 nm-> 50% of its atoms on its surface • Nanoparticals are more reactive than large particles (Catalyst) Quantum Effects Quantum confinement The quantum confinement effect can be observed once the diameter of the particle is of the same magnitude as the wavelength of the electron Wave function. -
NOTICE: This Is the Author's Version of a Work That Was Accepted For
NOTICE: this is the author’s version of a work that was accepted for publication in Carbon. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Carbon [VOL 50, ISSUE 3, March 2012] DOI 10.1016/j.carbon.2011.11.002 GUEST EDITORIAL Nomenclature of sp2 carbon nanoforms Carbon’s versatile bonding has resulted in the discovery of a bewildering variety of nanoforms which urgently need a systematic and standard nomenclature [1]. Besides fullerenes, nanotubes and graphene, research teams around the globe now produce a plethora of carbon-based nanoforms such as ‘bamboo’ tubes, ‘herringbone’ and ‘bell’ structures. Each discovery duly gains a new, sometimes whimsical, name, often with its discoverer unaware that the same nanoform has already been reported several times but with different names (for example the nanoform in Figure 1i is in different publications referred to as ‘bamboo’ [2], ‘herringbone-bamboo’ [3], ‘stacked-cups’ [4] and ‘stacked-cones’ [5]). In addition, a single name is often used to refer to completely different carbon nanoforms (for example, the ‘bamboo’ structure in [2] is notably different from ‘bamboo’ in Ref [6]). The result is a confusing overabundance of names which makes literature searches and an objective comparison of results extremely difficult, if not impossible. There have been several attempts to bring order to the chaos of carbon nomenclature. An IUPAC subcommittee on carbon terminology and characterization that ran until 1991 produced a glossary of 114 terms for carbon materials. -
Advanced Current Collectors with Carbon Nanofoams for Electrochemically Stable Lithium—Sulfur Cells
nanomaterials Article Advanced Current Collectors with Carbon Nanofoams for Electrochemically Stable Lithium—Sulfur Cells Shu-Yu Chen 1 and Sheng-Heng Chung 1,2,* 1 Department of Materials Science and Engineering, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan; [email protected] 2 Hierarchical Green-Energy Materials Research Center, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan * Correspondence: [email protected] Abstract: An inexpensive sulfur cathode with the highest possible charge storage capacity is attractive for the design of lithium-ion batteries with a high energy density and low cost. To promote existing lithium–sulfur battery technologies in the current energy storage market, it is critical to increase the electrochemical stability of the conversion-type sulfur cathode. Here, we present the adoption of a carbon nanofoam as an advanced current collector for the lithium–sulfur battery cathode. The carbon nanofoam has a conductive and tortuous network, which improves the conductivity of the sulfur cathode and reduces the loss of active material. The carbon nanofoam cathode thus enables the development of a high-loading sulfur cathode (4.8 mg cm−2) with a high discharge capacity that approaches 500 mA·h g−1 at the C/10 rate and an excellent cycle stability that achieves 90% capacity retention over 100 cycles. After adopting such an optimal cathode configuration, we superficially coat the carbon nanofoam with graphene and molybdenum disulfide (MoS2) to amplify the fast charge transfer and strong polysulfide-trapping capabilities, respectively. The highest charge storage −1 Citation: Chen, S.-Y.; Chung, S.-H. -
Symposium GG: 2004 MRS Fall Meeting (PDF)
SYMPOSIUM GG Mesoscale Architectures from Nano-Units-Assembly, Fabrication, and Properties November 29 - December 2, 2004 Chairs G. Ramanath Paul V. Braun Dept. of Materials Science & Engineering Dept. of Materials Science & Engineering Rensselaer Polytechnic Institute Univ. of Illinois, Urbana-Champaign 110 Eighth St. 1304 W. Green St. Troy, NY 12180-3590 Urbana, IL 61801 518-276-6844 217-244-7293 Mauricio Terrones Advanced Materials Dept IPICyT Camino ala Presa San Jose 2055 Lomas 4a seccion San Luis Potosi, SLP, 78216 Mexico 52-444-834-2039 Symposium Support Army Research Office Mexican Society of Nanoscience and Nanotechnology * Invited paper 783 SESSION GGl: Nanotemplating for Meso-scale mesoporous hollow spheres while permitting the passage of smaller Assembly I molecules will be described. Chairs: Yunfeng Lu and G. Ramanath Monday Morning, November 29, 2004 9:30 AM GG1.4 Room 311 (Hynes) Fabrication of Asymmetrically Coated Colloid Particles by Microcontact Printing Techniques. Olivier J. Cayre, Dpt of 8:30 AM *GG1.1 chemistry, University of