Robust Parameter Design and Economical Multi-Objective Optimization on Characterizing Rubber for Shoe Soles•

Total Page:16

File Type:pdf, Size:1020Kb

Robust Parameter Design and Economical Multi-Objective Optimization on Characterizing Rubber for Shoe Soles• Robust parameter design and economical multi-objective optimization on characterizing rubber for shoe soles• Armando Mares-Castro Tecnológico Nacional de México / ITS de Purísima del Rincón, Guardarrayas Purísima del Rincón, Guanajuato. México. [email protected] Received: August 3rd, 2020. Received in revised form: January 14th, 2021. Accepted: January 26th, 2021. Abstract Within Taguchi methods, robust parameter design is a widely used tool for quality improvement in processes and products. The loss function is another quality improvement technique with a focus on cost reduction. Traditional Taguchi methods focus on process improvement or optimization with a unique quality characteristic. Analytical approaches for optimizing processes with multiple quality characteristics have been presented in the literature. In this investigation, a case of analysis for two quality characteristics in rubber for shoe sole is presented. A methodology supported in robust parameter design in combined array is used in order to obtain optimal levels in the vulcanization process. Optimization techniques based on the loss function and the use of restricted nonlinear optimization with genetic algorithms are proposed. Keywords: multiobjective optimization; robust parameter design; loss function; genetic algorithms; rubber for shoe sole; vulcanization. Diseño robusto de parámetros y optimización multi-objetivo económica en la caracterización de hule para suela de calzado Resumen Dentro de los métodos Taguchi, el diseño robusto de parámetros es una herramienta ampliamente utilizada para la mejora de calidad en procesos y productos. La función de pérdida es otra técnica de mejora calidad con un enfoque en la reducción de costos. Los métodos Taguchi tradicionales se enfocan en la mejora u optimización de procesos con una característica de calidad única. En la literatura se han presentado enfoques de análisis para la optimización de procesos con múltiples características de calidad. En esta investigación de presenta un caso de análisis para dos características de calidad en el hule para suela de calzado mediante el uso del diseño robusto de parámetros en arreglo combinado, con la finalidad de obtener los niveles óptimos en el proceso de vulcanización. Se proponen técnicas de optimización basadas en la función de pérdida y el uso optimización no lineal restringida basada en algoritmos genéticos. Palabras clave: optimización multiobjetivo; diseño robusto de parámetros; función de pérdida; hule para suela de calzado; vulcanización. 1. Introduction one in which is minimized the effect of noise factors in the process. Noise is something difficult to control in the process, Quality engineering involves management in the stages of there is a need to reduce the variation in critical quality product design, manufacturing process design, manufacturing, and characteristics. customer use. Reduction of the effect of noise factors and part-by- In Taguchi's original proposal, a double experimental part variation in manufacturing should be considered within the arrangement is used. There is an arrangement for noise factors design phases. The main objective of robust parameter design called “internal arrangement” and an arrangement for noise (RPD) is obtaining the optimum levels in the control factors, factors called “external array” in which noise factors are with which the average performance of the process is integrated, these factors are expensive or difficult to control. The improved. At the same time, the variation around the mean combination of values for each factor is defined in rows and of the process is reduced [1]. The definition of robustness consists of a treatment. The experimental region is defined by indicates that the solution obtained by means of the RPD is the extreme values of the control factors under study. How to cite: Mares-Castro, A., Robust parameter design and economical multi-objective optimization on characterizing rubber for shoe soles. DYNA, 88(216), pp. 160-169, January - March, 2021 © The author; licensee Universidad Nacional de Colombia. Revista DYNA, 88(216), pp. 