Constancea 83.9: Phylogeny of Osmundea 12/17/2002 06:46:34 PM Constancea 83, 2002 University and Jepson Herbaria P.C

Total Page:16

File Type:pdf, Size:1020Kb

Constancea 83.9: Phylogeny of Osmundea 12/17/2002 06:46:34 PM Constancea 83, 2002 University and Jepson Herbaria P.C Constancea 83.9: Phylogeny of Osmundea 12/17/2002 06:46:34 PM Constancea 83, 2002 University and Jepson Herbaria P.C. Silva Festschrift Phylogenetic Analysis of the Geographically Disjunct Genus Osmundea Stackhouse (Rhodomelaceae, Rhodophyta) Lynne McIvor1, Christine A. Maggs2, Michael D. Guiry1, and Max H. Hommersand3 1 Department of Botany, Martin Ryan Institute, The National University of Ireland, Galway, Galway, Ireland. 2 School of Biology and Biochemistry, The Queen's University of Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, U. K. BT9 7BL. 3 Department of Biology, Coker Hall, University of North Carolina, Chapel Hill, NC 27599−3280, USA. ABSTRACT Despite numerous studies, the phylogeny and taxonomy of much of the Laurencia Lamouroux complex still remains obscure. Previous phylogenetic analyses of the genus Osmundea based on comparative morphology and sequences of the plastid−encoded rbcL gene indicated two potentially phylogenetically informative characters. The presence or absence of secondary pit connections in the epidermis and the shape of spermatangial receptacles (urn−shaped or cup−shaped) were synapomorphies for some clades in European species. Osmundea Stackhouse has a markedly disjunct distribution, being confined to Atlantic and Mediterranean coasts of Europe and Pacific North America. The major goal of this study was to extend taxon sampling to Californian species (the “Spectabilis group”) which show character combinations that differ from any European species. In addition, we investigated whether the basionym Fucus oederi Gunnerus might be available for the taxonomically and nomenclaturally confused species Osmundea ramosissima Athanasiadis. The tribe Laurencieae, represented by Chondrophycus, Laurencia, and Osmundea, was well supported, with Chondrophycus papillosus and the type species of Laurencia, L. obtusa, positioned basally. All species currently placed in the genus Osmundea formed a monophyletic group with robust support. 1/11 Constancea 83.9: Phylogeny of Osmundea 12/17/2002 06:46:34 PM Within Osmundea, three clades representing different geographical areas were observed (North Pacific, Atlantic Europe, Mediterranean + Atlantic Europe), with good (91% to 100%) bootstrap support. This phylogeny is interpreted as indicating that the genus may have originated in the late Tethys. The Californian clade and the European Osmundea clades exhibit contrasting stability of characters. The Californian species showed a fixed urn−shaped spermatangial receptacle shape and showed a variable number of epidermal secondary pit connections. In contrast, among the European species, the shape of the spermatangial receptacle shows character reversals and appears to be actively evolving in Mediterranean species. The two distinct European clades of Osmundea are clearly separable by the presence or absence of secondary pit connections. This comparative biogeographical approach to a morphological/molecular phylogenetic investigation has therefore yielded results that challenge the use solely of morphological characters for future generic subdivision in Osmundea. INTRODUCTION The Laurencia Lamouroux complex (Laurencieae, Rhodomelaceae) contains numerous species that are widely distributed in tropical and temperate waters (McDermid 1988, 1989). Members of this complex are readily identifiable within the Rhodomelaceae by a unique combination of vegetative features, such as their extensive cortex, a central axis recognizable only near the apical cell, and apical cells sunk in apical pits of the branchlets (Kylin 1956). The taxonomic history of Laurencia sensu lato has been summarized by Furnari and Serio (1995) and Furnari et al. (2001). One of the most significant contributions was made by Yamada (1931), who proposed an arrangement of Laurencia into four sections based on gross morphology and anatomical characters. Saito (1967) described some additional anatomical characters, including the presence or absence of secondary pit connections between epidermal cells. In a revision based primarily on Japanese species, he divided the genus into two subgenera, Laurencia (sections Laurencia, Pinnatifidae, Forsterianae) and Chondrophycus Tokida &Saito (sections Chondrophycus, Palisadae). Saito (1969) then proposed the “Spectabilis group” for a number of Californian species, which differed from the existing sections by a combination of adaxial tetrasporangia, urn−shaped “indeterminate” spermatangial receptacles, and (mistakenly) a lack of secondary pit connections between epidermal cells. Later, Furnari and Serio (1993a) pointed out errors in Saito's (1982) treatment of the section Pinnatifidae, and merged the emended Pinnatifidae with the “Spectabilis group” into the subgenus Saitoa Furnari & Serio, nom. illeg. However, many details of the vegetative and reproductive structures of all the subgenera (Laurencia, Chondrophycus, and Saitoa) were still lacking. During the last decade, further major changes have been made. The genus Osmundea Stackhouse (1809) has been resurrected (Nam et al. 1994) for a group of species largely corresponding to the subgenus Saitoa. The section Chondrophycus has also been elevated to generic status (Garbary and Harper 1998). Both taxonomic changes were proposed on the basis of a suite of morphological characters (Nam et al. 1994; Nam and Saito 1995; Garbary and Harper 1998; Nam 1999). The genus Osmundea was defined by (1) the development