Identification of Novel CDH23 Variants Causing Moderate to Profound
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Putative Pore-Forming Subunits of the Mechano-Electrical Transduction Channel
bioRxiv preprint doi: https://doi.org/10.1101/393330; this version posted August 23, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 2 3 4 Putative pore-forming subunits of the mechano-electrical transduction channel, 5 Tmc1/2b, require Tmie to localize to the site of mechanotransduction in zebrafish 6 sensory hair cells 7 8 9 Itallia V. Pacentine and Teresa Nicolson* 10 Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, 11 Portland, Oregon, United States of America 12 13 14 *Corresponding author 15 E-mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/393330; this version posted August 23, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 16 Abstract 17 Mutations in transmembrane inner ear (TMIE) cause deafness in humans; previous 18 studies suggest involvement in the mechano-electrical transduction (MET) complex in sensory 19 hair cells, but TMIE’s precise role is unclear. In tmie zebrafish mutants, we observed that GFP- 20 tagged Tmc1 and Tmc2b, which are putative subunits of the MET channel, fail to target to the 21 hair bundle. In contrast, overexpression of Tmie strongly enhances the targeting of Tmc2b-GFP 22 to stereocilia. -
The Lhfpl5 Ohnologs Lhfpl5a and Lhfpl5b Are Required for Mechanotransduction in Distinct Populations of Sensory Hair Cells in Zebrafish
fnmol-12-00320 January 2, 2020 Time: 14:35 # 1 ORIGINAL RESEARCH published: 15 January 2020 doi: 10.3389/fnmol.2019.00320 The lhfpl5 Ohnologs lhfpl5a and lhfpl5b Are Required for Mechanotransduction in Distinct Populations of Sensory Hair Cells in Zebrafish Timothy Erickson1,2*, Itallia V. Pacentine2, Alexandra Venuto1, Rachel Clemens2 and Teresa Nicolson2† 1 Department of Biology, East Carolina University, Greenville, NC, United States, 2 Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR, United States Hair cells sense and transmit auditory, vestibular, and hydrodynamic information by converting mechanical stimuli into electrical signals. This process of mechano-electrical transduction (MET) requires a mechanically gated channel localized in the apical Edited by: stereocilia of hair cells. In mice, lipoma HMGIC fusion partner-like 5 (LHFPL5) acts Isabel Varela-Nieto, as an auxiliary subunit of the MET channel whose primary role is to correctly localize Spanish National Research Council (CSIC), Spain PCDH15 and TMC1 to the mechanotransduction complex. Zebrafish have two lhfpl5 Reviewed by: genes (lhfpl5a and lhfpl5b), but their individual contributions to MET channel assembly Hiroshi Hibino, and function have not been analyzed. Here we show that the zebrafish lhfpl5 genes Niigata University, Japan are expressed in discrete populations of hair cells: lhfpl5a expression is restricted to Sangyong Jung, Singapore Bioimaging Consortium auditory and vestibular hair cells in the inner ear, while lhfpl5b expression is specific ∗ (A STAR), Singapore to hair cells of the lateral line organ. Consequently, lhfpl5a mutants exhibit defects in Gwenaelle Geleoc, Harvard Medical School, auditory and vestibular function, while disruption of lhfpl5b affects hair cells only in the United States lateral line neuromasts. -
Comprehensive Sequence Analysis of Nine Usher Syndrome Genes in The