160-169, January - March, 2021, ISSN 0012-7353 DOI: http://doi.org/10.15446/dyna.v88n216.89676 Mares-Castro / Revista DYNA, 88(216), pp. 160-169, January - March, 2021 The RPD methodology has evolved from the advice of areas Table 1. of opportunity by several western statistical authors [2]. One of the proposals to streamline the experimental effort is based on the use of an experimental matrix in which both the control and noise ⋯ ⋯ 11 1 11 1 11 factors are integrated, called the "combined array", which can ⋯ ⋯ reduce the number of experimental runs. The use of the combined Source: ∙The authors⋯ ∙ ∙ ⋯ ∙ ∙ array allows working on the response surface scheme with 1 ⋯ 1 ⋯ 1 several designs, such as factorials, fractional factorials, Box- Behnken, Box Draper designs, among others [3]. Data generated by this experimental strategy allows the Optimization procedures for the double orthogonal array and generation of a model that is based on the control and noise the combined array are found in the literature. In these proposals, factors obtained, the expression can be represented as eq. (1): an approach based of response surface models for the mean and models for the variation (variance, standard deviation, signal to = + + + + + (1) noise ratio SNR) is managed. Among the optimization proposals ′ ′ ′ ′ 0 for the RPD is that of Kim & Lin [4] which is an approach to Where =( 1, … , ) k control factors, = ( , … , ) diffuse modeling. Kim & Cho [5] presented a proposal based on q noise factors,′ the constant. Parameter vectors, = 0 1 an RPD model that ponders the point of view of the engineer at ( , … , ), =( 1,…, ), = ( , … , , , … , ) the product design stage. Del Castillo & Montgomery [6] used and = ( ,′… , , … , ,… , ) are the second order′ the nonlinear programming problem for RPD optimization. parameter1 matrix , y ~ (0, ). We11 have1 the 1following 11 1 1 Köksoy & Doganaksoy [7] use a mean squared error (MSE) assumptions for noise factors: 2 ( ) = 0, ( ) = and reduction approach and joint optimization of the mean and ( ) = . variance. Copeland & Nelson [8] used quadratic nonlinear The expressions2 for the mean (conditional expectation) programming techniques for the direct minimization of the and variance are shown in eq. (2) and eq. (3) variance and set the target to a target value as a constraint. Lin & Tu [9] presented a definition of the MSE that allows moving a ( ) = + + (2) little away the mean of the Target value, in addition to the ′ ′ 0 minimization of the variance. This approach allows obtaining ( ) = ( + ) ( + ) + (3) better optimization solutions. All of the above methods are based ′ ′ ′ ′ 2 on the analysis of a single process response. The model in eq. (1) is fitted by the least squares’ method. In this research, a proposal of analysis for a sole vulcanizing Subsequently, eq. (2-3) are estimated according to the process is presented. The two quality characteristics are analyzed required terms. An important detail is that the model in eq. based on tests of tension and hardness in the material. The (1) must contain control x noise interactions, in order to methodology involves the use of the combined array in the determine the eq model. (3). Terms + are the partial experiment and the use of optimization techniques based on derivative with respect to of the individual′ elements and restricted nonlinear optimization by genetic algorithms. The interactions that contain in eq. (1). objective function of the optimization problem involves the use of the Taguchi loss function. In order to use an economic 2.2 Quadratic loss function approach to reduce the expected cost due to costs of non- confirming in the product. The main contribution of this work lies This model was introduced by Dr. Taguchi to provide a in the analysis of the multi-objective problem in the RPD and the monetary estimate of the loss that the manufacturer causes to use of a loss function-based scheme. Likewise, there are no customer when the performance of their product differs from the analyzes in the literature to optimize parameters of the vulcanized target value. That is, it is used in cases for quality characteristics process in rubber for shoe soles. Due to the high competitiveness of the type “Target is the best”. Let the quality characteristic and quality demands on the part of footwear users, it is important of a product and the target value for . According to the to carry out studies to establish standards for the evaluation and quadratic loss function, its equation is represented in eq. (4). improvement of quality in the materials used in the product to achieve optimal performance. The objective can be achieved by [ ] = [ ] (4) using techniques for process optimization. 