Hull, HULL, United Kingdom. Adding a New Dimension in Nanoscale Materials: Metal Nanoparticles with Phase Separated Ligand Shells. We developed a novel method for preparation of asymmetrically Francesco Stellacci, Department of Materials Science and Engineering, coated colloid parti-cles by using a microcontact printing technique. MIT, Cambridge, Massachusetts. Films of water-insoluble ionic surfactants deposited on PDMS stamps were printed onto latex particle monolayers of opposite surface charge Ligand coated metal nanoparticles are promising nanosize materials in order to produce spherical latex particles of dipolar surface charge for novel electronic and optical devices. Their main strength is in the distribution. -
Nanomaterials •Top-Down Science •Bottom-Up Science
Nanomaterials •Top-down Science •Bottom-up Science What are nanomaterials? Nanomaterials-9 are materials are materials possessing grain sizes on the order of a billionth of a meter.(10Nanomaterial research M) literally exploded in mid -1980’s Typical size of small particles Particle size µm Tobacco mosaic Virus Hepatitis B Virus Bacteria Pollen Nanoparticles Human Hair Soot Carbon black 0.001 0.01 0.1 1 10 100 1000 • Conventional material have grain size anywhere from 100 µm to 1mm and more • Particles with size between 1-100 nm are normally regarded as Nanomaterials • The average size of an atom is in the order of 1-2 Angstroms in radius. • 1 nanometer =10 Angstroms • 1 nm there may be 3-5 atoms • Two principal factors cause the properties of nanomaterials to differ significantly from Bulk materials: • Increased relative surface area • Quantum effects. These factors can change or enhance properties such as reactivity, strength and electrical characteristics. Surface Effects • As a particle decreases in size, a greater proportion of atoms are found at the surface compared to those inside. For example, a particle of • Size-30 nm-> 5% of its atoms on its surface • Size-10 nm->20% of its atoms on its surface • Size-3 nm-> 50% of its atoms on its surface • Nanoparticals are more reactive than large particles (Catalyst) Quantum Effects Quantum confinement The quantum confinement effect can be observed once the diameter of the particle is of the same magnitude as the wavelength of the electron Wave function. Quantum confinement is responsible for the increase of energy difference between energy states and band gap. -
Large-Scale Synthesis of Carbon Nanomaterials by Catalytic Chemical Vapor Deposition: a Review of the Effects of Synthesis Parameters and Magnetic Properties
Materials 2010, 3, 4142-4174; doi:10.3390/ma3084142 OPEN ACCESS materials ISSN 1996–1944 www.mdpi.com/journal/materials Review Large-Scale Synthesis of Carbon Nanomaterials by Catalytic Chemical Vapor Deposition: A Review of the Effects of Synthesis Parameters and Magnetic Properties Xiaosi Qi 1, Chuan Qin 1, Wei Zhong 1,*, Chaktong Au 2,*, Xiaojuan Ye 1and Youwei Du 1 1 Nanjing National Laboratory of Microstructures and Jiangsu Provincial Laboratory for NanoTechnology, Nanjing University, Nanjing 210093, China; E-Mails: [email protected] (X.S.Q.); [email protected] (C.Q.); [email protected] (X.J.Y.); [email protected] (Y.W.D.) 2 Chemistry Department, Hong Kong Baptist University, Hong Kong, China * Authors to whom correspondence should be addressed; E-Mails: [email protected] (W.Z.); [email protected] (C.T.A.); Tel.: +86-25-83621200; Fax: +86-25-83595535. Received: 26 June 2010 / Accepted: 26 July 2010 / Published: 30 July 2010 Abstract: The large-scale production of carbon nanomaterials by catalytic chemical vapor deposition is reviewed in context with their microwave absorbing ability. Factors that influence the growth as well as the magnetic properties of the carbon nanomaterials are discussed. Keywords: carbon nanomaterials; catalytic chemical vapor deposition; magnetic properties; microwave absorbing ability 1. Introduction Since the landmark paper of Ijima [1], carbon nanotubes (CNTs) have been studied widely [2-4]. The unique physical and chemical properties of CNTs suggests that the materials can potentially be utilized in areas such as field emission display [5], microelectronic devices [6-12], hydrogen storage [13] and composite material additives [14]. -
Nanowire Arrays and 3D Porous Conducting Networks for Li-Ion Battery Electrodes Written by Miao Tian Has Been Approved for the Department of Mechanical Engineering
