Embryoid Bodies Fail to Produce Structures with Any Similarity to the Embryo

Total Page:16

File Type:pdf, Size:1020Kb

Embryoid Bodies Fail to Produce Structures with Any Similarity to the Embryo Developmental biology Organoids from organoids to gastruloids Last year was hailed as ‘the year of the organoid’ as news of mini- brains, livers and intestines grown in the laboratory hit the headlines. Here, Dr David Turner explains the latest in vitro systems for modelling human development and disease, including embryonic stem cells, organoids and gastruloids ome of the most important these questions, traditionally using genetic shown to play an important role in experimentally) that is cheaper than Embryoid bodies fail patterning the early embryo, and it is this questions in biology relate experiments in embryos from animals development, are very difficult to assess; in vivo work, is ethically responsible, and well-grounded understanding that enables to how we are formed and such as the fruit fly, frog, chicken, zebrafish there is a great deal of expense involved in can be utilised to ask specific questions to produce structures us to guide ESCs towards specific tissue develop. For example, how is it and mouse. In terms of mammalian maintaining mouse lines (and generating regarding developmental processes and types and cell fates by applying signals or that a single fertilised egg is able, development, the mouse has proven new ones with specific traits), and it is differentiation, which can eventually be with any similarity modifying cells’ gene expression in culture. Sin a relatively short space of time, to exceptionally useful as a model system. difficult and technically challenging to targeted to understanding human For example, neural tissues can be to the embryo produce so many different cell types, Although many developmental processes experimentally manipulate the mouse development and disease. generated by applying retinoic acid or tissues and organs, and position them so and patterning events are conserved embryo at the early stages. inhibiting bone morphogenetic protein precisely within the body? Why does throughout diverse animal species, how There are also ethical considerations STEM CELLS, DISEASE (BMP) signalling, and beating human development occasionally go sure are we that what we see in the mouse to take into account when using mice AND DEVELOPMENT blastocysts by Evans and Kaufmann in cardiomyocytes can be enriched through wrong, producing birth defects and (and other model systems) recapitulates and their embryos (although a number of Embryonic stem cells (ESCs) offer an the 1980s). application of BMP, Activin A and vascular pathological conditions? human development? Mice and other initiatives are underway to dramatically alternative and, arguably, parallel route The pluripotent, self-renewing trait endothelial growth factor. The answers to these questions are vital model systems have a number of reduce or replace the numbers of mice to dissecting the development of embryos, of ESCs is essential during development It is often the case that by using a tissue in uncovering the mechanisms behind limitations. For example: it is not always and other animals involved in experiments delineating the processes and mechanisms and useful experimentally, as it prevents culture-based approach, new insights can disease states, eventually instructing us in possible to discount the effects of and refine their use, such as the utilised physiologically. ESCs are a premature exhaustion of the cells as they be gained regarding the signals involved in ways to treat them through regenerative redundancy between genes when assessing National Centre for the Replacement, self-renewing, pluripotent population are cycled into different cell fates in vivo, cell fate specification. Examples of this medicine, or manage their severity through the effect of mutant phenotypes (i.e. Refinement and Reduction of Animals in of cells derived from the early mouse and enables us to culture them indefinitely include our recent work on the role of Wnt/ better medicines and pharmaceuticals. biological systems are buffered, and Research, NC3Rs). embryo which can give rise to all the in the laboratory. β-Catenin and fibroblast growth factor We can use a number of experimental multiple genes may have similar functions); What is needed is a fully tractable tissues and organs of the embryo proper Careful experimentation has determined signalling in generating a population of tools and techniques to tease apart some of mechanical forces, which have been system (one that’s easy to control (they were first isolated from mouse many of the genes and signals involved in cells that serves as a pool for generating 14 / The Biologist / Vol 64 No 5 Vol 64 No 5 / The Biologist / 15 Developmental biology Organoids Embryoid bodies, Fig. 2. An array of fluorescent light a) Colorectal organoid different organ micrograph types have been generated using organoid culture techniques. the body axis,1 or how cells resolve binary Examples include fate decisions depending on the signalling colorectal and environment they are exposed to and the gastric organoids time in which they see these signals.2 (a and b), mini- brains (c) and ESCs are, when compared with in vivo b) Gastric kidney organoids studies in the mouse, exceptionally easy to organoid (d) as well as manipulate (genetically and chemically), forebrains, optic reduce the necessity for animal cups and liver experimentation and are orders of organoids (not magnitude less expensive than keeping mice c) Mini-brain pictured). in the laboratory. However, there are a few Images courtesy of disadvantages that