Comparative Genomics of Fructobacillus Spp. and Leuconostoc Spp
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Taxonomic Note on the Genus Lactobacillus
Taxonomic Description template 1 A taxonomic note on the genus Lactobacillus: 2 Description of 23 novel genera, emended description 3 of the genus Lactobacillus Beijerinck 1901, and union 4 of Lactobacillaceae and Leuconostocaceae 5 Jinshui Zheng1, $, Stijn Wittouck2, $, Elisa Salvetti3, $, Charles M.A.P. Franz4, Hugh M.B. Harris5, Paola 6 Mattarelli6, Paul W. O’Toole5, Bruno Pot7, Peter Vandamme8, Jens Walter9, 10, Koichi Watanabe11, 12, 7 Sander Wuyts2, Giovanna E. Felis3, #*, Michael G. Gänzle9, 13#*, Sarah Lebeer2 # 8 '© [Jinshui Zheng, Stijn Wittouck, Elisa Salvetti, Charles M.A.P. Franz, Hugh M.B. Harris, Paola 9 Mattarelli, Paul W. O’Toole, Bruno Pot, Peter Vandamme, Jens Walter, Koichi Watanabe, Sander 10 Wuyts, Giovanna E. Felis, Michael G. Gänzle, Sarah Lebeer]. 11 The definitive peer reviewed, edited version of this article is published in International Journal of 12 Systematic and Evolutionary Microbiology, https://doi.org/10.1099/ijsem.0.004107 13 1Huazhong Agricultural University, State Key Laboratory of Agricultural Microbiology, Hubei Key 14 Laboratory of Agricultural Bioinformatics, Wuhan, Hubei, P.R. China. 15 2Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience 16 Engineering, University of Antwerp, Antwerp, Belgium 17 3 Dept. of Biotechnology, University of Verona, Verona, Italy 18 4 Max Rubner‐Institut, Department of Microbiology and Biotechnology, Kiel, Germany 19 5 School of Microbiology & APC Microbiome Ireland, University College Cork, Co. Cork, Ireland 20 6 University of Bologna, Dept. of Agricultural and Food Sciences, Bologna, Italy 21 7 Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit 22 Brussel, Brussels, Belgium 23 8 Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, 24 Belgium 25 9 Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada 26 10 Department of Biological Sciences, University of Alberta, Edmonton, Canada 27 11 National Taiwan University, Dept. -
Health Canada's Proposal to Enable the Use of Leuconostoc Carnosum
Health Canada’s Proposal to Enable the Use of Leuconostoc carnosum 4010 as an Antimicrobial Preservative in Certain Vacuum-Packed Non-Shelf-Stable Meat and Poultry Products Health Canada’s Proposal to Enable the Use of Leuconostoc carnosum 4010 as an Antimicrobial Preservative in Certain Vacuum-Packed Non-Shelf-Stable Meat and Poultry Products Notice of Proposal – Lists of Permitted Food Additives Reference Number: [NOP/AVP-0016] April 12, 2016 Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch 1 Health Canada’s Proposal to Enable the Use of Leuconostoc carnosum 4010 as an Antimicrobial Preservative in Certain Vacuum-Packed Non-Shelf-Stable Meat and Poultry Products Summary Food additives are regulated in Canada under Marketing Authorizations (MAs) issued by the Minister of Health and the Food and Drug Regulations. Approved food additives and their permitted conditions of use are set out in the Lists of Permitted Food Additives that are incorporated by reference in the MAs and published on Health Canada’s website. A petitioner can request that Health Canada approve a new additive or a new condition of use for an already approved food additive by filing a food additive submission with the Department's Food Directorate. Health Canada uses this premarket approval process to determine whether the scientific data support the safety of food additives when used under specified conditions in foods sold in Canada. Health Canada received a food additive submission seeking approval for the use of the bacterium Leuconostoc carnosum 4010 as an antimicrobial preservative at a maximum level of use consistent with Good Manufacturing Practice in certain vacuum-packed non-shelf-stable meat and poultry products, namely: bologna, cervelat, frankfurters, mortadella, and wieners. -
Food Microbiology Changes in the Microbial Communities in Vacuum