Genotype-phenotype correlations J Med Genet: first published as 10.1136/jmedgenet-2011-100468 on 1 December 2011. Downloaded from ORIGINAL ARTICLE Comprehensive sequence analysis of nine Usher syndrome genes in the UK National Collaborative Usher Study Polona Le Quesne Stabej,1 Zubin Saihan,2,3 Nell Rangesh,4 Heather B Steele-Stallard,1 John Ambrose,5 Alison Coffey,5 Jenny Emmerson,5 Elene Haralambous,1 Yasmin Hughes,1 Karen P Steel,5 Linda M Luxon,4,6 Andrew R Webster,2,3 Maria Bitner-Glindzicz1,6 < Additional materials are ABSTRACT characterised by congenital, moderate to severe published online only. To view Background Usher syndrome (USH) is an autosomal hearing loss, with normal vestibular function and these files please visit the recessive disorder comprising retinitis pigmentosa, onset of RP around or after puberty; and type III journal online (http://jmg.bmj. fi com/content/49/1.toc). hearing loss and, in some cases, vestibular dysfunction. (USH3), de ned by postlingual progressive hearing 1 It is clinically and genetically heterogeneous with three loss and variable vestibular response together with Clinical and Molecular e 1 2 Genetics, Institute of Child distinctive clinical types (I III) and nine Usher genes RP. In addition there remain patients whose Health, UCL, London, UK identified. This study is a comprehensive clinical and disease does not fit into any of these three 2Institute of Ophthalmology, genetic analysis of 172 Usher patients and evaluates the subtypes, because of atypical audiovestibular or UCL, London, UK fi ‘ 3 contribution of digenic inheritance. retinal ndings, who are said to have atypical Moorfields Eye Hospital, Methods The genes MYO7A, USH1C, CDH23, PCDH15, ’ London, UK Usher syndrome . -
Diversity of the Genes Implicated in Algerian Patients Affected by Usher Syndrome
RESEARCH ARTICLE Diversity of the Genes Implicated in Algerian Patients Affected by Usher Syndrome Samia Abdi1,2,3, Amel Bahloul4, Asma Behlouli1,5, Jean-Pierre Hardelin4, Mohamed Makrelouf1, Kamel Boudjelida3,6, Malek Louha7, Ahmed Cheknene3,8, Rachid Belouni2,3, Yahia Rous3,8, Zahida Merad3,6, Djamel Selmane9, Mokhtar Hasbelaoui10, Crystel Bonnet11, Akila Zenati1, Christine Petit4,11,12* 1 Laboratoire de biochimie génétique, Service de biologie - CHU de Bab El Oued, Université d'Alger 1, 16 Alger, Algérie, 2 Laboratoire central de biologie, CHU Frantz Fanon, 09 Blida, Algérie, 3 Faculté de médecine, Université Saad Dahleb, 09 Blida, Algérie, 4 Unité de génétique et physiologie de l’audition, INSERM UMRS1120, Institut Pasteur, 75015, Paris, France, 5 Faculté des sciences biologiques, Université des sciences et de la technologie Houari Boumédiène, 16 Alger, Algérie, 6 Service d’ophtalmologie, CHU Frantz Fanon, 09 Blida, Algérie, 7 Service de biochimie et de biologie moléculaire, Hôpital Armand Trousseau, APHP, 75012, Paris, France, 8 Service d’ORL, CHU Frantz Fanon, 09 Blida, Algérie, 9 Service a11111 d’ORL, CHU Bab el Oued, 16 Alger, Algérie, 10 Service d’ORL, CHU Tizi Ouzou, 15 Tizi-Ouzou, Algérie, 11 INSERM UMRS 1120, Institut de la vision, Université Pierre et Marie Curie, 75005, Paris, France, 12 Collège de France, 75005, Paris, France * [email protected] OPEN ACCESS Abstract Citation: Abdi S, Bahloul A, Behlouli A, Hardelin J-P, Usher syndrome (USH) is an autosomal recessive disorder characterized by a dual sensory Makrelouf M, Boudjelida K, et al. (2016) Diversity of the Genes Implicated in Algerian Patients Affected by impairment affecting hearing and vision. -
USHIC, CDH23 and TMIE
Non-Syndromic Hearing Impairment in India: High Allelic Heterogeneity among Mutations in TMPRSS3, TMC1, USHIC, CDH23 and TMIE Aparna Ganapathy1, Nishtha Pandey1, C. R. Srikumari Srisailapathy2, Rajeev Jalvi3, Vikas Malhotra4, Mohan Venkatappa1, Arunima Chatterjee1, Meenakshi Sharma1, Rekha Santhanam1, Shelly Chadha4, Arabandi Ramesh2, Arun K. Agarwal4, Raghunath R. Rangasayee3, Anuranjan Anand1* 1 Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India, 2 Department of Genetics, Dr. ALM Post Graduate Institute of Basic Medical Sciences, Chennai, India, 3 Department of Audiology, Ali Yavar Jung National Institute for the Hearing Handicapped, Mumbai, India, 4 Department of ENT, Maulana Azad Medical College, New Delhi, India Abstract Mutations in the autosomal genes TMPRSS3, TMC1, USHIC, CDH23 and TMIE are known to cause hereditary hearing loss. To study the contribution of these genes to autosomal