have the potential to a) Cellesce compromise our complete reliance on ESCs b) Kyle McCracken with respect to in vivo work. c) Jürgen Knoblich at One of these involves the topographical the Institute of differences between a 2D layer of cells Molecular grown on a plate and the 3D nature of Biotechnology, a whole embryo – the 3D spatial Vienna d) Atsuhiro Taguchi organisation in the embryo between cells and Ryuichi and tissues is not replicated on a tissue Nishinakamura via culture plate. This limitation can to some Taguchi et al. Cell extent be solved by culturing cells as 3D d) Kidney organoid Stem Cell 2014. aggregates known as embryoid bodies (Fig. 1). To generate these bodies, cells are typically plated in little droplets on the inside lid of a tissue culture dish and (Fig. 1), they spontaneously differentiate and development, from human induced between the observed outcomes, and the form spherical structures on the same inverted so they form aggregates at the form self-organised, stratified tissues. pluripotency stem cells (iPSCs; cells frequency of these outcomes is low.8 scale as the early mouse embryo at the bottom of a droplet through gravity (Fig. However, within the last decade, there has from adult organisms that have been If organoids are to be used as model blastocyst stage. This is in contrast to 1). Cells grown in this way produce many as generating precursor populations for been something of a revolution in what can essentially reprogrammed to their systems for disease states or understanding most other organoid systems or embryoid cell types associated with the three further differentiation protocols. be accomplished in this field, with the rise embryonic state) and exposing them to development, as well as being used bodies where larger numbers of cells are embryonic germ layers over time, and can of organoids (Fig. 2). the Zika virus, they were able to determine clinically for drug screening or for typically used. even form spontaneously beating regions THE ORGANOID REVOLUTION Generally speaking, cellular material the neural cells the virus preferentially regenerative medicine, it is essential that Over time, and under appropriate as cardiac precursors are generated. Early studies using 3D structures, in parallel (such as mouse or human ESCs, tissue targeted and how microcephaly may be they are reliable, reproducible and signalling conditions, these spherical Unfortunately, embryoid bodies are highly with work on embryoid bodies, used fragments, primary cells and so on) that is established6 (Fig. 2). quantifiable. Advances need to be made so aggregates or, rather, embryonic disorganised3,4 and fail to produce artificial scaffolds and matrices to provide grown in 3D, and over time, can form As well as modelling the progression that organoid systems can be precisely organoids, begin to show something structures with any similarity to the embryo. support for growing tissues in what is structures very similar in the patterning of disease states, organoids may have controlled and manipulated with remarkable, undergoing many of the Their usefulness is therefore limited to known as mechanically supported air-liquid and, sometimes, function to their in vivo uses in regenerative medicine. Using minimal experimental variation. morphological and patterning events of broad questions on the signals required for interface culture. When skin or oesophageal counterpart5 following the same cellular material from patients through the early embryo. Furthermore, they differentiation of various cell types, as well primary keratinocytes are grown in this way developmental progression as in the generating iPSCs, a patient’s own cells can GASTRULOIDS – EMBRYONIC undertake a process similar to gastrulation embryo. Brain (mini-brains), optic cup and be guided towards the required cellular ORGANOIDS in the embryo, generating cell types that gut organoids have been produced, to lineage or fate, and the organoids that are With this in mind, our laboratory in correspond to the three germ layers.9,11,13 Monolayer Culture
Recommended publications
  • A Simple Bioreactor-Based Method to Generate Kidney Organoids from Pluripotent Stem Cells
    bioRxiv preprint doi: https://doi.org/10.1101/237644; this version posted December 20, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. A simple bioreactor-based method to generate kidney organoids from pluripotent stem cells Aneta Przepiorskia†, Veronika Sandera†, Tracy Tranb, Jennifer A. Hollywooda, Brie Sorrensona, Jen-Hsing Shiha, Ernst J. Wolvetangc, Andrew P. McMahonb, Teresa M. Holm a, Alan J. Davidson a * a Department of Molecular Medicine & Pathology, University of Auckland, New Zealand. b Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, USA. c Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Australia. † These authors contributed equally * Corresponding author: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/237644; this version posted December 20, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Summary Kidney organoids generated from human pluripotent stem cells have the potential to revolutionize how kidney development and injury are studied. Current protocols are technically complex and suffer from poor reproducibility and high reagent costs restricting scalability. To overcome these issues, we have established a simple, inexpensive and robust method to grow kidney organoids in bulk from human induced pluripotent stem cells. Our organoids develop tubular structures by day (d) 8 and show optimal tissue morphology at d14. A comparison with fetal human kidney suggests that d14 organoid renal structures most closely resemble ‘capillary loop’ stage nephrons.
