Trends in Graphene Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Workshop on Computational Physics and Materials Science
Workshop on Computational Physics and Materials Science: Total Energy and Force Methods 2020 Donostia-San Sebastián, Spain January 8-10, 2020 Institutional support and funding Preface This workshop is organized within the well-established “Total Energy and Force” conference series, which is held at ICTP in Trieste every odd year, and at a different place in the world every even year. The previous most recent workshops of this series outside Trieste took place in Barcelona (2012), Lausanne (2014), Luxembourg (2016) and Cambridge (2018). The main objective of this event is to identify new developments and topics in the field of electronic-structure methods from the first-principles perspective, their diverse applications, and its mathematical foundations. As such, it provides a great opportunity to assemble a wide range of leading scientists working on different aspects of computational material science. The workshop aims to cover the following topics: • Electron-phonon • Dielectrics • 2D materials • Correlation effects • Superconductivity • Topological materials • Transport properties • Excitations Organizing committee • Aran Garcia-Lekue, DIPC • Ivo Souza, UPV/EHU • Ion Errea, UPV/EHU Scientific advisory board • O. Akin-Ojo, University of Ibadan • E. Artacho, University of Cambridge & Nanogune • W. Andreoni, Ecole Polytechnique Fédérale de Lausanne • S. Biermann, Ecole Polytechnique, Palaiseau • R. Car, Princeton University • C. Filippi, University of Twente • M. Finnis, Imperial College • R. Gebauer, International Centre for Theoretical Physics • X.-G. Gong, Fudan University • J. Ihm, Seoul National University • E. Koch, Forschungszentrum Jülich • G. Kresse, University of Vienna • R. M. Martin, Stanford University • F. Mauri, University “La Sapienza” • A. Mostofi, Imperial College London • S. Narasimhan, JNCASR Bangalore • J. B. -
Graphene and 2DM Online Conference (GO2020): Fundamental Research Insights
Fundamental Research Insights JULY 07, 2020 Aachen Graphene & 2D-Materials Center From basic research to innovation Digital Hardware ■ Electronics for neuromorphic computing ■ Sensor technology for autonomous driving and IoT ■ Optoelectronics for high speed data communication ■ Electronics for wearables and implantables AMO AMO GmbH Otto-Blumenthal-Straße 25 ■ D-52074 Aachen ■ Germany Phone +49 241 88 67-125 ■ Fax +49 241 88 67-571 [email protected] ■ www.amo.de F OREWORD On behalf of the Organising Committee we take great pleasure in welcoming you for the 1st edition of the Graphene and 2DM Online Conference (GO2020): Fundamental Research Insights. Graphene and 2D Materials have a huge potential to impact established industrial sectors, building new emerging industries and niche segments and creating economic value. The one-day Graphene and 2DM Online conference (GO2020) will present the most recent advances in fundamental research in electronics, energy storage, biohealth, composites, coatings or sensors. 11 high profile talks from worldwide most influential academia experts in the Graphene and 2DM sector will present speeches in this international event on how advanced materials will change the future of technology and impact positively our daily life. GO2020 will be a one-day online event that means to gather the key players of the Graphene and 2DM Community and related sectors. This event is launched following the success of previous Grapheneconf editions and considering that all major scientific and technological conferences are being cancelled or postponed worldwide until the end of 2020. We are indebted to the following Company for their help and financial support: AMO GmbH (Germany) We also would like to thank all the speakers and participants that join us this year. -
Electronic Structure of Graphene– and BN–Supported Phosphorene
