Chapter 15 - BLIND SOURCE SEPARATION: Principal & Independent Component Analysis C G.D
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Blind Image Deconvolution of Linear Motion Blur
Blind image deconvolution of linear motion blur Florian Brusius, Ulrich Schwanecke, and Peter Barth RheinMain University of Applied Sciences, Wiesbaden, Germany Abstract. We present an efficient method to deblur images for informa- tion recognition. The method is successfully applied directly on mobile devices as a preprocessing phase to images of barcodes. Our main con- tribution is the fast identifaction of blur length and blur angle in the fre- quency domain by an adapted radon transform. As a result, the barcode recognition rate of the deblurred images has been increased significantly. Keywords: Blind deconvolution, image restoration, deblurring, motion blur estimation, barcodes, mobile devices, radon transform 1 Introduction Increasingly, mobile smartphone cameras are used as alternative input devices providing context information { most often in the form of barcodes. The pro- cessing power of smartphones has reached a state to allow to recognise all kinds of visually perceptible information, like machine-readable barcode tags and the- oretically even printed text, shapes, and faces. This makes the camera act as an one-click link between the real world and the digital world inside the device [9]. However, to reap the benefits of this method the image has to be correctly recognised under various circumstances. This depends on the quality of the cap- tured image and is therefore highly susceptible to all kinds of distortions and noise. The photographic image might be over- or underexposed, out of focus, perspectively distorted, noisy or blurred by relative motion between the camera and the imaged object. Unfortunately, all of those problems tend to occur even more on very small cameras. -
Blind PSF Estimation and Methods of Deconvolution Optimization
Blind PSF estimation and methods of deconvolution optimization Yu A Bunyak1, O Yu Sofina2 and R N Kvetnyy2 1InnoVinn Inc. Vinnitsa, Ukraine 2Vinnitsa National Technical University, Vinnitsa, Ukraine E-mail: [email protected] Abstract. We have shown that the left side null space of the autoregression (AR) matrix operator is the lexicographical presentation of the point spread function (PSF) on condition the AR parameters are common for original and blurred images. The method of inverse PSF evaluation with regularization functional as the function of surface area is offered. The inverse PSF was used for primary image estimation. Two methods of original image estimate optimization were designed basing on maximum entropy generalization of sought and blurred images conditional probability density and regularization. The first method uses balanced variations of convolution and deconvolution transforms to obtaining iterative schema of image optimization. The variations balance was defined by dynamic regularization basing on condition of iteration process convergence. The regularization has dynamic character because depends on current and previous image estimate variations. The second method implements the regularization of deconvolution optimization in curved space with metric defined on image estimate surface. It is basing on target functional invariance to fluctuations of optimal argument value. The given iterative schemas have faster convergence in comparison with known ones, so they can be used for reconstruction of high resolution images series in real time. 1. Introduction Many modern applications need real time reconstruction of high resolution images of some millions pixels size, which are corrupted by defocusing, medium penetration, camera jitter and other factors. Usually, the model of corruption is presented as convolution of original image signal and point spread function (PSF) [5, 23, 27]. -
Signal Processing for Magnetoencephalography
Signal Processing for Magnetoencephalography Rupert Benjamin Clarke Submitted for the degree of Doctor of Philosophy University of York Department of Electronics September 2010 Abstract Magnetoencephalography (MEG) is a non-invasive technology for imaging human brain function. Contemporary methods of analysing MEG data include dipole fitting, minimum norm estimation (MNE) and beamforming. These are concerned with localising brain activity, but in isolation they do not provide concrete evidence of interaction among brain regions. Since cognitive neuroscience demands answers to this type of question, a novel signal processing framework has been developed consisting of three stages. The first stage uses conventional MNE to separate a small number of underlying source signals from a large data set. The second stage is a novel time-frequency analysis consisting of a recursive filter bank. Finally, the filtered outputs from different brain regions are compared using a unique partial cross-correlation analysis that accounts for propagation time. The output from this final stage could be used to construct conditional independence graphs depicting the internal networks of the brain. In the second processing stage, a complementary pair of high- and low-pass filters is iteratively applied to a discrete time series. The low-pass output is critically sampled at each stage, which both removes redundant information and effectively scales the filter coefficients in time. The approach is similar to the Fast Wavelet Transform (FWT), but features a more sophisticated resampling step. This, in combination with the filter design procedure leads to a finer frequency resolution than the FWT. The subsequent correlation analysis is unusual in that a latency estimation procedure is included to establish the probable transmission delays between regions of interest. -