    [Show full text]
  • The WNT Target SP5 Negatively Regulates WNT Transcriptional Programs in Human Pluripotent Stem Cells
    ARTICLE DOI: 10.1038/s41467-017-01203-1 OPEN The WNT target SP5 negatively regulates WNT transcriptional programs in human pluripotent stem cells Ian J. Huggins1, Tomas Bos1, Olivia Gaylord1, Christina Jessen1, Brianna Lonquich1, Angeline Puranen1, Jenna Richter1, Charlotte Rossdam1, David Brafman2, Terry Gaasterland 3 & Karl Willert 1 The WNT/β-catenin signaling pathway is a prominent player in many developmental pro- cesses, including gastrulation, anterior–posterior axis specification, organ and tissue devel- opment, and homeostasis. Here, we use human pluripotent stem cells (hPSCs) to study the dynamics of the transcriptional response to exogenous activation of the WNT pathway. We describe a mechanism involving the WNT target gene SP5 that leads to termination of the transcriptional program initiated by WNT signaling. Integration of gene expression profiles of wild-type and SP5 mutant cells with genome-wide SP5 binding events reveals that SP5 acts to diminish expression of genes previously activated by the WNT pathway. Furthermore, we show that activation of SP5 by WNT signaling is most robust in cells with developmental potential, such as stem cells. These findings indicate a mechanism by which the develop- mental WNT signaling pathway reins in expression of transcriptional programs. 1 Department of Cellular & Molecular Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0695, USA. 2 School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA. 3 University of California San Diego and Scripps Institution of Oceanography, Scripps Genome Center, 9500 Gilman Drive, La Jolla, CA 92093-0202, USA. Correspondence and requests for materials should be addressed to T.G.
    [Show full text]
  • Characterization of the Effects of Bfgf and Gsk3β Inhibitors on Embryoid
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 7-2015 Characterization of the Effects of bFGF and GSK3β Inhibitors on Embryoid Bodies Derived from Human Pluripotent Stem Cells Jonathan Earls University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Molecular Biology Commons Recommended Citation Earls, Jonathan, "Characterization of the Effects of bFGF and GSK3β Inhibitors on Embryoid Bodies Derived from Human Pluripotent Stem Cells" (2015). Theses and Dissertations. 1236. http://scholarworks.uark.edu/etd/1236 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Characterization of the Effects of bFGF and GSK3β Inhibitors on Embryoid Bodies Derived from Human Pluripotent Stem Cells A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Biomedical Engineering by Jonathan Earls University of Arkansas Bachelor of Science in Physics, 1998 July 2015 University of Arkansas This thesis is approved for recommendation to the Graduate council. _____________________ Dr. Kaiming Ye Thesis Director _____________________ ______________________ Dr. Sha Jin Dr. Robert Beitle Thesis Co-director: Thesis Committee ABSTRACT Embryoid body (EB) formation is a common first step in many human pluripotent stem cell (hPSC) differentiation protocols. Previous work suggests that EBs are sensitive to growth factor withdrawal if they are derived from hPSCs maintained in feeder independent media such as mTeSR1. To promote cell survival, EBs generated from mTeSR1-adapted hPSCs are sometimes cultured in a medium that contains basic fibroblast growth factor (bFGF), a trophic factor often used in hPSC cultures to maintain self-renewal.
