HHS Public Access Author Manuscript
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bee Forage Use), Services (Pollination Services) and Threats (Hive Theft and Vandalism
An assessment of different beekeeping practices in South Africa based on their needs (bee forage use), services (pollination services) and threats (hive theft and vandalism) by Tlou Samuel Masehela Dissertation presented for the degree of Doctor of Philosophy in Entomology in the Faculty of Agricultural Sciences at Stellenbosch University Supervisor: Dr Ruan Veldtman March 2017 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis/dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. March 2017 Copyright © 2017 Stellenbosch University All rights reserved ii Stellenbosch University https://scholar.sun.ac.za General summary Two honey bee subspecies indigenous to South Africa, Apis mellifera capensis Escholtz (Cape honey bee) and Apis mellifera scutellata Lepeletier, are actively managed by beekeepers for honey production, other bee related products (e.g. bees wax) and to provide pollination services. Historic records show that managed colonies of both subspecies to rely on a mix of exotic - (Eucalyptus species, agricultural crops, weeds and suburban plantings) and indigenous forage (genera and vegetation units). However, their extent of use and importance for honey production, pollination, colony maintenance and swarm trapping (together referred to as beekeeping practices), have not been fully explored across South Africa. Additionally, acts of hive theft and vandalism have become a key concern for the industry, threatening and potentially limiting beekeeping in some areas. -
Comparing Classical and Geometric Morphometric Methods To
Comparing classical and geometric morphometric methods to discriminate between the South African honey bee subspecies Apis mellifera scutellata and Apis mellifera capensis (Hymenoptera: Apidae) Tomas Bustamante, Benjamin Baiser, James D. Ellis To cite this version: Tomas Bustamante, Benjamin Baiser, James D. Ellis. Comparing classical and geometric morphome- tric methods to discriminate between the South African honey bee subspecies Apis mellifera scutel- lata and Apis mellifera capensis (Hymenoptera: Apidae). Apidologie, 2020, 51 (1), pp.123-136. 10.1007/s13592-019-00651-6. hal-03060423 HAL Id: hal-03060423 https://hal.archives-ouvertes.fr/hal-03060423 Submitted on 14 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2020) 51:123–136 Original article * INRA, DIB and Springer-Verlag France SAS, part of Springer Nature, 2019 DOI: 10.1007/s13592-019-00651-6 Comparing classical and geometric morphometric methods to discriminate between the South African honey bee subspecies Apis mellifera scutellata and Apis mellifera capensis (Hymenoptera: Apidae) 1 2 1 Tomas BUSTAMANTE , Benjamin BAISER , James D. ELLIS 1Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA 2Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA Received 28 June 2018 – Revised 11 February 2019 – Accepted 26 April 2019 Abstract – There are two endemic subspecies of western honey bees (Apis mellifera L.) in the Republic of South Africa (RSA), A.m. -
1 KEY to the DESERT ANTS of CALIFORNIA. James Des Lauriers
KEY TO THE DESERT ANTS OF CALIFORNIA. James des Lauriers Dept Biology, Chaffey College, Alta Loma, CA [email protected] 15 Apr 2011 Snelling and George (1979) surveyed the Mojave and Colorado Deserts including the southern ends of the Owen’s Valley and Death Valley. They excluded the Pinyon/Juniper woodlands and higher elevation plant communities. I have included the same geographical region but also the ants that occur at higher elevations in the desert mountains including the Chuckwalla, Granites, Providence, New York and Clark ranges. Snelling, R and C. George, 1979. The Taxonomy, Distribution and Ecology of California Desert Ants. Report to Calif. Desert Plan Program. Bureau of Land Mgmt. Their keys are substantially modified in the light of more recent literature. Some of the keys include species whose ranges are not known to extend into the deserts. Names of species known to occur in the Mojave or Colorado deserts are colored red. I would appreciate being informed if you find errors or can suggest changes or additions. Key to the Subfamilies. WORKERS AND FEMALES. 1a. Petiole two-segmented. ……………………………………………………………………………………………………………………………………………..2 b. Petiole one-segmented. ……………………………………………………………………………………………………………………………………..………..4 2a. Frontal carinae narrow, not expanded laterally, antennal sockets fully exposed in frontal view. ……………………………….3 b. Frontal carinae expanded laterally, antennal sockets partially or fully covered in frontal view. …………… Myrmicinae, p 4 3a. Eye very large and covering much of side of head, consisting of hundreds of ommatidia; thorax of female with flight sclerites. ………………………………………………………………………………………………………………………………….…. Pseudomyrmecinae, p 2 b. Eye absent or vestigial and consist of a single ommatidium; thorax of female without flight sclerites. -
Ecological Partitioning and Invasive Ants (Hymenoptera: Formicidae) in a Tropical Rain Forest Ant Community from Fiji1