recessive, non-syndromic hearing loss (ARNSHL) in India, we examined 374 families with the disorder to identify potential mutations. We found four mutations in TMPRSS3, eight in TMC1, ten in USHIC, eight in CDH23 and three in TMIE. Of the 33 potentially pathogenic variants identified in these genes, 23 were new and the remaining have been previously reported. Collectively, mutations in these five genes contribute to about one-tenth of ARNSHL among the families examined. New mutations detected in this study extend the allelic heterogeneity of the genes and provide several additional variants for structure-function correlation studies. These findings have implications for early DNA-based detection of deafness and genetic counseling of affected families in the Indian subcontinent. Citation: Ganapathy A, Pandey N, Srisailapathy CRS, Jalvi R, Malhotra V, et al. -
TMHS Is an Integral Component of the Mechanotransduction Machinery of Cochlear Hair Cells
TMHS Is an Integral Component of the Mechanotransduction Machinery of Cochlear Hair Cells Wei Xiong,1 Nicolas Grillet,1 Heather M. Elledge,1 Thomas F.J. Wagner,1 Bo Zhao,1 Kenneth R. Johnson,2 Piotr Kazmierczak,1 and Ulrich Mu¨ller1,* 1The Dorris Neuroscience Center, Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA 2The Jackson Laboratory, Bar Harbor, ME 04609, USA *Correspondence: [email protected] http://dx.doi.org/10.1016/j.cell.2012.10.041 SUMMARY deflection of the stereociliary bundles, which directly control the activity of the mechanotransduction channels in stereocilia. Hair cells are mechanosensors for the perception of It is thought that tip links, fine extracellular filaments that connect sound, acceleration, and fluid motion. Mechano- the tips of neighboring stereocilia, transmit tension force onto transduction channels in hair cells are gated by tip the transduction channels (Gillespie and Mu¨ ller, 2009). links, which connect the stereocilia of a hair cell in In recent years, significant progress has been made in the direction of their mechanical sensitivity. The the identification of components of the mechanotransduction molecular constituents of the mechanotransduction machinery of hair cells (Figure 1A). These studies have shown that tip links are formed by CDH23 homodimers that interact channels of hair cells are not known. Here, we show with PCDH15 homodimers to form the upper and lower parts that mechanotransduction is impaired in mice lack- of tip links (Ahmed et al., 2006; Kazmierczak et al., 2007; ing the tetraspan TMHS. TMHS binds to the tip-link Siemens et al., 2004; So¨ llner et al., 2004). -
Impact of a Diet and Activity Health Promotion Intervention on Regional
Hibler et al. Clinical Epigenetics (2019) 11:133 https://doi.org/10.1186/s13148-019-0707-0 RESEARCH Open Access Impact of a diet and activity health promotion intervention on regional patterns of DNA methylation Elizabeth Hibler1* , Lei Huang2, Jorge Andrade2,3 and Bonnie Spring1 Abstract Background: Studies demonstrate the impact of diet and physical activity on epigenetic biomarkers, specifically DNA methylation. However, no intervention studies have examined the combined impact of dietary and activity changes on the blood epigenome. The objective of this study was to examine the impact of the Make Better Choices 2 (MBC2) healthy diet and activity intervention on patterns of epigenome-wide DNA methylation. The MBC2 study was a 9-month randomized controlled trial among adults aged 18–65 with non-optimal levels of health behaviors. The study compared three 12-week interventions to (1) simultaneously increase exercise and fruit/ vegetable intake, while decreasing sedentary leisure screen time; (2) sequentially increase fruit/vegetable intake and decrease leisure screen time first, then increase exercise; (3) increase sleep and decrease stress (control). We collected blood samples at baseline, 3 and 9 months, and measured DNA methylation using the Illumina EPIC (850 k) BeadChip. We examined region-based differential methylation patterns using linear regression models with the false discovery rate of 0.05. We also conducted pathway analysis using gene ontology (GO), KEGG, and IPA canonical pathway databases. Results: We found no differences between the MBC2 population (n = 340) and the subsample with DNA methylation measured (n = 68) on baseline characteristics or the impact of the intervention on behavior change. -