    [Show full text]
  • Cell Mechanics in Embryoid Bodies
    cells Review Cell Mechanics in Embryoid Bodies Kira Zeevaert 1,2, Mohamed H. Elsafi Mabrouk 1,2 , Wolfgang Wagner 1,2,* and Roman Goetzke 1,2,* 1 Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, 52074 Aachen, Germany; [email protected] (K.Z.); [email protected] (M.H.E.M.) 2 Institute for Biomedical Engineering–Cell Biology, RWTH Aachen University Medical School, 52074 Aachen, Germany * Correspondence: [email protected] (W.W.); [email protected] (R.G.); Tel.: +49-241-80-88611 (W.W.); +49-241-80-80268 (R.G.) Received: 15 September 2020; Accepted: 9 October 2020; Published: 11 October 2020 Abstract: Embryoid bodies (EBs) resemble self-organizing aggregates of pluripotent stem cells that recapitulate some aspects of early embryogenesis. Within few days, the cells undergo a transition from rather homogeneous epithelial-like pluripotent stem cell colonies into a three-dimensional organization of various cell types with multifaceted cell–cell interactions and lumen formation—a process associated with repetitive epithelial-mesenchymal transitions. In the last few years, culture methods have further evolved to better control EB size, growth, cellular composition, and organization—e.g., by the addition of morphogens or different extracellular matrix molecules. There is a growing perception that the mechanical properties, cell mechanics, and cell signaling during EB development are also influenced by physical cues to better guide lineage specification; substrate elasticity and topography are relevant, as well as shear stress and mechanical strain. Epithelial structures outside and inside EBs support the integrity of the cell aggregates and counteract mechanical stress.
    [Show full text]
  • Efficient Derivation of Stable Primed Pluripotent Embryonic Stem Cells from Bovine Blastocysts
    Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts Yanina Soledad Bogliottia,1, Jun Wub,c,d,e,1,2, Marcela Vilarinoa, Daiji Okamurad,f, Delia Alba Sotoa, Cuiqing Zhonge, Masahiro Sakuraib,c,d,e, Rafael Vilar Sampaioa, Keiichiro Suzukie, Juan Carlos Izpisua Belmontee,2, and Pablo Juan Rossa,2 aDepartment of Animal Science, University of California, Davis, CA 95616; bDepartment of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390; cHamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390; dUniversidad Católica San Antonio de Murcia, 30107 Guadalupe, Murcia, Spain; eGene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037; and fDepartment of Advanced Bioscience, Graduate School of Agriculture, Kindai University, 631-8505 Nara, Japan Edited by R. Michael Roberts, University of Missouri, Columbia, MO, and approved January 3, 2018 (received for review September 13, 2017) Embryonic stem cells (ESCs) are derived from the inner cell mass of serum-free culture supplemented with fibroblast growth factor 2 preimplantation blastocysts. From agricultural and biomedical perspec- (FGF2) and an inhibitor of the canonical Wnt–β-catenin signaling tives, the derivation of stable ESCs from domestic ungulates is important pathway (IWR1), allowed clonal expansion of both human ESCs for genomic testing and selection, genome engineering, and modeling and mouse EpiSCs and perfect EpiSC derivation efficiency from human diseases. Cattle are one of the most important domestic both pre- and postimplantation murine embryos. ungulates that are commonly used for food and bioreactors. To date, In this study, we applied the human region-selective ESC cul- however, it remains a challenge to produce stable pluripotent bovine ESC ture conditions, custom TeSR1 base medium (growth factor-free) lines.
    [Show full text]
  • Differentiation of Embryoid-Body Cells Derived from Embryonic Stem Cells Into Hepatocytes in Alginate Microbeads in Vitro1
    Acta Pharmacol Sin 2007 Dec; 28 (12): 1924–1930 Full-length article Differentiation of embryoid-body cells derived from embryonic stem cells into hepatocytes in alginate microbeads in vitro1 Sheng FANG, Yu-dong QIU, Liang MAO, Xiao-lei SHI, De-cai YU, Yi-tao DING2 Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical College of Nanjing University, Nanjing 210008, China Key words Abstract alginate; cell culture; encapsulation; hepato- Aim: Embryonic stem (ES) cells are being widely investigated as a promising cytes; stem cell differentiation source of hepatocytes with their proliferative, renewable, and pluripotent capacities. However, controlled and scalable ES cell differentiation culture into 1 Project supported by the Natural Science functional hepatocytes is challenging. In this study, we examined the differentiat- Foundation of Jiangsu Province, PR China ing potential of embryoid-body cells derived from ES cells into hepatocytes in (No BK2006008). 2 Correspondence to Prof Yi-tao DING. alginate microbeads containing exogenous growth factors in vitro. Methods: Phn 86-25-8330-4616. Embryoid bodies were formed from ES cells by suspension methods. Embryoid Fax 86-25-8331-7016. bodies cultured for 5 d were treated with trypsin-EDTA. The disaggregated cells E-mail [email protected] were encapsulated in alginate microbeads and stimulated with exogenous growth Received 2007-04-30 factors to induce hepatic differentiation. In the course of cell differentiation, cell Accepted 2007-08-02 morphology and viability were observed, and the expression patterns of some doi: 10.1111/j.1745-7254.2007.00713.x genes of the hepatocyte were confirmed by RT-PCR. An immunofluorescence analysis revealed the expression of albumin (ALB) and cytokeratin-18 (CK18).