Nanowire Arrays and 3D Porous Conducting Networks for Li-Ion Battery Electrodes by Miao Tian B.S., Xi’an Jiaotong University, China, 2007 M.S., University of Colorado at Boulder, 2010 A thesis Submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Mechanical Engineering April 2014 This thesis entitled: Nanowire Arrays and 3D Porous Conducting Networks for Li-Ion Battery Electrodes written by Miao Tian has been approved for the Department of Mechanical Engineering (Professor Ronggui Yang, Chair) (Professor Se-Hee Lee) Date The final copy of this thesis has been examined by the signatories, and we Find that both the content and the form meet acceptable presentation standards Of scholarly work in the above mentioned discipline. Abstract Tian, Miao (Ph.D., Department of Mechanical Engineering) Nanowire Electrodes and 3D Porous Conducting Networks for Li-Ion Batteries Thesis directed by Associate Professor Ronggui Yang There have been growing interests in developing high-capacity, high-power, and long-cycle- life lithium-ion (Li-ion) batteries due to the increasing power requirements of portable electronics and electrical vehicles. Various efforts have been made to utilize nano-structured electrodes since they can improve the performance of Li-ion batteries compared to bulk materials in many ways: fast electrode reaction due to the large surface area, efficient volume-change accommodation due to the small size, and fast Li-ion transport along the nanoscale gaps. Among various nanostructures, nanowire arrays present an excellent candidate for high performance lithium-ion battery electrodes, which have attracted intensive research over the past few years. -
Carbon Structures and Defect Planes in Diamond at High Pressure
PHYSICAL REVIEW B 88, 014102 (2013) Carbon structures and defect planes in diamond at high pressure Silvana Botti,1 Maximilian Amsler,2 Jose´ A. Flores-Livas,1 Paul Ceria,1 Stefan Goedecker,2 and Miguel A. L. Marques1 1Institut Lumiere` Matiere,` UMR5306, Universite´ Lyon 1-CNRS, Universite´ de Lyon, F-69622 Villeurbanne Cedex,France 2Department of Physics, Universitat¨ Basel,Klingelbergstrasse 82, 4056 Basel, Switzerland (Received 26 October 2012; published 8 July 2013) We performed a systematic structural search of high-pressure carbon allotropes for unit cells containing from 6 to 24 atoms using the minima hopping method. We discovered a series of new structures that are consistently lower in enthalpy than the ones previously reported. Most of these include (5 + 7)- or (4 + 8)-membered rings and can therefore be placed in the families proposed by H. Niu et al. [Phys. Rev. Lett. 108, 135501 (2012)]. However, we also found three more families with competitive enthalpies that contain (5 + 5 + 8)-membered rings, sp2 motives, or buckled hexagons. These structures are likely to play an important role in dislocation planes and structural defects of diamond and hexagonal diamond. DOI: 10.1103/PhysRevB.88.014102 PACS number(s): 61.66.Bi, 61.50.Ks, 62.50.−p I. INTRODUCTION (see Fig. 5), most of the proposed theoretical structures fit the experimental data equally well. Many other measurements Carbon has long since enticed the imagination of re- exist, mainly coming from Raman scattering experiments on searchers. Not only is it the key component of life, but it also samples under pressure.27 In this case the interpretation of finds numerous applications in diverse fields of technology. -
Elias Lectures Chemistry of Carbon Fullerenes Final 30Th
The inorganic chemistry of Carbon Carbon Nano tubes Graphite intercalated compounds Graphene Fullerenes In 1985, Harold Kroto (Sussex), Robert Curl and Richard Smalley, (Rice University,) discovered C 60 , and shortly thereafter came to discover the fullerenes. Kroto, Curl, and Smalley were awarded the 1996 Nobel Prize in Chemistry for their roles in the discovery of this class of H. Kroto R. Smalley molecules. C 60 and other fullerenes were later noticed occurring outside the laboratory (for example, in normal candle-soot).. Fullerenes An idea from outer space Kroto's special interest in red giant stars rich in carbon led to the discovery of the fullerenes. For years, he had had the idea that long- chained molecules of carbon could form near such giant stars. To mimic this special environment in a laboratory, Curl suggested contact with Smalley who had built an apparatus which could evaporate and analyze almost any material with a laser beam. During the crucial week in Houston in 1985 the Nobel laureates, together with their younger co- workers J. R. Heath and J. C. O'Brien, starting from graphite, managed to produce clusters of carbon consisting mainly of 60 or 70 carbon atoms. These clusters proved to be stable and more interesting than long-chained molecules of carbon. Two questions immediately arose. How are these clusters built? Does a new form of carbon exist besides the two well-known The read-out from the mass spectrometer shows forms graphite and diamond? how the peaks corresponding to C 60 and C70 become more distinct when the experimental conditions are optimized.