bioRxiv preprint doi: https://doi.org/10.1101/153072; this version posted October 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Deriving C4 photosynthesis parameters by fitting intensive A/Ci curves 2 Haoran Zhou1, Erol Akçay1 and Brent R. Helliker1 3 4 1 Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA 5 6 Correspondence: Haoran Zhou 7 Address: 433 S University Ave. 8 314 Leidy Labs 9 Philadelphia, PA 19104 10 Phone: 1-215-808-7042 11 Email:
[email protected] 12 Brent R. Helliker:
[email protected] 13 Erol Akçay:
[email protected] 14 Running head: Deriving C4 photosynthesis parameters 1 bioRxiv preprint doi: https://doi.org/10.1101/153072; this version posted October 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 15 ABSTRACT 16 Measurements of photosynthetic assimilation rate as a function of intercellular CO2 (A/Ci 17 curves) are widely used to estimate photosynthetic parameters for C3 species, yet few 18 parameters have been reported for C4 plants, because of a lack of estimation methods. Here, 19 we extend the framework of widely-used estimation methods for C3 plants to build 20 estimation tools by exclusively fitting intensive A/Ci curves (6-8 more sampling points) for 21 C4 using three versions of photosynthesis models with different assumptions about carbonic 22 anhydrase processes and ATP distribution.