Supplementary Materials
Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine -
Homology Modeling and Global Computational Mutagenesis of Human Myosin Viia
Journal of Analytical & Pharmaceutical Research Research Article Open Access Homology modeling and global computational mutagenesis of human myosin VIIa Abstract Volume 10 Issue 1 - 2021 Usher syndrome type 1B (USH1B) is a genetic disorder caused by mutations in the Annapurna Kuppa, Yuri V Sergeev unconventional Myosin VIIa (MYO7A) protein. USH1B is characterized by hearing loss Ophthalmic Genetics and Visual Function Branch, National Eye due to abnormalities in the inner ear and vision loss due to retinitis pigmentosa. Here, Institute, National Institutes of Health, Bethesda, United States we present the model of human MYO7A homodimer, built using homology modeling, and refined using 5 ns molecular dynamics in water. Global computational mutagenesis Correspondence: Yuri V. Sergeev, Ophthalmic Genetics was applied to evaluate the effect of missense mutations that are critical for maintaining and Visual Function Branch, National Eye Institute, National protein structure and stability of MYO7A in inherited eye disease. We found that 43.26% Institutes of Health, Bethesda, MD, United States, (77 out of 178 in HGMD) and 41.9% (221 out of 528 in ClinVar) of the disease-related Email missense mutations were associated with higher protein structure destabilizing effects. Overall, most mutations destabilizing the MYO7A protein were found to associate with Received: February 20, 2021 | Published: March 04, 2021 USH1 and USH1B. Particularly, motor domain and MyTH4 domains were found to be most susceptible to mutations causing the USH1B phenotype. Our work contributes to the understanding of inherited disease from the atomic level of protein structure and analysis of the impact of genetic mutations on protein stability and genotype-to-phenotype relationships in human disease. -
Improved TMC1 Gene Therapy Restores Hearing and Balance in Mice with Genetic Inner Ear Disorders
Corrected: Publisher correction ARTICLE https://doi.org/10.1038/s41467-018-08264-w OPEN Improved TMC1 gene therapy restores hearing and balance in mice with genetic inner ear disorders Carl A. Nist-Lund1, Bifeng Pan 1,2, Amy Patterson1, Yukako Asai1,2, Tianwen Chen3, Wu Zhou3, Hong Zhu3, Sandra Romero4, Jennifer Resnik2,4, Daniel B. Polley2,4, Gwenaelle S. Géléoc1,2 & Jeffrey R. Holt1,2,5 Fifty percent of inner ear disorders are caused by genetic mutations. To develop treatments for genetic inner ear disorders, we designed gene replacement therapies using synthetic 1234567890():,; adeno-associated viral vectors to deliver the coding sequence for Transmembrane Channel- Like (Tmc) 1 or 2 into sensory hair cells of mice with hearing and balance deficits due to mutations in Tmc1 and closely related Tmc2. Here we report restoration of function in inner and outer hair cells, enhanced hair cell survival, restoration of cochlear and vestibular function, restoration of neural responses in auditory cortex and recovery of behavioral responses to auditory and vestibular stimulation. Secondarily, we find that inner ear Tmc gene therapy restores breeding efficiency, litter survival and normal growth rates in mouse models of genetic inner ear dysfunction. Although challenges remain, the data suggest that Tmc gene therapy may be well suited for further development and perhaps translation to clinical application. 1 Department of Otolaryngology and F.M. Kirby Neurobiology Center, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA. 2 Department of Otolaryngology, Harvard Medical School, Boston, MA 02139, USA. 3 Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA. -