Revisiting Bayesian Blind Deconvolution
Journal of Machine Learning Research 15 (2014) 3775-3814 Submitted 5/13; Revised 5/14; Published 11/14 Revisiting Bayesian Blind Deconvolution David Wipf [email protected] Visual Computing Group Microsoft Research Building 2, No. 5 Danling Street Beijing, P.R. China, 100080 Haichao Zhang [email protected] School of Computer Science Northwestern Polytechnical University 127 West Youyi Road Xi'an, P.R. China, 710072 Editor: Lawrence Carin Abstract Blind deconvolution involves the estimation of a sharp signal or image given only a blurry observation. Because this problem is fundamentally ill-posed, strong priors on both the sharp image and blur kernel are required to regularize the solution space. While this naturally leads to a standard MAP estimation framework, performance is compromised by unknown trade-off parameter settings, optimization heuristics, and convergence issues stemming from non-convexity and/or poor prior selections. To mitigate some of these problems, a number of authors have recently proposed substituting a variational Bayesian (VB) strategy that marginalizes over the high-dimensional image space leading to better estimates of the blur kernel. However, the underlying cost function now involves both in- tegrals with no closed-form solution and complex, function-valued arguments, thus losing the transparency of MAP. Beyond standard Bayesian-inspired intuitions, it thus remains unclear by exactly what mechanism these methods are able to operate, rendering un- derstanding, improvements and extensions more difficult. To elucidate these issues, we demonstrate that the VB methodology can be recast as an unconventional MAP problem with a very particular penalty/prior that conjoins the image, blur kernel, and noise level in a principled way. -
Deep Wiener Deconvolution: Wiener Meets Deep Learning for Image Deblurring
Deep Wiener Deconvolution: Wiener Meets Deep Learning for Image Deblurring Jiangxin Dong Stefan Roth MPI Informatics TU Darmstadt [email protected] [email protected] Bernt Schiele MPI Informatics [email protected] Abstract We present a simple and effective approach for non-blind image deblurring, com- bining classical techniques and deep learning. In contrast to existing methods that deblur the image directly in the standard image space, we propose to perform an explicit deconvolution process in a feature space by integrating a classical Wiener deconvolution framework with learned deep features. A multi-scale feature re- finement module then predicts the deblurred image from the deconvolved deep features, progressively recovering detail and small-scale structures. The proposed model is trained in an end-to-end manner and evaluated on scenarios with both simulated and real-world image blur. Our extensive experimental results show that the proposed deep Wiener deconvolution network facilitates deblurred results with visibly fewer artifacts. Moreover, our approach quantitatively outperforms state-of-the-art non-blind image deblurring methods by a wide margin. 1 Introduction Image deblurring is a classical image restoration problem, which has attracted widespread atten- tion [e.g.,1,3,9, 10, 56]. It is usually formulated as y = x ∗ k + n; (1) where y; x; k, and n denote the blurry input image, the desired clear image, the blur kernel, and image noise, respectively. ∗ is the convolution operator. Traditional methods usually separate this problem arXiv:2103.09962v1 [cs.CV] 18 Mar 2021 into two phases, blur kernel estimation and image restoration (i.e., non-blind image deblurring). -
Blind Deconvolution and Adaptive Algorithms for De-Reverberation
Master Thesis Electrical Engineering with Emphasis on signal processing BLIND DECONVOLUTION AND ADAPTIVE ALGORITHMS FOR DE-REVERBERATION Suryavamsi Atresya Uppaluru Supervisor: Dr. Nedelko Grbic Examiner: Dr. Benny Sällberg Department of Signal Processing School of Engineering (ING) Blekinge Institute of Technology i This thesis is submitted to the School of Engineering at Blekinge Institute of Technology (BTH) in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering with emphasis on Signal Processing. Contact Information: Author: Suryavamsi Atresya Uppaluru E-mail: [email protected] Supervisor: Dr. Nedelko Grbic School of Engineering (ING) E-mail: [email protected] Phone: +46 455 38 57 27 Examiner: Dr. Benny Sällberg School of Engineering (ING) E-mail: [email protected] Phone: +46 455 38 55 87 School of Engineering Blekinge Institute of Technology Internet: www.bth.se/ing 371 79 Karlskrona Phone: +46 455 38 50 00 Sweden. Fax: +46 455 38 50 57 ii ACKNOWLEDGEMENT I would like to express sincere gratitude to our Supervisor Dr.Nedelko Gribic for his sagacious guidance and scholarly advice which enabled us to complete the thesis. I humbly thank the examiner Dr. Benny Sallberg for the encouragement and support. I express my deep gratitude to my parents in particular and my family who always reinforced every effort of mine. I would like to thank God and my friends for giving me constant support in every endeavor of mine. I would like to express my gratitude towards everyone who contributed their precious time and effort to help me, with whom I could complete my thesis successfully. -
Arxiv:1909.11294V3 [Stat.ML] 11 Jun 2021