Food Microbiology 77 (2019) 26–37 Contents lists available at ScienceDirect Food Microbiology journal homepage: www.elsevier.com/locate/fm Changes in the microbial communities in vacuum-packaged smoked bacon during storage T ∗ Xinfu Lia,b,d, Cong Lia,b,d, Hua Yea,b, Zhouping Wanga,b, Xiang Wud, Yanqing Hand, Baocai Xub,c,d, a State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China b School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China c School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China d State Key Laboratory of Meat Processing and Quality Control, Yurun Group, Nanjing, 211806, China ARTICLE INFO ABSTRACT Keywords: This study aimed to gain deeper insights into the microbiota composition and population dynamics, monitor the Microbial communities dominant bacterial populations and identify the specific spoilage microorganisms (SSOs) of vacuum-packed Smoked bacon bacon during refrigerated storage using both culture-independent and dependent methods. High-throughout High-throughput sequencing (HTS) sequencing (HTS) showed that the microbial composition changed greatly with the prolongation of storage time. The diversity of microbiota was abundant at the initial stage then experienced a continuous decrease. Lactic acid bacteria (LAB) mainly Leuconostoc and Lactobacillus dominated the microbial population after seven days of storage. A total of 26 isolates were identified from different growth media using traditional cultivation isolation and identification method. Leuconostoc mesenteroides and Leuconostoc carnosum were the most prevalent species since day 15, while Lactobacillus sakei and Lactobacillus curvatus were only found on day 45, suggesting that they could be responsible for the spoilage of bacon. -
Genome Diversity in the Genera Fructobacillus, Leuconostoc and Weissella Determined by Physical and Genetic Mapping
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositório Científico do Instituto Nacional de Saúde Microbiology (2010), 156, 420–430 DOI 10.1099/mic.0.028308-0 Genome diversity in the genera Fructobacillus, Leuconostoc and Weissella determined by physical and genetic mapping Ivo M. Chelo,3 Lı´bia Ze´-Ze´4 and Roge´rio Tenreiro Correspondence Centro de Biodiversidade, Geno´mica Integrativa e Funcional (BioFIG), Faculdade de Cieˆncias da Ivo M. Chelo Universidade de Lisboa, Edificio ICAT, Campus da FCUL, Campo Grande, 1749-016 Lisboa, [email protected] Portugal Pulsed-field gel electrophoresis analysis of chromosomal single and double restriction profiles of 17 strains belonging to three genera of ‘Leuconostocaceae’ was done, resulting in physical and genetic maps for three Fructobacillus, six Leuconostoc and four Weissella strains. AscI, I-CeuI, NotI and SfiI restriction enzymes were used together with Southern hybridization of selected probes to provide an assessment of genomic organization in different species. Estimated genome sizes varied from 1408 kb to 1547 kb in Fructobacillus, from 1644 kb to 2133 kb in Leuconostoc and from 1371 kb to 2197 kb in Weissella. Other genomic characteristics of interest were analysed, such as oriC and terC localization and rrn operon organization. The latter seems markedly different in Weissella, in both number and disposition in the chromosome. Received 13 February 2009 Comparisons of intra- and intergeneric features are discussed in the light of chromosome Revised 19 October 2009 Accepted 2 November 2009 rearrangements and genomic evolution. INTRODUCTION As a supra-generic group, the Leuconostocs are phylogen- etically related to Lactobacillus and Pediococcus The genera Fructobacillus, Leuconostoc and Weissella are (Vandamme et al., 1996; Makarova & Koonin, 2007). -
Fundamental Food Microbiology, Third Edition
Third Edition FUNDAMENTAL FOOD MICROBIOLOGY Bibek Ray CRC PRESS Boca Raton London New York Washington, D.C. This edition published in the Taylor & Francis e-Library, 2005. “To purchase your own copy of this or any of Taylor & Francis or Routledge’s collection of thousands of eBooks please go to www.eBookstore.tandf.co.uk.” Cover Image: Microscope with easy phase contrast, dark field, and bright light facilities (M 4002 D). (Courtesy of Swift Instrument International, S.A.) Library of Congress Cataloging-in-Publication Data Ray, Bibek Fundamental food microbiology / Bibek Ray. --3rd ed. p. cm. Includes bibliographical references and index. ISBN 0-8493-1610-3 1. Food--Microbiology. I. Title QR115.R39 2003 664d.001d579--dc22 2003055738 This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher. The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying. Direct all inquiries to CRC Press LLC, 2000 N.W. -
From Genotype to Phenotype: Inferring Relationships Between Microbial Traits and Genomic Components