2 [ ] is given by a Taylor series − expansion around = 2. Generalization and approach of the proposal neglecting the cubic terms hereafter. Constant is known as the coefficient of quality loss for the quality characteristic, 2.1 Combined array, models for mean and variance it is defined as eq. (5). Welch et al [10], presented an alternative to the double = (5) orthogonal array of Taguchi. In this strategy, the control and 0 2 noise factors are combined in a single experimental matrix. The ∆0 main advantage of this scheme is that the number of runs or In which is the cost r los to repair a product when experimental treatments is significantly reduced, remembering quality
Recommended publications
  • ESD.77 Lecture 18, Robust Design
    ESD.77 – Multidisciplinary System Design Optimization Robust Design main two-factor interactions III Run a resolution III Again, run a resolution on effects n-k on noise factors noise factors. If there is an improvement, in transmitted Change variance, retain the change one factor k b b a c a c If the response gets worse, k n k b go back to the previous state 2 a c B k 1 Stop after you’ve changed C b 2 a c every factor once A Dan Frey Associate Professor of Mechanical Engineering and Engineering Systems Research Overview Concept Outreach Design to K-12 Adaptive Experimentation and Robust Design 2 2 n x1 x2 1 2 1 2 2 INT 2 2 2 1 x 2 ME (n 2) INT erf 1 e 2 1 n 2 Pr x x 0 INT dx dx 12 1 2 12 ij 2 1 2 2 2 1 2 0 x2 (n 2) INT ME INT 2 Complex main effects Methodology Systems A B C D Validation two-factor interactions AB AC AD BC BD CD three-factor interactions ABC ABD ACD BCD ABCD four-factor interactions Outline • Introduction – History – Motivation • Recent research – Adaptive experimentation – Robust design “An experiment is simply a question put to nature … The chief requirement is simplicity: only one question should be asked at a time.” Russell, E. J., 1926, “Field experiments: How they are made and what they are,” Journal of the Ministry of Agriculture 32:989-1001. “To call in the statistician after the experiment is done may be no more than asking him to perform a post- mortem examination: he may be able to say what the experiment died of.” - Fisher, R.
    [Show full text]
  • A Fresh Look at Effect Aliasing and Interactions: Some New Wine in Old
    Annals of the Institute of Statistical Mathematics manuscript No. (will be inserted by the editor) A fresh look at effect aliasing and interactions: some new wine in old bottles C. F. Jeff Wu Received: date / Revised: date Abstract Insert your abstract here. Include keywords as needed. Keywords First keyword · Second keyword · More 1 Introduction When it is expensive or unaffordable to run a full factorial experiment, a fractional factorial design is used instead. Since there is no free lunch for getting run size economy, a price to pay for using fractional factorial design is the aliasing of effects. Effect aliasing can be handled in different ways. Background knowledge may suggest that one effect in the aliased set is insignificant, thus making the other aliased effect estimable in the analysis. Alternatively, a follow- up experiment may be conducted, specifically to de-alias the set of aliased effects. Details on these strategies can be found in design texts like Box et al. (2005) or Wu and Hamada (2009). Another problem with effect aliasing is the difficulty in interpreting the significance of aliased effects in data analysis. Ever since the pioneering work of Finney (1945) on fractional factorial designs and effect aliasing, it has been taken for granted that aliased effects can only be de-aliased by adding more runs. The main purpose of this paper is to show that, for three classes of factorial designs, there are strategies that can be used to de-alias aliased effects without the need to conduct additional runs. Each of the three cases has been studied in prior publications, but this paper is the first one to examine this class of problems with a fresh new look and in a unified framework.