Hierarchical Probabilistic Model for Blind Source Separation via Legendre Transformation Simon Luo1,2 Lamiae Azizi1,2 Mahito Sugiyama3 1School of Mathematics and Statistics, The University of Sydney, Sydney, Australia 2Data Analytics for Resources and Environments (DARE), Australian Research Council, Sydney, Australia 3National Institute of Informatics, Tokyo, Japan Abstract 2010] extract a specified number of components with the largest variance under an orthogonal constraint. They are composed of a linear combination of variables, and create a We present a novel blind source separation (BSS) set of uncorrelated orthogonal basis vectors that represent method, called information geometric blind source the source signal. The basis vectors with the N largest separation (IGBSS). Our formulation is based on variance are called the principal components and are the the log-linear model equipped with a hierarchi- output of the model. PCA has shown to be effective for cally structured sample space, which has theoreti- many applications such as dimensionality reduction and cal guarantees to uniquely recover a set of source feature extraction. However, for BSS, PCA makes the signals by minimizing the KL divergence from a assumption that the source signals are orthogonal, which is set of mixed signals. Source signals, received sig- often not the case in most practical applications. nals, and mixing matrices are realized as different layers in our hierarchical sample space. Our em- Similarly, ICA also attempts to find the N components with pirical results have demonstrated on images and the largest variance by relaxing the orthogonality constraint. time series data that our approach is superior to Variations of ICA, such as infomax [Bell and Sejnowski, well established techniques and is able to separate 1995], FastICA [Hyvärinen and Oja, 2000], and JADE [Car- signals with complex interactions. -
Brain Signal Analysis
Duann, Jung and Makeig: Brain Sugnal Analysis Brain Signal Analysis Jeng-Ren Duann, Tzyy-Ping Jung, Scott Makeig Institute for Neural Computation, University of California, San Diego CA Computational Neurobiology Lab, The Salk Institute, La Jolla CA RUNNING HEAD: Brain signal analysis Artificial neural networks (ANNs) have now been applied to a wide variety of real-world problems in many fields of application. The attractive and flexible characteristics of ANNs, such as their parallel operation, learning by example, associative memory, multifactorial optimization and extensibility, make them well suited to the analysis of biological and medical signals. In this study, we review applications of ANNs to brain signal analysis, for instance, for analysis of the electroencephalogram (EEG) and magnetoencephalogram (MEG), or electromyogram (EMG), and as applied to computed tomographic (CT) images and magnetic resonance (MR) brain images, and to series of functional MR brain images (i.e. fMRI). 1 Duann, Jung and Makeig: Brain Sugnal Analysis 1. INTRODUCTION Artificial neural networks (ANNs) are computational framework inspired by our expanding knowledge of the activity of networks of biological neurons in the brain. ANNs cannot hope to reproduce all the still not well-understood complexities of actual brain networks. Rather, most ANNs are implemented as sets of nonlinear summing elements interconnected by weighted links, forming a highly simplified model of brain connectivity. The basic operation of such artificial neurons is to pass a weighted sum of their inputs through a nonlinear hard-limiting or soft “squashing” function. To form an ANN, these basic calculating elements (artificial neurons) are most often arranged in interconnected layers. -
Channel Equalization and Blind Deconvolution
Advanced Digital Signal Processing and Noise Reduction, Second Edition. Saeed V. Vaseghi Copyright © 2000 John Wiley & Sons Ltd ISBNs: 0-471-62692-9 (Hardback): 0-470-84162-1 (Electronic) 15 CHANNEL EQUALIZATION AND BLIND DECONVOLUTION 15.1 Introduction 15.2 Blind-Deconvolution Using Channel Input Power Spectrum 15.3 Equalization Based on Linear Prediction Models 15.4 Bayesian Blind Deconvolution and Equalization 15.5 Blind Equalization for Digital Communication Channels 15.6 Equalization Based on Higher-Order Statistics 15.7 Summary lind deconvolution is the process of unravelling two unknown signals that have been convolved. An important application of blind B deconvolution is in blind equalization for restoration of a signal distorted in transmission through a communication channel. Blind equalization has a wide range of applications, for example in digital telecommunications for removal of intersymbol interference, in speech recognition for removal of the effects of microphones and channels, in deblurring of distorted images, in dereverberation of acoustic recordings, in seismic data analysis, etc. In practice, blind equalization is only feasible if some useful statistics of the channel input, and perhaps also of the channel itself, are available. The success of a blind equalization method depends on how much is known about the statistics of the channel input, and how useful this knowledge is in the channel identification and equalization process. This chapter begins with an introduction to the basic ideas of deconvolution and channel equalization. We study blind equalization based on the channel input power spectrum, equalization through separation of the input signal and channel response models, Bayesian equalization, nonlinear adaptive equalization for digital communication channels, and equalization of maximum-phase channels using higher-order statistics. -