Ecological Partitioning and Invasive Ants (Hymenoptera: Formicidae) in a Tropical Rain Forest Ant Community from Fiji1 Darren Ward2 Abstract: Determining composition and structure of ant communities may help understand how niche opportunities become available for invasive ant species and ultimately how communities are invaded. This study examined composition and structure of an ant community from a tropical rain forest in Fiji, specifically looking at spatial partitioning and presence of invasive ant species. A total of 27 species was collected, including five invasive species. Spatial partitioning be- tween arboreal (foliage beating) and litter (quadrat) samples was evident with a relatively low species overlap and a different composition of ant genera. Com- position and abundance of ants was also significantly different between litter and arboreal microhabitats at baits, but not at different bait types (oil, sugar, tuna). In terms of invasive ant species, there was no difference in number of invasive species between canopy and litter. However, the most common species, Paratre- china vaga, was significantly less abundant and less frequently collected in the canopy. In arboreal samples, invasive species were significantly smaller than en- demic species, which may have provided an opportunity for invasive species to become established. However, taxonomic disharmony (missing elements in the fauna) could also play an important role in success of invasive ant species across the Pacific region. Invasive ants represent a serious threat to biodiversity in Fiji and on many other Pacific islands. A greater understanding of habitat suscepti- bility and mechanisms for invasion may help mitigate their impacts. Explaining and predicting the success of 1999, Holway et al. -
Individual, Geographical and Experimental Variation of Cuticular
Biochemical Systematics and Ecology,VoL 18, No. 1, pp. 63-73, 1990. 0305-1978/90 $3.00+0.00 Printed in GreatBritain. © 1990 Pergamon Press plc. Individual, Geographical and Experimental Variation of Cuticular Hydrocarbons of the Ant Cataglyphis cursor (Hymenoptera: Formicidae)" Their Use in Nest and Subspecies Recognition E. NOWBAHARI,* A. LENOIR,t J. L. CLI~MENT,:~ C. LANGE,§ A. G. BAGNERES$ and C. JOULIE$ *Laboratoire d'Ethologie et Psychophysiologie, Universit@ F. Rabelais, Parc de Grandmont, F-37200 Tours, France; lLaboratoire d'Ethologie et Sociobiologie, URA CNRS 661. Universit@ Paris Nord, Av. J. B. Cl@ment, F-93430 Villetaneuse, France; :~Laboratoire d'Evolution, Universit~ P. et M. Curie, 105 Bd Raspail, F-75006 Paris, France; §Laboratoire de Chimie Organique Structurale, UA CNRS 455. Universit@ P. et M. Curie, 4 place Jussieu, F-75005 Paris, France Key Word Index--Cataglyphis cursor; Hymenoptera; Formicidae; cuticle; hydrocarbons; colonial; odor; populations; aggressive behavior. Abstract--The cuticular hydrocarbons of Cataglyphis cursor (Fonsc.) adults have been identified and quantified. Comparison of the proportion of hydrocarbons in various locations shows a variation between populations from each side of the Rh6ne river and an isolated population in the mountains near Madrid. In the studied area (not including Italy and eastern places) at least three subspecies have been found. Ethological analyses show that colony recognition, as indicated by aggressive behavior and the possibilities of adoption in an alien society, is correlated with the composition of cuticular hydrocarbons. Callows can be adopted in an alien colony, they can live in two colonies where the adults do not tolerate each other. -
Description of a New Genus of Primitive Ants from Canadian Amber
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 8-11-2017 Description of a new genus of primitive ants from Canadian amber, with the study of relationships between stem- and crown-group ants (Hymenoptera: Formicidae) Leonid H. Borysenko Canadian National Collection of Insects, Arachnids and Nematodes, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/insectamundi Part of the Ecology and Evolutionary Biology Commons, and the Entomology Commons Borysenko, Leonid H., "Description of a new genus of primitive ants from Canadian amber, with the study of relationships between stem- and crown-group ants (Hymenoptera: Formicidae)" (2017). Insecta Mundi. 1067. http://digitalcommons.unl.edu/insectamundi/1067 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI A Journal of World Insect Systematics 0570 Description of a new genus of primitive ants from Canadian amber, with the study of relationships between stem- and crown-group ants (Hymenoptera: Formicidae) Leonid H. Borysenko Canadian National Collection of Insects, Arachnids and Nematodes AAFC, K.W. Neatby Building 960 Carling Ave., Ottawa, K1A 0C6, Canada Date of Issue: August 11, 2017 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL Leonid H. Borysenko Description of a new genus of primitive ants from Canadian amber, with the study of relationships between stem- and crown-group ants (Hymenoptera: Formicidae) Insecta Mundi 0570: 1–57 ZooBank Registered: urn:lsid:zoobank.org:pub:C6CCDDD5-9D09-4E8B-B056-A8095AA1367D Published in 2017 by Center for Systematic Entomology, Inc. -