From genotype to phenotype: inferring relationships between microbial traits and genomic components Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakult¨at der Heinrich-Heine-Universit¨atD¨usseldorf vorgelegt von Aaron Weimann aus Oberhausen D¨usseldorf,29.08.16 aus dem Institut f¨urInformatik der Heinrich-Heine-Universit¨atD¨usseldorf Gedruckt mit der Genehmigung der Mathemathisch-Naturwissenschaftlichen Fakult¨atder Heinrich-Heine-Universit¨atD¨usseldorf Referent: Prof. Dr. Alice C. McHardy Koreferent: Prof. Dr. Martin J. Lercher Tag der m¨undlichen Pr¨ufung: 24.02.17 Selbststandigkeitserkl¨ arung¨ Hiermit erkl¨areich, dass ich die vorliegende Dissertation eigenst¨andigund ohne fremde Hilfe angefertig habe. Arbeiten Dritter wurden entsprechend zitiert. Diese Dissertation wurde bisher in dieser oder ¨ahnlicher Form noch bei keiner anderen Institution eingereicht. Ich habe bisher keine erfolglosen Promotionsversuche un- ternommen. D¨usseldorf,den . ... ... ... (Aaron Weimann) Statement of authorship I hereby certify that this dissertation is the result of my own work. No other person's work has been used without due acknowledgement. This dissertation has not been submitted in the same or similar form to other institutions. I have not previously failed a doctoral examination procedure. Summary Bacteria live in almost any imaginable environment, from the most extreme envi- ronments (e.g. in hydrothermal vents) to the bovine and human gastrointestinal tract. By adapting to such diverse environments, they have developed a large arsenal of enzymes involved in a wide variety of biochemical reactions. While some such enzymes support our digestion or can be used for the optimization of biotechnological processes, others may be harmful { e.g. mediating the roles of bacteria in human diseases. -
Antimicrobial Potential of Leuconostoc Species Against E. Coli O157:H7 in Ground Meat
J Korean Soc Appl Biol Chem (2015) 58(6):831–838 Online ISSN 2234-344X DOI 10.1007/s13765-015-0112-0 Print ISSN 1738-2203 ARTICLE Antimicrobial potential of Leuconostoc species against E. coli O157:H7 in ground meat Ok Kyung Koo1,2 . Seung Min Kim1 . Sun-Hee Kang3 Received: 12 June 2015 / Accepted: 3 August 2015 / Published online: 12 August 2015 Ó The Korean Society for Applied Biological Chemistry 2015 Abstract Ground beef is risky by foodborne pathogens Keywords Antimicrobial activity Á Escherichia coli such as E. coli O157:H7 due to the cross-contamination O157:H7 Á Ground meat Á Leuconostoc during grinding. The objective of this study was to evaluate the antagonistic activities of Leuconostoc species isolated from ground beef product in order to limit the growth of Introduction E. coli O157:H7. While Leuconostoc has been known as spoilage bacteria, the Leuconostoc isolates showed Pathogenic Escherichia coli has been the most frequent antimicrobial activity on foodborne pathogens such as cause of foodborne illness in Korea since 2003 (MFDS E. coli O157:H7, Salmonella, Staphylococcus aureus, 2015). While enterohemorrhagic E. coli (EHEC) is not the Listeria monocytogenes, and meat-spoilage bacteria Bro- most reported pathogenic E. coli in Korea, it can cause chothrix thermosphacta. Antimicrobial activity of cell-free significant disease such as hemolytic uremic syndrome. supernatant (CFS) was evaluated by heat, enzyme, and pH E. coli O157:H7 is one of the most frequent EHEC by adjustment and antagonistic activity by cell competitive about 30 % of infection in Korea and it was first isolated growth. -
Multiple Techno-Functional Characteristics of Leuconostoc and Their Potential in Sourdough Fermentations
microorganisms Article Multiple Techno-Functional Characteristics of Leuconostoc and Their Potential in Sourdough Fermentations Denise C. Müller 1,2 , Sandra Mischler 1, Regine Schönlechner 2 and Susanne Miescher Schwenninger 1,* 1 Food Biotechnology Research Group, Institute of Food and Beverage Innovation, Zurich University of Applied Sciences (ZHAW), 8820 Wädenswil, Switzerland; [email protected] (D.C.M.); [email protected] (S.M.) 2 Department of Food Science and Technology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria; [email protected] * Correspondence: [email protected] Abstract: In this study, the potential of Leuconostoc as non-conventional sourdough starter cultures was investigated. A screening