    [Show full text]
  • Using Multiple Robust Parameter Design Techniques to Improve Hyperspectral Anomaly Detection Algorithm Performance
    Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 3-9-2009 Using Multiple Robust Parameter Design Techniques to Improve Hyperspectral Anomaly Detection Algorithm Performance Matthew T. Davis Follow this and additional works at: https://scholar.afit.edu/etd Part of the Other Operations Research, Systems Engineering and Industrial Engineering Commons, and the Remote Sensing Commons Recommended Citation Davis, Matthew T., "Using Multiple Robust Parameter Design Techniques to Improve Hyperspectral Anomaly Detection Algorithm Performance" (2009). Theses and Dissertations. 2506. https://scholar.afit.edu/etd/2506 This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. USING MULTIPLE ROBUST PARAMETER DESIGN TECHNIQUES TO IMPROVE HYPERSPECTRAL ANOMALY DETECTION ALGORITHM PERFORMANCE THESIS Matthew Davis, Captain, USAF AFIT/GOR/ENS/09-05 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in this thesis are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense or the United States Government. AFIT/GOR/ENS/09-05 USING MULTIPLE ROBUST PARAMETER DESIGN TECHNIQUES TO IMPROVE HYPERSPECTRAL ANOMALY DETECTION ALGORITHM PERFORMANCE THESIS Presented to the Faculty Department of Operational Sciences Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command in Partial Fulfillment of the Requirements for the Degree of Master of Science in Operations Research Matthew Davis, B.S.
    [Show full text]
  • Optimal Mixed-Level Robust Parameter Designs
    Optimal Mixed-Level Robust Parameter Designs by Jingjing Hu A Thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfilment of the requirements of the degree of Master of Science Department of Statistics University of Manitoba Winnipeg Copyright c 2015 by Jingjing Hu Abstract Fractional factorial designs have been proven useful for efficient data collection and are widely used in many areas of scientific investigation and technology. The study of these designs' structure paves a solid ground for the development of robust parameter designs. Robust parameter design is commonly used as an effective tool for variation reduction by appropriating selection of control factors to make the product less sensitive to noise factor in industrial investigation. A mixed-level robust parameter design is an experimental design whose factors have at least two different level settings. One of the most important consideration is how to select an optimal robust parameter design. However, most experimenters paid their attention on two-level robust parameter designs. It is highly desirable to develop a new method for selecting optimal mixed-level robust parameter designs. In this thesis, we propose a methodology for choosing optimal mixed-level frac- tional factorial robust parameter designs when experiments involve both qualitative factors and quantitative factors. At the beginning, a brief review of fractional facto- rial designs and two-level robust parameter designs is given to help understanding our method. The minimum aberration criterion, one of the most commonly used criterion for design selection, is introduced. We modify this criterion and develop two generalized minimum aberration criteria for selecting optimal mixed-level fractional factorial robust parameter designs.
    [Show full text]
  • Robust Product Design: a Modern View of Quality Engineering in Manufacturing Systems
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 July 2018 doi:10.20944/preprints201807.0517.v1 Robust Product Design: A Modern View of Quality Engineering in Manufacturing Systems Amir Parnianifarda1, A.S. Azfanizama, M.K.A. Ariffina, M.I.S. Ismaila a. Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. ABSTRACT: One of the main technological and economic challenges for an engineer is designing high-quality products in manufacturing processes. Most of these processes involve a large number of variables included the setting of controllable (design) and uncontrollable (noise) variables. Robust Design (RD) method uses a collection of mathematical and statistical tools to study a large number of variables in the process with a minimum value of computational cost. Robust design method tries to make high-quality products according to customers’ viewpoints with an acceptable profit margin. This paper aims to provide a brief up-to-date review of the latest development of RD method particularly applied in manufacturing systems. The basic concepts of the quality loss function, orthogonal array, and crossed array design are explained. According to robust design approach, two classifications are presented, first for different types of factors, and second for different types of data. This classification plays an important role in determining the number of necessity replications for experiments and choose the best method for analyzing data. In addition, the combination of RD method with some other optimization methods applied in designing and optimizing of processes are discussed. KEYWORDS: Robust Design, Taguchi Method, Product Design, Manufacturing Systems, Quality Engineering, Quality Loss Function.