Cataglyphis Desert Ants: a Good Model for Evolutionary Biology in Darwin's
Cataglyphis desert ants: a good model for evolutionary biology in Darwin’s anniversary year—A review ALAIN LENOIR,1 SERGE ARON,2 XIM CERDÁ,3 AND ABRAHAM HEFETZ4 1IRBI, UMR CNRS 6035, Université François Rabelais, Faculté des Sciences, 37200 Tours, France. E-mail: [email protected] 2Université Libre de Bruxelles, Service Évolution Biologique & Écologie, C.P. 160/12 50, av. F.D. Roosevelt, 1050 Bruxelles, Belgique. E-mail: [email protected] 3Estación Biológica de Doñana, CSIC, Avda. Américo Vespucio s/n, E-41092 Sevilla, Spain. E-mail: [email protected] 4Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel. E-mail: [email protected] ABSTRACT Cataglyphis ants comprise one of the most characteristic groups of insects in arid regions around the Mediterranean basin and have been intensively stud- ied over the last 30 years. These ants are central-place foragers and scaven- gers, single-prey loaders that have become a model for insect navigation using sophisticated visual orientation, having lost pheromone orientation. They are highly heat-tolerant ants that forage close to their critical thermal limit dur- ing the hottest hours of the day, with their long-chain cuticular hydrocarbons protecting them from desiccation. This is exemplified in two Cataglyphis species, each of which developed different mechanisms for counteracting extreme heat when foraging: polymorphism of workers vs. physiological and behavioral adaptations. Several species in this genus have also become a model for studying nestmate recognition mechanisms. The role of cuticular hydrocarbons and the postpharyngeal gland as a reservoir of hydrocarbons in nestmate recognition was initially discovered mainly in Cataglyphis, includ- ing the first experimental demonstration of the Gestalt model of nestmate recognition. -
Proceedings the Royal Society
Downloaded from rspb.royalsocietypublishing.org on 15 April 2009 PROCEEDINGS THE ROYAL BIOLOGICAL OF SOCIETY SCIENCES No sex in fungus-farming ants or their crops Anna G. Himler, Eric J. Caldera, Boris C. Baer, Hermogenes Fernandez-Marin and Ulrich G. Mueller Proc. R. Soc. B published online 15 April 2009 doi: 10.1098/rspb.2009.0313 Supplementary data "Data Supplement" http://rspb.royalsocietypublishing.org/content/suppl/2009/04/08/rspb.2009.0313.DC1.ri tml References This article cites 38 articles, 5 of which can be accessed free http://rspb.royalsocietypublishing.org/content/early/2009/04/08/rspb.2009.0313.full.ht ml#ref-list-1 P<P Published online 15 April 2009 in advance of the print journal. LL 0 Subject collections Articles on similar topics can be found in the following collections molecular biology (98 articles) developmental biology (57 articles) evolution (584 articles) Email alerting service Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand corner of the article or click here Advance online articles have been peer reviewed and accepted for publication but have not yet appeared in the paper journal (edited, typeset versions may be posted when available prior to final publication). Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include the digital object identifier (DOIs) and date of initial LL publication. 0 To subscribe to Proc. R. Soc. 6 go to: http://rspb.royalsocietypublishing.org/subscriptions This journal is © 2009 The Royal Society Downloaded from rspb.royalsocietypublishing.org on 15 April 2009 PROCEEDINGS OF ' 5 Proc. -
Hybridization in Ants
Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2020 Hybridization in Ants Ian Butler Follow this and additional works at: https://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons HYBRIDIZATION IN ANTS A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Ian Butler June 2020 © Copyright by Ian Butler 2020 HYBRIDIZATION IN ANTS Ian Butler, Ph.D. The Rockefeller University 2020 Interspecific hybridization is a relatively common occurrence within all animal groups. Two main factors make hybridization act differently in ants than in other species: eusociality and haplodiploidy. These factors serve to reduce the costs of interspecific hybridization in ants while simultaneously allowing them to take advantage of certain benefits. Eusociality may mitigate the effects of hybridization by allowing hybrids to be shunted into the worker caste, potentially reducing the effects of hybrid sterility. In haplodiploid species, males do not have a father. They instead develop from unfertilized eggs as haploid clones of their mother. This means that interspecifically mated queens do not completely sacrifice reproductive potential even if all hybrids are sterile because they can still produce fertile males. These factors in turn suggest that hybridization should be more common among the social Hymenoptera than other animal groups. Nevertheless, current data suggest that ants hybridize at rates similar to other animal groups, although these data are limited. Furthermore, there is a large amount of overlap between cases of interspecific hybridization and cases of genetic caste determination. A majority of the cases in ants where caste is determined primarily by genotype are associated with hybridization. -