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Electronic structure of graphene– and BN–supported phosphorene Kistanov, Andrey A.; Saadatmand, Danial; Dmitriev, Sergey V.; Zhou, Kun; Korznikova, Elena A.; Davletshin, Artur R.; Ustiuzhanina, Svetlana V. 2018 Davletshin, A. R., Ustiuzhanina, S. V., Kistanov, A. A., Saadatmand, D., Dmitriev, S. V., Zhou, K., & Korznikova, E. A. (2018). Electronic structure of graphene– and BN–supported phosphorene. Physica B: Condensed Matter, 534, 63‑67. doi:10.1016/j.physb.2018.01.039 https://hdl.handle.net/10356/90092 https://doi.org/10.1016/j.physb.2018.01.039 © 2018 Elsevier B.V. All rights reserved. This paper was published in Physica B: Condensed Matter and is made available with permission of Elsevier B.V. Downloaded on 02 Oct 2021 11:03:45 SGT Electronic structure of graphene– and BN–supported phosphorene Artur R. Davletshin1, Svetlana V. Ustiuzhanina2, *Andrey A. Kistanov2, 3 , 4, Danial Saadatmand5, Sergey V. Dmitriev2, 6, Kun Zhou3 and Elena A. Korznikova2 1Ufa State Petroleum Technological University, Ufa 450000, Russia 2Institute for Metals Superplasticity Problems, Russian Academy of Sciences, Ufa 450001, Russia 3School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore 4Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore 138632, Singapore 5Department of Physics, University of Sistan and Baluchestan, Zahedan, Iran 6National Research Tomsk State University, Tomsk 634050, Russia Abstract By using first–principles calculations, the effects of graphene and boron nitride (BN) substrates on the electronic properties of phosphorene are studied. Graphene–supported phosphorene is found to be metallic, while the BN–supported phosphorene is a semiconductor with a moderate band gap of 1.02 eV. -
Technology and Applications of 2D Materials in Micro- and Macroscale Electronics
Technology and Applications of 2D Materials in Micro- and Macroscale Electronics by Marek Hempel B.S., RWTH Aachen University (2010) M.S., RWTH Aachen University (2013) Submitted to the Department of Electrical Engineering and Computer Science in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 2020 © Massachusetts Institute of Technology 2020. All rights reserved. Author ……………………………………………………………………………………………………………………………………………………… Department of Electrical Engineering and Computer Science May 15, 2020 Certified by ………………………………………………………………………………………………………………………………………………. Tomás Palacios Professor of Electrical Engineering and Computer Science Thesis Supervisor Certified by ………………………………………………………………………………………………………………………………………………. Jing Kong Professor of Electrical Engineering and Computer Science Thesis Supervisor Accepted by ……………………………………………………………………………………………………………………………………………… Leslie A. Kolodziejski Professor of Electrical Engineering and Computer Science Chair, Department Committee on Graduate Students 1 2 Technology and Applications of 2D-Materials in Micro- and Macroscale Electronics by Marek Hempel Submitted to the Department of Electrical Engineering and Computer Science on May 15, 2020, in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Abstract: Over the past 50 years, electronics has truly revolutionized our lives. Today, many everyday objects rely on electronic circuitry from gadgets such as wireless earbuds, smartphones and -
Arxiv:1407.5880V3 [Cond-Mat.Mes-Hall] 14 Aug 2014
Oxygen defects in phosphorene A. Ziletti,1 A. Carvalho,2 D. K. Campbell,3 D. F. Coker,1, 4 and A. H. Castro Neto2, 3 1Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston Massachusetts 02215, USA 2Graphene Research Centre and Department of Physics, National University of Singapore, 117542, Singapore 3Department of Physics, Boston University, 590 Commonwealth Avenue, Boston Massachusetts 02215, USA 4Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, D-79104, Freiburg, Germany Surface reactions with oxygen are a fundamental cause of the degradation of phosphorene. Using first-principles calculations, we show that for each oxygen atom adsorbed onto phosphorene there is an energy release of about 2 eV. Although the most stable oxygen adsorbed forms are electrically inactive and lead only to minor distortions of the lattice, there are low energy metastable forms which introduce deep donor and/or acceptor levels in the gap. We also propose a mechanism for phosphorene oxidation and we suggest that dangling oxygen atoms increase the hydrophilicity of phosphorene. PACS numbers: 73.20.At,73.20.Hb Phosphorene, a single layer of black phosphorus[1, 2], phosphorene is exoenergetic and leads to the formation of has revealed extraordinary functional properties which neutral defects, as well as to metastable electrically active make it a promising material not only for exploring novel defect forms. We also discuss the conditions necessary for physical phenomena but also for practical applications. extensive oxidation and propose strategies to control it. In contrast to graphene, which is a semi-metal, phospho- Oxygen defects were modeled using first-principles cal- rene is a semiconductor with a quasiparticle band gap of 2 culations based on density functional theory (DFT), as eV. -