for antifungal activities of 99 lactic acid bacteria (LAB) strains re- vealed high suppression of bakery-relevant moulds in nine strains of Leuconostoc with activities against Penicillium sp., Aspergillus sp., and Cladosporium sp. Mannitol production was determined in 49 Leuconostoc strains with >30 g/L mannitol in fructose (50 g/L)-enriched MRS. Further, exopolysac- charides (EPS) production was qualitatively determined on sucrose (40 g/L)-enriched MRS agar and revealed 59 EPS positive Leuconostoc strains that harboured dextransucrase genes, as confirmed by PCR. Four multifunctional Lc. citreum strains (DCM49, DCM65, MA079, and MA113) were finally ◦ Lc. citreum applied in lab-scale sourdough fermentations (30 C, 24 h). was confirmed by MALDI-TOF MS up to 9 log CFU/g and pH dropped to 4.0 and TTA increased to 12.4. Antifungal compounds such as acetic acid, phenyllactic and hydroxyphenyllactic acids were determined up to 1.7 mg/g, Citation: Müller, D.C.; Mischler, S.; Schönlechner, R.; Miescher 2.1 µg/g, and 1.3 µg/g, respectively, mannitol up to 8.6 mg/g, and EPS up to 0.62 g/100 g. -
Identification of Vancomycin-Resistant Lactic Bacteria Isolated from Humans T
JOURNAL OF CLINICAL MICROBIOLOGY, Sept. 1993, p. 2499-2501 Vol. 31, No. 9 0095-1137/93/092499-03$02.00/0 Copyright © 1993, American Society for Microbiology Identification of Vancomycin-Resistant Lactic Bacteria Isolated from Humans T. MACKEY, V. LEJEUNE, M. JANSSENS, AND G. WAUTERS* Microbiology Unit, UCL 5490, University ofLouvain, B-1200 Brussels, Belgium Received 25 February 1993/Returned for modification 13 April 1993/Accepted 1 June 1993 By using cell morphology, arginine dihydrolase, and gas production in de Man, Sharp, Rogosa broth, 122 isolates of vancomycin-resistant lactic bacteria from humans were assigned to five profiles, allowing us to distinguish Pediococcus, homofermentative and heterofermentative Lactobacilus, and Leuconostoc species. The absence ofL-(+)-lactic acid, as detected spectrophotometrically, was confirmatory forLeuconostoc species. API 50 CHL panels were useful for the identification of LactobaciUus species. Since the description by Buu-Hoi et al. (3) in 1985 of a case tested by using the API 50 CHL System (bioMerieux, of bacteremia caused by a Leuconostoc sp., there have been Marcy-l'Etoile, France), as recommended by the manufac- many reports of gram-positive bacteria isolated from pa- turer. Acid production from carbohydrates was also tested in tients with critical infections such as endocarditis, septice- MRS broth base without glucose but containing bromcresol mia, meningitis, pneumonia, and odontogenic that have purple as the indicator and the substrates at 1% (wt/vol). API high-level resistance to vancomycin (1, 2, 4, 8, 10, 11). 20 Strep panels (bioMerieux) were also used. Leuconostoc spp., Pediococcus spp., and some homofer- L-(+)-Lactate production was detected in a 24-h MRS mentative and heterofermentative Lactobacillus spp. -
Production of Levan from Locally Leuconostoc Mesensteroides Isolates
Adnan Yaas Khudair et al /J. Pharm. Sci. & Res. Vol. 10(12), 2018, 3372-3378 Production of Levan from Locally Leuconostoc mesensteroides isolates Adnan Yaas Khudair ; Jehan Abdul Sattar Salman and Hamzia Ali Ajah Department of Biology- College of Science -Mustansiriyah University- Baghdad-Iraq Abstract Thirty isolates of Leuconostoc mesenteroides were isolated from different sources included fish intestine , raw milk , banana , carrots and sauerkraut . All isolates were tested for levan production using mucoidy and spectrophotometric method . Results showed that only 11 isolates had the ability to produce levan . Precipitation of levan was done by using seven non polar organic solvents included ethanol , acetone , methanol , diethyl ether , isopropanol , chloroform and toluene separately , the precipitation of levan by ethanol , acetone , methanol , diethyl ether , isopropanol , chloroform , toluene were recorded as levan dry weight 1.482 , 1.477 , 1.350 , 1.252 , 1.479 , 1.239 , 1.261 with levan production yield 7.4% ,7.3 % , 6.7 % , 6.2 % , 7.3 % , 6.1 % , 6.3% respectively .The optimum conditions for levan production were studied included temperature , incubation time , pH , inoculum size , sucrose concentration , culture medium . The optimum conditions for production were at 30 ºC for 24 h at pH 7 with 4 % inoculum size and 10 % sucrose concentration and the best culture medium for levan production was sucrose medium . Key Words: Levan polymer , Leuconostoc mesenteroides , precipitation , optimum conditions INTRODUCTION identified throughout cultural , microscopical and Leuconostoc spp. is a genus of gram - positive bacteria , biochemical test according to [16] and Vitek 2 system. placed within the family of Leuconostocaceae and were first Screening of Leuconostoc mesenteroides for levan isolated in 1878 by Cienkowski [1 , 2] . -