    [Show full text]
  • Products for Human Pluripotent Stem Cells
    HUMAN PLURIPOTENT STEM CELLS Products for Your Research Scientists Helping Scientists™ | WWW.STEMCELL.COM HUMAN PLURIPOTENT STEM CELLS 2 STEMCELL Technologies Inc. TABLE OF CONTENTS Reprogram Differentiate 4 Reprogramming 24 Differentiation 4 ReproRNA™-OKSGM 24 STEMdiff™ Overview 5 ReproTeSR™ 5 Erythroid Progenitor Reprogramming Kit 25 Mesoderm Differentiation + 5 CD34 Progenitor Reprogramming Kit 25 Mesoderm Differentiation Pathways 6 TeSR™-E7™ 26 STEMdiff™ Mesoderm Induction Medium 26 STEMdiff™ Mesenchymal Progenitor Kit Maintain 27 STEMdiff™ Endothelial Differentiation Kit 28 STEMdiff™ Hematopoietic System 7 Maintenance 31 STEMdiff™ Cardiomyocyte System 7 TeSR™ Overview 32 STEMdiff™ Myogenic System 8 mTeSR™ Plus 33 STEMdiff™ Kidney Organoid Kit 10 TeSR™-AOF 12 mTeSR™1 34 Ectoderm Differentiation 12 TeSR™-E8™ 34 Ectoderm Differentiation Pathways 35 STEMdiff™ Neural System 13 Scale-Up 37 STEMdiff™ Cerebral Organoid Kit 13 mTeSR™3D 38 STEMdiff™ Dorsal and Ventral Forebrain Organoid Kits 13 TeSR™-E8™3D 39 BrainPhys™ Neuronal Medium 39 NeuroFluor™ NeuO 14 Naïve Induction and Maintenance 40 STEMdiff™ Neural Crest Differentiation Kit 14 RSeT™ Feeder-Free 41 STEMdiff™ Microglia Culture System 15 NaïveCult™ 15 hPSC Naïve State qPCR Array 42 Endoderm Differentiation 42 Endoderm Differentiation Pathways 16 Matrices 43 STEMdiff™ Definitive Endoderm Kit 16 Vitronectin XF™ & CellAdhere™ Laminin-521 43 hPSC-Derived Endoderm qPCR Array 44 STEMdiff™ Intestinal Organoid Kit 17 Dissociation Reagents 45 STEMdiff™ Pancreatic Progenitor Kit 17 ReLeSR™ 46
    [Show full text]
  • Generation of Hematopoietic Stem/Progenitor Cells with Sickle Cell Mutation from Induced Pluripotent Stem Cell in Serum-Free
    hematol transfus cell ther. 2 0 2 1;4 3(2):156–164 Hematology, Transfusion and Cell Therapy www.htct.com.br Original article Generation of hematopoietic stem/progenitor cells with sickle cell mutation from induced pluripotent stem cell in serum-free system a,b a,b b Bárbara C.M.F. Paes , Luiza C.J.R. Stabeli , Péricles N.M. Costa , b b a,b Maristela Delgado Orellana , Simone Kashima , Dimas Tadeu Covas , a,b,∗ Virgínia Picanc¸o-Castro a Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP, Brazil b Universidade de São Paulo, Hemocentro de Ribeirão Preto, Centro de Terapia Celular, Ribeirão Preto, SP, Brazil a r t i c l e i n f o a b s t r a c t Article history: Introduction: Sickle cell disease (SCD) is a monogenic disease and it is estimated that 300,000 Received 11 December 2019 infants are born annually with it. Most treatments available are only palliative, whereas the Accepted 13 January 2020 allogeneic hematopoietic stem cell transplantation offers the only potential cure for SCD. Available online 6 March 2020 Objective: Generation of human autologous cells, when coupled with induced pluripotent stem cell (iPSC) technology, is a promising approach for developing study models. In this Keywords: study, we provide a simple and efficient model for generating hematopoietic cells using iPSCs derived from a sickle cell anemia patient and an inexpensive in-house-prepared medium. Hematopoietic differentiation Induced pluripotent stem cell Method: This study used iPSCs previously generated from peripheral blood mononuclear Sickle cell anemia cells (PBMCs) from a patient with sickle cell anemia (iPSC scd).