Call for Papers | 2022 MRS Spring Meeting
Symposium CH01: Frontiers of In Situ Materials Characterization—From New Instrumentation and Method to Imaging Aided Materials Design Advancement in synchrotron X-ray techniques, microscopy and spectroscopy has extended the characterization capability to study the structure, phonon, spin, and electromagnetic field of materials with improved temporal and spatial resolution. This symposium will cover recent advances of in situ imaging techniques and highlight progress in materials design, synthesis, and engineering in catalysts and devices aided by insights gained from the state-of-the-art real-time materials characterization. This program will bring together works with an emphasis on developing and applying new methods in X-ray or electron diffraction, scanning probe microscopy, and other techniques to in situ studies of the dynamics in materials, such as the structural and chemical evolution of energy materials and catalysts, and the electronic structure of semiconductor and functional oxides. Additionally, this symposium will focus on works in designing, synthesizing new materials and optimizing materials properties by utilizing the insights on mechanisms of materials processes at different length or time scales revealed by in situ techniques. Emerging big data analysis approaches and method development presenting opportunities to aid materials design are welcomed. Discussion on experimental strategies, data analysis, and conceptual works showcasing how new in situ tools can probe exotic and critical processes in materials, such as charge and heat transfer, bonding, transport of molecule and ions, are encouraged. The symposium will identify new directions of in situ research, facilitate the application of new techniques to in situ liquid and gas phase microscopy and spectroscopy, and bridge mechanistic study with practical synthesis and engineering for materials with a broad range of applications. -
Reconfigurable Polarizer Based on Bulk Dirac Semimetal Metasurface
crystals Article Reconfigurable Polarizer Based on Bulk Dirac Semimetal Metasurface Yannan Jiang, Jing Zhao and Jiao Wang * Guangxi Key Laboratory of Wireless Wideband Communication & Signal Processing, Guilin 541000, China; [email protected] (Y.J.); [email protected] (J.Z.) * Correspondence: [email protected] Received: 22 February 2020; Accepted: 16 March 2020; Published: 21 March 2020 Abstract: In this paper, we propose a reflective polarizer in terahertz regime, which utilizes the Bulk-Dirac-Semimetal (BDS) metasurface can be dynamically tuned in broadband. The proposed polarizer is capable of converting the linear polarized wave into the circular polarized or the cross polarized waves by adjusting the Fermi energy (EF) of the BDS. In the frequency range of 0.51 THz and 1.06 THz, the incident linear polarized wave is converted into a circular polarized wave with an axial ratio (AR) less than 3 dB when EF = 30 meV. When EF = 45 meV, the cross-polarization conversion is achieved with the polarization conversion ratio (PCR) greater than 90% in the band of 0.57 1.12 THz. Meanwhile, the conversion efficiencies for both polarization conversions are in − excess of 90%. Finally, the physical mechanism is revealed by the decomposition of two orthogonal components and the verification is presented by the interference theory. Keywords: reconfigurable polarizer; tunable metasurface; broadband; Bulk-Dirac-Semimetal 1. Introduction In recent years, terahertz (THz) technology has developed rapidly in many fields, such as sensing [1], imaging [2] and radar [3] because terahertz waves have very low photon energy, strong penetrability, and obvious characteristic absorption peaks, making terahertz technology show significant research value and great prospects in material detection, security inspection, military, and wireless communications. -
Simulating Twistronics in Acoustic Metamaterials