Tap Water Is One of the Drivers That Establish and Assembly the Lactic Acid Bacterium Biota During Sourdough Preparation
www.nature.com/scientificreports OPEN Tap water is one of the drivers that establish and assembly the lactic acid bacterium biota during Received: 13 July 2018 Accepted: 28 October 2018 sourdough preparation Published: xx xx xxxx Fabio Minervini1, Francesca Rita Dinardo1, Maria De Angelis1 & Marco Gobbetti2 This study aimed at assessing the efect of tap water on the: (i) lactic acid bacteria (LAB) population of a traditional and mature sourdough; and (ii) establishment of LAB community during sourdough preparation. Ten tap water, collected from Italian regions characterized by cultural heritage in leavened baked goods, were used as ingredient for propagating or preparing frm (type I) sourdoughs. The same type and batch of four, recipe, fermentation temperature and time were used for propagation/ preparation, being water the only variable parameter. During nine days of propagation of a traditional and mature Apulian sourdough, LAB cell density did not difer, and the LAB species/strain composition hardly changed, regardless of the water. When the diferent tap water were used for preparing the corresponding sourdoughs, the values of pH became lower than 4.5 after two to four fermentations. The type of water afected the assembly of the LAB biome. As shown by Principal Components Analysis, LAB population in the sourdoughs and chemical and microbiological features of water used for their preparation partly overlapped. Several correlations were found between sourdough microbiota and water features. These data open the way to future researches about the use of various types of water in bakery industry. An increasing number of artisan and industrial bakeries make use of sourdough as biological leavening agent and/or baking improver1. -
CGM-18-001 Perseus Report Update Bacterial Taxonomy Final Errata
report Update of the bacterial taxonomy in the classification lists of COGEM July 2018 COGEM Report CGM 2018-04 Patrick L.J. RÜDELSHEIM & Pascale VAN ROOIJ PERSEUS BVBA Ordering information COGEM report No CGM 2018-04 E-mail: [email protected] Phone: +31-30-274 2777 Postal address: Netherlands Commission on Genetic Modification (COGEM), P.O. Box 578, 3720 AN Bilthoven, The Netherlands Internet Download as pdf-file: http://www.cogem.net → publications → research reports When ordering this report (free of charge), please mention title and number. Advisory Committee The authors gratefully acknowledge the members of the Advisory Committee for the valuable discussions and patience. Chair: Prof. dr. J.P.M. van Putten (Chair of the Medical Veterinary subcommittee of COGEM, Utrecht University) Members: Prof. dr. J.E. Degener (Member of the Medical Veterinary subcommittee of COGEM, University Medical Centre Groningen) Prof. dr. ir. J.D. van Elsas (Member of the Agriculture subcommittee of COGEM, University of Groningen) Dr. Lisette van der Knaap (COGEM-secretariat) Astrid Schulting (COGEM-secretariat) Disclaimer This report was commissioned by COGEM. The contents of this publication are the sole responsibility of the authors and may in no way be taken to represent the views of COGEM. Dit rapport is samengesteld in opdracht van de COGEM. De meningen die in het rapport worden weergegeven, zijn die van de auteurs en weerspiegelen niet noodzakelijkerwijs de mening van de COGEM. 2 | 24 Foreword COGEM advises the Dutch government on classifications of bacteria, and publishes listings of pathogenic and non-pathogenic bacteria that are updated regularly. These lists of bacteria originate from 2011, when COGEM petitioned a research project to evaluate the classifications of bacteria in the former GMO regulation and to supplement this list with bacteria that have been classified by other governmental organizations.