    [Show full text]
  • Lecture 1. Overview and Basic Principles Montgomery: Chapter 1 Wu and Hamada: 1.1, 1.2 and 1.3
    Statistics 514: Overview and Fundamental Principles Lecture 1. Overview and Basic Principles Montgomery: Chapter 1 Wu and Hamada: 1.1, 1.2 and 1.3 Fall, 2005 Page 1 Statistics 514: Overview and Fundamental Principles Fall, 2005 Page 2 Statistics 514: Overview and Fundamental Principles Why Using Statistical Methods for Design and Analysis of Experiments 1. Experimental error. 2. Confusion of correlation with causation. 3. Complexity of the effects studied. Some Terminologies: Experimental factor (or variable) Factor level Treatment (setting or level combination) Unit Experimental run (trial) Experimental error Fall, 2005 Page 3 Statistics 514: Overview and Fundamental Principles Machine Tool Life Experiment An engineer is interested in the effects of cutting speed (A), tool geometry (B) and cutting angle (C) on the life (in hours) of a machine tool. Two levels of each factor are 3 chosen and three replicates of a 2 factorial design are run. The results follow. Factor Replicate A B C I II III −−− 22 31 25 + −− 32 43 29 − + − 35 34 50 ++− 55 47 46 −−+ 44 45 38 + − + 40 37 36 − ++ 60 50 54 +++ 39 41 47 Fall, 2005 Page 4 Statistics 514: Overview and Fundamental Principles A Brief History of Experimental Design 1. Agricultural Era: -Treatment Comparisons and ANOVA -R.A. Fisher, Rothamsted Agricultural Experimental Station (1930, England) -Introduced statistical experimental design and data analysis -Summarized the fundamental principles: replication, randomization, and blocking. -An influential book, The Design of Experiments Combinatorial Design Theory: R. C. Bose Fall, 2005 Page 5 Statistics 514: Overview and Fundamental Principles 2. Industrial Era: -Process modeling and optimization -Box and coworkers in chemical industries and other processing industries -Empirical modeling, response surface methodologies, central composite design Optimal designs: J.
    [Show full text]
  • Noise Factors, Dispersion Effects, and Robust Design
    Statistica Sinica 8(1998), 67-85 NOISE FACTORS, DISPERSION EFFECTS, AND ROBUST DESIGN David M. Steinberg and Dizza Bursztyn Tel-Aviv University Abstract: There has been great interest recently in the use of designed experiments to improve quality by reducing the variation of industrial products. A major stim- ulus has been Taguchi’s robust design scheme, in which experiments are used to detect factors that affect process variation. We study here one of Taguchi’s novel ideas, the use of noise factors to represent varying conditions in the manufacturing or use environment. We show that the use of noise factors can dramatically increase power for detecting factors with dispersion effects, provided the noise factors are explicitly modeled in the subsequent analysis. Key words and phrases: Interactions, off-line QC, parameter design, product array experiments, quality improvement, Taguchi methods, transmitted variation. 1. Introduction Planned experiments have become a major tool for quality improvement dur- ing the last decade, stimulated in large part by the quality engineering ideas of Genichi Taguchi (Kackar (1985), Phadke (1989), Nair (1992)). A major goal of Taguchi’s quality improvement experiments is to determine which design factors (i.e., controllable process parameters) have dispersion effects (i.e., affect variabil- ity) and thereby to find settings of the design factors that will minimize vari- ability. Robust design refers to quality engineering activities aimed at achieving that goal. One of the novel ideas in Taguchi’s work on industrial experiments is the use of noise factors, which are impossible or too expensive to control during product manufacture or use but can be set at fixed levels in an experiment and varied jointly with design factors.