    [Show full text]
  • Stemdiff™ Cerebral Organoid Kit: a New Tool for the Culture of 3-D Brain Organoids Derived from Human Pluripotent Stem Cells Leon H
    STEMdiff™ Cerebral Organoid Kit: A New Tool for the Culture of 3-D Brain Organoids Derived from Human Pluripotent Stem Cells Leon H. Chew1, Vivian M. Lee1, Adam Añonuevo1, Sam Lloyd-Burton1, Terry E.Thomas1, Allen C. Eaves1,2, and Sharon A. Louis1 1 STEMCELL Technologies Inc., Vancouver, Canada 2 Terry Fox Laboratory, BC Cancer Agency, Vancouver, Canada Introduction Methods 2-D neural cultures derived from human pluripotent stem cells (hPSCs), including human embryonic and induced pluripotent stem cells (hESCs or hiPSCs), are useful models with which to study the nervous system, but they are limited in their capacity to fully recapitulate the complex organization of brain tissues. Lancaster et al.1,2 established a hPSC-based organoid culture system that models the major features of early human brain development. Based on the published media formulations, we developed the STEMdiff™ Cerebral Organoid Kit to enable generation of organoids in a simple and highly reproducible manner. This kit contains 2 basal media and 5 supplements, which are combined to prepare four separate complete media corresponding to the 4 stages of cerebral organoid 200 µm 200 µm 200 µm 1 mm formation. hPSCs maintained in mTeSR1™ were single-cell dissociated and cultured in Embryoid Body (EB) Embryoid Resuspend Matrigel Switch Characterize Formation Medium in U-Bottom plates (day 1 - 5, Stage 1). The resulting EBs were then transferred to Induction Body Formation EBs Embed EBs Media Organoids Medium (day 6 - 7, Stage 2); next, they were expanded by embedding in Corning® Matrigel® and cultured in hPSC Change medium Change medium Expansion Medium (day 7 - 10, Stage 3).
    [Show full text]
  • Droplet Microfluidics for the Ex Vivo Expansion of Human Primary
    micromachines Article Droplet Microfluidics for the ex Vivo Expansion of Human Primary Multiple Myeloma Cells Pilar Carreras 1,2,*, Iciar Gonzalez 1 , Miguel Gallardo 2,3, Alejandra Ortiz-Ruiz 2,3 and Joaquin Martinez-Lopez 2,3,4 1 CSIC, Spanish National Research Council, 28006 Madrid, Spain; [email protected] 2 Hospital 12 Octubre, Hematology Department, Research institute i+12, 28040 Madrid, Spain; [email protected] (M.G.); [email protected] (A.O.-R.); [email protected] (J.M.-L.) 3 CNIO, Spanish national cancer research Centre, Hematological malignancies research unit, 28029 Madrid, Spain 4 UCM, Complutense University Madrid, Medical faculty, 28040 Madrid, Spain * Correspondence: [email protected] Received: 21 January 2020; Accepted: 25 February 2020; Published: 29 February 2020 Abstract: We previously reported a new approach for micromanipulation and encapsulation of human stem cells using a droplet-based microfluidic device We demonstrated the possibility of encapsulating and culturing difficult-to-preserve primary human hematopoietic stem cells using an engineered double layered bead composed by an inner layer of alginate and an outer layer of puramatrix constructed using a soft technology without the use of any external force. In this work, we use this micro manipulation technique to build a 3D scaffold as a biomimetic model to recapitulate the niche of patient-derived multiple myeloma cells (MM cell) using a multilayered 3D tissue scaffold constructed in a microfluidic device and cultured in 10% FBS culture medium. In the current study, we included the use of this biomimetic model comprising supporting human Mesenchymal stem cells to show the mid-term survival of MM cells in the proposed structures.