Apidologie 2-2002.Vp
View metadata, citation and similar papers at core.ac.uk brought to you by CORE Apidologie 33 (2002) 193–202 provided by Wageningen University & Research Publications © INRA/DIB-AGIB/EDP Sciences, 2002 DOI: 10.1051/apido:2002009 193 Review article Getting more than a fair share: nutrition of worker larvae related to social parasitism in the Cape honey bee Apis mellifera capensis Johan N.M. CALISa*, Willem J. BOOTa, Mike H. ALLSOPPb, Madeleine BEEKMANc a Laboratory of Entomology, Wageningen University, PO Box 8031, 6700 EH Wageningen, The Netherlands b Honeybee Research Section, ARC-Plant Protection Research Institute, Private Bag X5017, Stellenbosch, 7599, South Africa c Schools of Biological Sciences & Mathematics and Statistics, University of Sydney, A12, Sydney, NSW 2006, Australia (Received 19 July 2001; revised 2 October 2001; accepted 21 November 2001) Abstract – Besides activation of ovaries and thelytokous reproduction of Cape workers, larval nutri- tion is an important aspect in parasitism of the African honey bee. When reared by workers of other subspecies, Cape larvae receive more food which is slightly more royal jelly-like. This results in worker-queen intermediates, with reduced pollen combs, enlarged spermathecae and higher numbers of ovarioles. The intermediates weigh more and develop faster than normal workers. The appearance of worker-queen intermediates probably affects parasitism of the African honey bee colonies by Cape workers. Different levels of larval nutrition resulting in less distinct caste differentiation may be im- portant for the reproductive success of Cape workers in their own colonies. Similar processes, albeit less pronounced, may occur in colonies of other subspecies. Apis mellifera capensis / A. -
Cape Honey Bee Apis Mellifera Capensis Escholtz (Hymenoptera: Apidae)1 James D
EENY-513 Cape Honey Bee Apis mellifera capensis Escholtz (Hymenoptera: Apidae)1 James D. Ellis2 Introduction Identification The Cape honey bee, Apis mellifera capensis Escholtz is Cape bees have been distinguished from A. m. scutellata a subspecies (or race) of western honey bee, A. mellifera and other African races of honey bees using morphometric Linnaeus, that occurs naturally in the Cape region of techniques. Genetic analyses are used increasingly as South Africa. Upon casual observation, Cape bees look complications with morphometric techniques arise. Most very similar to another race of honey bee present in South beekeepers in South Africa use other characteristics to Africa, Apis mellifera scutellata Lepeltier (the ‘African’ identify Cape bees, namely (1) the ability of worker bees to honey bee of the Americas). Yet reproductively, Cape bees produce female offspring, (2) the highly developed ovaries differ significantly from Apis mellifera scutellata and other in Cape laying-workers, and (3) small, queenless swarms. honey bee races, making it perhaps the most distinctive Once these phenotypes can be detected, Cape bees usually race of A. mellifera worldwide. are established already. Figure 1. Cape honey bees at a feeding station in South Africa. Figure 2. A female Cape honey bee collecting pollen and nectar on a Credits: Anthony Vaudo, University of Florida flower in South Africa. Credits: Thomas Scarborough, thomasscarborough.blogspot.com 1. This document is EENY-513, one of a series of the Department of Entomology and Nematology, UF/IFAS Extension. Original publication date December 2011. Revised October 2014 and December 2017. Visit the EDIS website at http://edis.ifas.ufl.edu. -
How Do Honey Bees Handle Their Stress? a Focus on Their Gut Microbiota and Immune System
How do honey bees handle their stress? A focus on their gut microbiota and immune system. (Apis mellifera subsp. capensis) Kayla Lawson Thesis presented in fulfilment of the requirements for the degree of Master of Science in the Faculty of Science at Stellenbosch University Supervisor: Prof K Jacobs Co-supervisor: Mr MH Allsopp December 2018 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Copyright © 2018 Stellenbosch University All rights reserved ii Stellenbosch University https://scholar.sun.ac.za “Therefore doth heaven divide The state of man in diverse functions, Setting endeavour in continual motion, To which is fixed as an aim or butt Obedience; for so work the honeybees, Creatures that by a rule in nature teach The act of order to a peopled kingdom.” - William Shakespeare (Henry V) iii Stellenbosch University https://scholar.sun.ac.za Abstract Gut microbial symbionts have recently been shown to play roles in ensuring overall host health, a hot topic in honey bee research. Honey bees harbour a stable, core bacterial community in the gut, suggested to play a role in host health homeostasis, metabolic functioning, immune regulation, and food degradation. This gut microbiota provides a unique opportunity to observe the effects of common stressors on honey bees.