    [Show full text]
  • Robust Design
    16.888 – Multidisciplinary System Design Optimization Robust Design Response Control Factor Prof. Dan Frey Mechanical Engineering and Engineering Systems Plan for the Session • Basic concepts in probability and statistics • Review design of experiments • Basics of Robust Design • Research topics – Model-based assessment of RD methods – Faster computer-based robust design – Robust invention Ball and Ramp Ball Response = Ramp the time the Funnel ball remains in the funnel Causes of experimental error = ? Probability Measure • Axioms – For any event A, P(A) t 0 – P(U)=1 – If the intersection of A and B=I, then P(A+B)=P(A)+P(B) Continuous Random Variables • Can take values anywhere within continuous ranges • Probability density function b – P a x d b f (x)dx ^`³ x a f (x) – 0 d f x (x) for all x x f – f (x)dx 1 ³ x f a b x Histograms • A graph of continuous data • Approximates a pdf in the limit of large n Histogram of Crankpin Diameters 5 Frequency 0 Diameter, Pin #1 Measures of Central Tendency • Expected value E(g(x)) g(x) f (x)dx ³ x S • Mean P= E(x) • Arithmetic average 1 n ¦ xi n i 1 Measures of Dispersion •Variance VAR(x) V 2 E((x E(x))2 ) • Standard deviation V E((x E(x))2 ) 1 n • Sample variance 2 2 S ¦(xi x) n 1 i1 • nth central moment E((x E(x))n ) th • n moment about m E((x m)n ) Sums of Random Variables • Average of the sum is the sum of the average (regardless of distribution and independence) E(x y) E(x) E( y) • Variance also sums iff independent V 2 (x y) V (x)2 V ( y)2 • This is the origin of the RSS rule – Beware of the independence restriction! Concept Test • A bracket holds a component as shown.
    [Show full text]
  • Evaluation of Compressive and Energy Adsorption Characteristics of Natural Fiber Reinforced Composites (Nfrc) C
    International Journal of Engineering and Technology Studies Vol.1, No.2, pp.24-44, June 2014 Published by British Research Institute UK (www.gbjournals.org) EVALUATION OF COMPRESSIVE AND ENERGY ADSORPTION CHARACTERISTICS OF NATURAL FIBER REINFORCED COMPOSITES (NFRC) C. E Okafor H. C. Godwin Department of Industrial/Production Engineering, Nnamdi Azikiwe University Awka, ABSTRACT: The objective of this study targets a robust design and manufacture of natural fiber reinforced composites, the methodology has focused on the effective application of engineering strategies rather than advanced statistical techniques in optimization of plantain fiber reinforced polyester composites (PFRC) variables under compressive loading. Compressive Properties of PFRC were then evaluated based on ASTM D695-96; Crashworthiness of the new material was specified as an essential guide in vehicles and aircrafts design. At the optimal design level, the total Work Done per unit volume by PFRC was evaluated as 20.3 J/m3, while Specific Energy Absorption (SEA) is 0.019 J/kg. A simpler graphical technique of Taguchi methodology was utilized to determine which factors are 4 significant and an orthogonal (2 ) experimental design applied to separate out the effect of each factor. Out of the five variables considered, the fiber material appeared to have a dominating influence on the compressive strength of PFRC followed by volume fraction of the fiber and then curing time of the composite. PFRC was found to have an optimal compressive strength of 109.062MPa. In general, the combination of Taguchi Design of Experiments (DOE) with studies on crushing energy and absorption characteristics has significantly improved the understanding of PFRC behavior under compression.