Tip-Link Protein Protocadherin 15 Interacts with Transmembrane Channel-Like Proteins TMC1 and TMC2
Tip-link protein protocadherin 15 interacts with transmembrane channel-like proteins TMC1 and TMC2 Reo Maedaa,b,1, Katie S. Kindta,b,1,2, Weike Moa,b,1, Clive P. Morgana,b, Timothy Ericksona,b, Hongyu Zhaoa,b, Rachel Clemens-Grishama,b, Peter G. Barr-Gillespiea,b, and Teresa Nicolsona,b,3 aOregon Hearing Research Center and bVollum Institute, Oregon Health and Science University, Portland, OR 97239 Edited by A. J. Hudspeth, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, and approved July 23, 2014 (received for review February 3, 2014) The tip link protein protocadherin 15 (PCDH15) is a central compo- vestibular deficits, along with the complete absence of normal nent of the mechanotransduction complex in auditory and vestib- mechanotransduction currents in auditory and vestibular hair cells ular hair cells. PCDH15 is hypothesized to relay external forces to the (17). Changes in calcium permeability through the transduction mechanically gated channel located near its cytoplasmic C terminus. channel of cochlear hair cells were observed for Tmc1 Tmc2 How PCDH15 is coupled to the transduction machinery is not clear. double-mutant mice, as well as in single mutants of either gene Using a membrane-based two-hybrid screen to identify proteins (10, 18, 19). In further support of the idea that TMCs are pore- that bind to PCDH15, we detected an interaction between zebrafish forming subunits of the transduction channel, mouse vestibular Pcdh15a and an N-terminal fragment of transmembrane channel- hair cells that express only the dominant Beethoven (M412K) al- like 2a (Tmc2a). Tmc2a is an ortholog of mammalian TMC2, which lele of Tmc1, in the absence of any wild-type TMC1 or TMC2, along with TMC1 has been implicated in mechanotransduction in display altered single-channel transduction currents (10). -
Elucidating Biological Roles of Novel Murine Genes in Hearing Impairment in Africa
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2019 doi:10.20944/preprints201909.0222.v1 Review Elucidating Biological Roles of Novel Murine Genes in Hearing Impairment in Africa Oluwafemi Gabriel Oluwole,1* Abdoulaye Yal 1,2, Edmond Wonkam1, Noluthando Manyisa1, Jack Morrice1, Gaston K. Mazanda1 and Ambroise Wonkam1* 1Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa. 2Department of Neurology, Point G Teaching Hospital, University of Sciences, Techniques and Technology, Bamako, Mali. *Correspondence to: [email protected]; [email protected] Abstract: The prevalence of congenital hearing impairment (HI) is highest in Africa. Estimates evaluated genetic causes to account for 31% of HI cases in Africa, but the identification of associated causative genes mutations have been challenging. In this study, we reviewed the potential roles, in humans, of 38 novel genes identified in a murine study. We gathered information from various genomic annotation databases and performed functional enrichment analysis using online resources i.e. genemania and g.proflier. Results revealed that 27/38 genes are express mostly in the brain, suggesting additional cognitive roles. Indeed, HERC1- R3250X had been associated with intellectual disability in a Moroccan family. A homozygous 216-bp deletion in KLC2 was found in two siblings of Egyptian descent with spastic paraplegia. Up to 27/38 murine genes have link to at least a disease, and the commonest mode of inheritance is autosomal recessive (n=8). Network analysis indicates that 20 other genes have intermediate and biological links to the novel genes, suggesting their possible roles in HI.