Simulating twistronics in acoustic metamaterials S. Minhal Gardezi,1 Harris Pirie,2 Stephen Carr,3 William Dorrell,2 and Jennifer E. Hoffman1, 2, ∗ 1School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA 2Department of Physics, Harvard University, Cambridge, MA, 02138, USA 3Brown Theoretical Physics Center and Department of Physics, Brown University, Providence, RI, 02912-1843, USA (Dated: March 24, 2021) Twisted van der Waals (vdW) heterostructures have recently emerged as a tunable platform for studying correlated electrons. However, these materials require laborious and expensive effort for both theoretical and experimental exploration. Here we numerically simulate twistronic behavior in acoustic metamaterials composed of interconnected air cavities in two stacked steel plates. Our classical analog of twisted bilayer graphene perfectly replicates the band structures of its quantum counterpart, including mode localization at a magic angle of 1:12◦. By tuning the thickness of the interlayer membrane, we reach a regime of strong interlayer tunneling where the acoustic magic angle appears as high as 6:01◦, equivalent to applying 130 GPa to twisted bilayer graphene. In this regime, the localized modes are over five times closer together than at 1:12◦, increasing the strength of any emergent non-linear acoustic couplings. INTRODUCTION cate, acoustic metamaterials have straightforward gov- erning equations, continuously tunable properties, fast 1 Van der Waals (vdW) heterostructures host a di- build times, and inexpensive characterization tools, mak- verse set of useful emergent properties that can be cus- ing them attractive testbeds to rapidly explore their tomized by varying the stacking configuration of sheets quantum counterparts. Sound waves in an acoustic meta- of two-dimensional (2D) materials, such as graphene, material can be reshaped to mimic the collective mo- other xenes, or transition-metal dichalcogenides [1{4]. -
Experimental Investigations of Contact Friction and Transport Properties of Monolayer and Bilayer Graphene
Graduate Theses, Dissertations, and Problem Reports 2021 Experimental Investigations of Contact Friction and Transport Properties of Monolayer and Bilayer Graphene Prakash Gajurel [email protected] Follow this and additional works at: https://researchrepository.wvu.edu/etd Part of the Condensed Matter Physics Commons Recommended Citation Gajurel, Prakash, "Experimental Investigations of Contact Friction and Transport Properties of Monolayer and Bilayer Graphene" (2021). Graduate Theses, Dissertations, and Problem Reports. 7994. https://researchrepository.wvu.edu/etd/7994 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Graduate Theses, Dissertations, and Problem Reports 2021 EXPERIMENTAL INVESTIGATIONS OF CONTACT FRICTION AND TRANSPORT PROPERTIES OF MONOLAYER AND BILAYER GRAPHENE Prakash Gajurel Follow this and additional works at: https://researchrepository.wvu.edu/etd Part of the Condensed Matter Physics Commons EXPERIMENTAL INVESTIGATIONS OF CONTACT FRICTION AND TRANSPORT PROPERTIES OF MONOLAYER AND BILAYER GRAPHENE Prakash Gajurel Dissertation submitted to the Eberly College of Arts and Sciences at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Physics Mikel Holcomb, Ph.D., Chair Wathiq Abdul -Razzaq, Ph.D. -
An Unexplored 2D Semiconductor with a High Hole Mobility Han Liu Purdue University, Birck Nanotechnology Center, [email protected]
Purdue University Purdue e-Pubs Birck and NCN Publications Birck Nanotechnology Center 4-2014 Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility Han Liu Purdue University, Birck Nanotechnology Center, [email protected] Adam T. Neal Purdue University, Birck Nanotechnology Center, [email protected] Zhen Zhu Michigan State University Xianfan Xu Purdue University, Birck Nanotechnology Center, [email protected] David Tomanek Michigan State University See next page for additional authors Follow this and additional works at: http://docs.lib.purdue.edu/nanopub Part of the Nanoscience and Nanotechnology Commons Liu, Han; Neal, Adam T.; Zhu, Zhen; Xu, Xianfan; Tomanek, David; Ye, Peide D.; and Luo, Zhe, "Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility" (2014). Birck and NCN Publications. Paper 1584. http://dx.doi.org/10.1021/nn501226z