    [Show full text]
  • Analysis of Robust Parameter Designs Tak K
    Journal of Modern Applied Statistical Methods Volume 16 | Issue 1 Article 11 5-1-2017 Analysis of Robust Parameter Designs Tak K. Mak Concordia University, [email protected] Fassil Nebebe Concordia University, [email protected] Follow this and additional works at: http://digitalcommons.wayne.edu/jmasm Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the Statistical Theory Commons Recommended Citation Mak, T. K. & Nebebe, F. (2017). Analysis of robust parameter designs. Journal of Modern Applied Statistical Methods, 16(1), 179-194. doi: 10.22237/jmasm/1493597400 This Regular Article is brought to you for free and open access by the Open Access Journals at DigitalCommons@WayneState. It has been accepted for inclusion in Journal of Modern Applied Statistical Methods by an authorized editor of DigitalCommons@WayneState. Analysis of Robust Parameter Designs Cover Page Footnote This research was supported by NSERC-GRF grant (N01374) and VPRGS seed funding (VS0141) of Concordia University. This regular article is available in Journal of Modern Applied Statistical Methods: http://digitalcommons.wayne.edu/jmasm/vol16/ iss1/11 Journal of Modern Applied Statistical Methods Copyright © 2017 JMASM, Inc. May 2017, Vol. 16, No. 1, 179-194. ISSN 1538 − 9472 doi: 10.22237/jmasm/1493597400 Analysis of Robust Parameter Designs Tak K. Mak Fassil Nebebe Concordia University Concordia University Montreal, Québec Montreal, Québec The analysis of robust parameter design is discussed via a model incorporating mean- variance relationship which, when ignored as in the classical regression approach, can be problematic. The model is also capable of alleviating the difficulties of the regression approach in the search of the minimum variance occurring region.
    [Show full text]
  • Rapid and Lean Multifactorial Screening Methods for Robust Product Lifetime Improvement
    Advances in Industrial and Manufacturing Engineering 2 (2021) 100036 Contents lists available at ScienceDirect Advances in Industrial and Manufacturing Engineering journal homepage: www.journals.elsevier.com/advances-in-industrial- and-manufacturing-engineering Rapid and lean multifactorial screening methods for robust product lifetime improvement George Besseris Advanced Industrial and Manufacturing Systems, The University of West Attica and Kingston University, Greece ARTICLE INFO ABSTRACT Keywords: Reliability enhancement is indispensable in modern operations. It aims to ensure the viability of complex func- Life cycle improvement tionalities in competitive products. We propose a full-robust screening/optimization method that promotes the Robust product reliability rapid multi-factorial profiling of censored highly-fractionated lifetime datasets. The method intends to support Multifactorial product screening operational conditions that demand quick, practical and economical experimentation. The innovative part of this Censored and accelerated industrial proposal includes the robust split and quantification of structured lifetime information in terms of location and experiments Lean dispersion tendencies. To accomplish the robust data-reduction of lifetimes, maximum breakdown-point esti- Leagile mators are introduced to stabilize potential external-noise intrusions, which might be manifested as outliers or extremities. The novel solver provides resilience by robustifying the location (median) and dispersion (Rous- seeuw-Croux Qn) estimations.
    [Show full text]
  • Chapter 12 Supplemental Text Material
    Chapter 12 Supplemental Text Material S12-1. The Taguchi Approach to Robust Parameter Design Throughout this book, we have emphasized the importance of using designed experiments for product and process improvement. Today, many engineers and scientists are exposed to the principles of statistically designed experiments as part of their formal technical education. However, during the 1960-1980 time period, the principles of experimental design (and statistical methods, in general) were not as widely used as they are today In the early 1980s, Genichi Taguchi, a Japanese engineer, introduced his approach to using experimental design for 1. Designing products or processes so that they are robust to environmental conditions. 2. Designing/developing products so that they are robust to component variation. 3. Minimizing variation around a target value. Note that these are essentially the same objectives we discussed in Section 11-7.1. Taguchi has certainly defined meaningful engineering problems and the philosophy that recommends is sound. However, as noted in the textbook, he advocated some novel methods of statistical data analysis and some approaches to the design of experiments that the process of peer review revealed were unnecessarily complicated, inefficient, and sometimes ineffective. In this section, we will briefly overview Taguchi's philosophy regarding quality engineering and experimental design. We will present some examples of his approach to parameter design, and we will use these examples to highlight the problems with his technical methods. As we saw in Chapter 12 of the textbook, it is possible to combine his sound engineering concepts with more efficient and effective experimental design and analysis based on response surface methods.
    [Show full text]