Blind Deconvolution of Backscattered Ultrasound Using Second-Order Statistics
Blind Deconvolution of Backscattered Ultrasound using Second-Order Statistics Carlos E. Davila and Tao He Electrical Engineering Department, Southern Methodist University Dallas, Texas 75275-0338 E-mail: [email protected] Phone: (214) 768-3197 Fax: (214) 768-3573 Abstract A method for blind deconvolution of ultrasound based on second-order statistics is proposed. This approach relaxes the requirement made by other blind deconvolution methods that the tissue reflectivity be statistically white or broad-band. Two methods are described, the ¯rst is a basic second-order deconvolution method, while the second incorporates an optimally weighted least squares solution. Experimental results using synthetic and actual ultrasound data demonstrate the potential bene¯ts of this method. Submitted to IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, July 23, 2001 1 Background Ultrasound is used extensively in medicine as a relatively inexpensive approach for non- invasively imaging organ structures and measuring blood flow. The basic premise behind ultrasonic imaging is that an ultrasonic pulse transmitted through tissue will be reflected or backscattered, particularly at distinct tissue boundaries. The underlying tissue structures can then be imaged by measuring the reflections of the transmitted pulse at each tissue boundary. While models for ultrasonic backscattering can be quite complex, a simple model that is often used is based on a linear convolution ZZZ µ ¶ e¡2az 2z r(t)= g(x; y; z)s(x; y)p t ¡ dxdydz (1) z c where s(x; y) is the lateral distribution of the transmitted ultrasound wave, c is the speed of sound through the tissue (assumed constant), a is the average attenuation constant of the tissue in the ultrasound propagation path, and g(x; y; z) is the tissue reflectivity. -
Independent Component Analysis and Nongaussianity for Blind Image Deconvolution and Deblurring
Integrated Computer-Aided Engineering 15 (2008) 219–2 219 IOS Press Independent component analysis and nongaussianity for blind image deconvolution and deblurring Hujun Yin and Israr Hussain School of Electrical and Electronic Engineering, The University of Manchester, Manchester M60 1QD, UK E-mail: [email protected], [email protected] Abstract. Blind deconvolution or deblurring is a challenging problem in many signal processing applications as signals and images often suffer from blurring or point spreading with unknown blurring kernels or point-spread functions as well as noise corruption. Most existing methods require certain knowledge about both the signal and the kernel and their performance depends on the amount of prior information regarding the both. Independent component analysis (ICA) has emerged as a useful method for recovering signals from their mixtures. However, ICA usually requires a number of different input signals to uncover the mixing mechanism. In this paper, a blind deconvolution and deblurring method is proposed based on the nongaussianity measure of ICA as well as a genetic algorithm. The method is simple and does not require prior knowledge regarding either the image or the blurring process, but is able to estimate or approximate the blurring kernel from a single blurred image. Various blurring functions are described and discussed. The proposed method has been tested on images degraded by different blurring kernels and the results are compared to those of existing methods such as Wiener filter, regularization filter, and the Richardson-Lucy method. Experimental results show that the proposed method outperform these methods. 1. Introduction the restoration process may become straightforward or even trivial. -
Research Article PSF Estimation Via Gradient Cepstrum Analysis for Image Deblurring in Hybrid Sensor Network
Hindawi Publishing Corporation International Journal of Distributed Sensor Networks Volume 2015, Article ID 758034, 11 pages http://dx.doi.org/10.1155/2015/758034 Research Article PSF Estimation via Gradient Cepstrum Analysis for Image Deblurring in Hybrid Sensor Network Mingzhu Shi1 and Shuaiqi Liu2 1 College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin 300387, China 2College of Electronic and Information Engineering, Hebei University, Baoding 071000, China Correspondence should be addressed to Mingzhu Shi; [email protected] Received 4 December 2014; Accepted 13 January 2015 Academic Editor: Qilian Liang Copyright © 2015 M. Shi and S. Liu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In hybrid sensor networks, information fusion from heterogeneous sensors is important, but quite often information such as image is blurred. Single image deblurring is a highly ill-posed problem and usually regularized by alternating estimating point spread function (PSF) and recovering blur image, which leads to high complexity and low efficiency. In this paper, we first propose an efficient PSF estimation algorithm based on gradient cepstrum analysis (GCA). Then, to verify the accuracy of the strategy, estimated PSFs are used for image deconvolution step, which exploits a novel total variation model coupling with a gradient fidelity term. We also adopt an alternating direction method (ADM) numerical algorithm with rapid convergence and high robustness to optimize the energy function. Both synthetic and real blur experiments show that our scheme can estimate PSF rapidly and produce comparable results without involving long time consuming.