This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Authors Han Liu, Adam T. Neal, Zhen Zhu, Xianfan Xu, David Tomanek, Peide D. Ye, and Zhe Luo This article is available at Purdue e-Pubs: http://docs.lib.purdue.edu/nanopub/1584 ARTICLE Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility Han Liu,†,‡ Adam T. Neal,†,‡ Zhen Zhu,§ Zhe Luo,‡,^ Xianfan Xu,‡,^ David Toma´ nek,§ and Peide D. Ye†,‡,* †School of Electrical and Computer Engineering and ‡Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States, §Physics and Astronomy Department, Michigan State University, East Lansing, Michigan 48824, United States, and ^School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States ABSTRACT We introduce the 2D counterpart of layered black phosphorus, which we call phosphorene, as an unexplored p-type semiconducting material. -
Science & Technology Trends 2020-2040
Science & Technology Trends 2020-2040 Exploring the S&T Edge NATO Science & Technology Organization DISCLAIMER The research and analysis underlying this report and its conclusions were conducted by the NATO S&T Organization (STO) drawing upon the support of the Alliance’s defence S&T community, NATO Allied Command Transformation (ACT) and the NATO Communications and Information Agency (NCIA). This report does not represent the official opinion or position of NATO or individual governments, but provides considered advice to NATO and Nations’ leadership on significant S&T issues. D.F. Reding J. Eaton NATO Science & Technology Organization Office of the Chief Scientist NATO Headquarters B-1110 Brussels Belgium http:\www.sto.nato.int Distributed free of charge for informational purposes; hard copies may be obtained on request, subject to availability from the NATO Office of the Chief Scientist. The sale and reproduction of this report for commercial purposes is prohibited. Extracts may be used for bona fide educational and informational purposes subject to attribution to the NATO S&T Organization. Unless otherwise credited all non-original graphics are used under Creative Commons licensing (for original sources see https://commons.wikimedia.org and https://www.pxfuel.com/). All icon-based graphics are derived from Microsoft® Office and are used royalty-free. Copyright © NATO Science & Technology Organization, 2020 First published, March 2020 Foreword As the world Science & Tech- changes, so does nology Trends: our Alliance. 2020-2040 pro- NATO adapts. vides an assess- We continue to ment of the im- work together as pact of S&T ad- a community of vances over the like-minded na- next 20 years tions, seeking to on the Alliance. -
Modulation of Phosphorene for Optimal Hydrogen Evolution Reaction
Research Article Cite This: ACS Appl. Mater. Interfaces 2019, 11, 37787−37795 www.acsami.org Modulation of Phosphorene for Optimal Hydrogen Evolution Reaction † † † † † ‡ † § Jiang Lu, Xue Zhang, Danni Liu, Na Yang, Hao Huang, Shaowei Jin, Jiahong Wang,*, , § † Paul K. Chu, and Xue-Feng Yu † Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China ‡ National Supercomputing Center, Shenzhen, Guangdong 518055, P. R. China § Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China *S Supporting Information ABSTRACT: Economical and highly effective catalysts are crucial to the electrocatalytic hydrogen evolution reaction (HER), and few-layer black phosphorus (phosphorene) is a promising candidate because of the high carrier mobility, large specific surface area, and tunable physicochemical characteristics. However, the HER activity of phosphorene is limited by the weak hydrogen adsorption ability on the basal plane. In this work, optimal active sites are created to modulate the electronic structure of phosphorene to improve the HER activity and the effectiveness is investigated theoretically by density-functional theory calculation and verified experimentally. The edges and defects affect the electronic density of states, and a linear relationship between the HER activity and lowest unoccupied states ε ε ( LUS) is discovered. The medium LUS value corresponds to the suitable hydrogen adsorption strength. Experiments are designed and performed to verify the prediction, and our results show that a smaller phosphorene moiety with more edges and defects exhibits better HER activity and surface doping with metal adatoms improves the catalytic performance.