    [Show full text]
  • Embryoid Body Size-Mediated Differential Endodermal and Mesodermal Differentiation Using Polyethylene Glycol (PEG) Microwell Array
    Embryoid body size-mediated differential endodermal and mesodermal differentiation using polyethylene glycol (PEG) microwell array The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Cha, Jae Min, Hojae Bae, Nasser Sadr, Sam Manoucheri, Faramarz Edalat, Keekyoung Kim, Sang Bok Kim, Il Keun Kwon, Yu-Shik Hwang, and Ali Khademhosseini. “Embryoid Body Size-Mediated Differential Endodermal and Mesodermal Differentiation Using Polyethylene Glycol (PEG) Microwell Array.” Macromolecular Research 23, no. 3 (March 2015): 245–255. As Published http://dx.doi.org/10.1007/s13233-015-3034-0 Publisher The Polymer Society of Korea Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/105540 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. Macromolecular Research, Vol. 23, No. 3, pp 245-255 (2015) www.springer.com/13233 DOI 10.1007/s13233-015-3034-0 pISSN 1598-5032 eISSN 2092-7673 Embryoid Body Size-Mediated Differential Endodermal and Mesodermal Differentiation Using Polyethylene Glycol (PEG) Microwell Array Jae Min Cha†,1,2,3, Hojae Bae†,4,5, Nasser Sadr1,2,6,7, Sam Manoucheri1,2, Faramarz Edalat1,2, Keekyoung Kim1,2,6, Sang Bok Kim1,2, Il Keun Kwon4, Yu-Shik Hwang*,4, and Ali Khademhosseini*,1,2,4,6 1Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02118,
    [Show full text]
  • Stem Cells and Differentiation Rebecca Quelch1 and Stefan Przyborski1,2 1Department of Biosciences, Durham University, South Road, Durham, UK
    Stem Cells and Differentiation Rebecca Quelch1 and Stefan Przyborski1,2 1Department of Biosciences, Durham University, South Road, Durham, UK. 2ReproCELL Europe Ltd, NET Park Incubator, Sedgefield, UK. Email: [email protected] and [email protected] www.tocris.com Stem cells are defined by their ability to self-renew and propensity to differentiate into functional cell types. Pluripotent Stem Cells (PSCs) differentiate into cells of all three germ layers (endoderm, ectoderm and mesoderm), whereas Products available from Tocris multipotent stem cells are more limited in their differentiation potential. The unique abilities of these cell types make them attractive tools for a wide range of applications, from regenerative medicine to drug toxicity screening. There are a Reprogramming large number of protocols for the maintenance of this pluripotent state, as well as for the subsequent directed differentiation of these cells in vitro to form specialized cell types. (±)-Bay K 8644, BIX 01294, CHIR 99021, DBZ, 3-Deazaneplanocin A, Kenpaullone, L-Ascorbic acid, PD 0325901, RepSox, (S)-(+)- Pluripotent Stem Cells (PSCs) In Vitro Monolayer Differentiation of Pluripotent Stem Cells Dimethindene, SMER 28, Thiazovivin, Trichostatin A, Valproic acid, sodium salt The main pluripotent cell types used in vitro have been isolated over a number of decades. Initial models of differentiation were based upon conventional monolayer cell culture, and facilitated Differentiation identification of the key biochemical pathways controlling spatial patterning and development: Neural Stem Cells 1967 & 1975 Isolation of Mouse and Human Embryonal Carcinoma (EC) Cells [1 & 2] canonical WNT, Hedgehog, TGF and Retinoic Acid. Using this method many key modulators governing CHIR 99021, LDN 193189, DAPT, Dibutyryl-cAMP, Forskolin, these pathways were also revealed, providing well characterized and controllable methods of Dorsomorphin SB 431542 IDE1 Fluoxetine, IBMX, LDN 193189, differentiation.
    [Show full text]