of spermatangia on filaments formed by apical and epidermal cells rather than on spermatangial trichoblasts formed by axial cells, (2) tetrasporangia formed by random epidermal cells rather than particular pericentral cells (Nam et al. 1994), and (3) the formation of two pericentral cells in vegetative axial filaments (Nam 1999). Molecular studies, based on rbcL sequence data, have corroborated the morphological evidence for the separation of Osmundea from Laurencia (Nam et al. 2000). The species currently assigned to Osmundea have a markedly disjunct distribution, being confined to Atlantic and Mediterranean coasts of Europe and Pacific North America (Serio et al. 1999). In contrast, the genera Laurencia and Chondrophycus are more widely distributed, although the majority of species are found in the Southern Hemisphere (McDermid 1988). There have been only two previous phylogenetic studies of the genus Osmundea. The morphological cladistic analysis of Garbary and Harper (1998) placed O. hybrida basal in the genus, and linked European and Californian species together in pairs such as O. truncata with O. spectabilis. Nam et al.'s (2000) study assessed the phylogenetic significance of several morphological characters in Osmundea by comparative morphological and molecular analyses, but was confined to the European species. The type of spermatangial pits, previously thought to be significant (Saito 1982), was shown to be homoplasious. Urn−shaped spermatangial pits are found only in Osmundea (Nam et al. 1994), but Nam et al. (2000) were 2/11 Constancea 83.9: Phylogeny of Osmundea 12/17/2002 06:46:34 PM unable to determine whether these or cup−shaped spermatangial receptacles are ancestral within the European species of Osmundea. Additional taxa were required to evaluate the level of phylogenetic informativeness of male receptacle shape. In contrast, the presence vs. absence of secondary pit connections between epidermal cells was found to be a synapomorphy for the two clades of European Osmundea species. Again, however, the phylogenetic significance of these characters could not be fully assessed because species from the North Pacific were not available for inclusion in the analyses. The North Pacific species of Osmundea show character combinations that differ from any European species: all have urn− (pocket−) shaped spermatangial receptacles, but only Osmundea spectabilis is reported to have some (rare) secondary pit connections between the epidermal cells (Nam et al. 1994; Serio et al. 1999). It was the main purpose, therefore, of this study to widen our previous phylogenetic analysis of Osmundea to include species that are found in Pacific North America, particularly O. spectabilis, in order to clarify the phylogenetic significance and character evolution of secondary pit connections and spermatangial receptacle shape. The gene chosen for analyses was rbcL, as there is data available for a number of European species of Osmundea. In addition, previous studies have shown this gene to give good resolution of red algal relationships at the species to genus level (e.g., Freshwater et al. 1994; Hommersand et al. 1994; McIvor et al. 2001). We have sequenced eight of the fifteen Osmundea species currently recognized: O. blinksii, O. hybrida, O. osmunda, O. pinnatifida, O. ramosissima, O. spectabilis, O. splendens, and O. truncata, with most of the remaining seven [O. crispa (Hollenberg) Nam, O. maggsiana Serio, Cormaci & Furnari, O. multibulba (Dawson, Neushul & Wildman) Nam, O. pelagiensis (Cormaci, Furnari & Serio) Furnari, O. pelagosae (Schiffner) Nam, O. sinicola (Setchell & Gardner) Nam, and O. verlaquei (Cormaci, Furnari & Serio) Furnari] being of relatively restricted occurrence. In addition to this, we wished to clarify the nomenclatural position of one of the two European species confused until recently under the name Osmundea truncata (Kützing) Nam & Maggs. The second of the sister species was referred to O. ramosissima by Nam et al. (2000), who recognized Osmundea ramosissima Athanasiadis (1996, p. 119) as a valid name for the polynomial Fucus ramosissimus
Recommended publications
  • A Morphological and Phylogenetic Study of the Genus Chondria (Rhodomelaceae, Rhodophyta)
    Title A morphological and phylogenetic study of the genus Chondria (Rhodomelaceae, Rhodophyta) Author(s) Sutti, Suttikarn Citation 北海道大学. 博士(理学) 甲第13264号 Issue Date 2018-06-29 DOI 10.14943/doctoral.k13264 Doc URL http://hdl.handle.net/2115/71176 Type theses (doctoral) File Information Suttikarn_Sutti.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP A morphological and phylogenetic study of the genus Chondria (Rhodomelaceae, Rhodophyta) 【紅藻ヤナギノリ属(フジマツモ科)の形態学的および系統学的研究】 Suttikarn Sutti Department of Natural History Sciences, Graduate School of Science Hokkaido University June 2018 1 CONTENTS Abstract…………………………………………………………………………………….2 Acknowledgement………………………………………………………………………….5 General Introduction………………………………………………………………………..7 Chapter 1. Morphology and molecular phylogeny of the genus Chondria based on Japanese specimens……………………………………………………………………….14 Introduction Materials and Methods Results and Discussions Chapter 2. Neochondria gen. nov., a segregate of Chondria including N. ammophila sp. nov. and N. nidifica comb. nov………………………………………………………...39 Introduction Materials and Methods Results Discussions Conclusion Chapter 3. Yanagi nori—the Japanese Chondria dasyphylla including a new species and a probable new record of Chondria from Japan………………………………………51 Introduction Materials and Methods Results Discussions Conclusion References………………………………………………………………………………...66 Tables and Figures 2 ABSTRACT The red algal tribe Chondrieae F. Schmitz & Falkenberg (Rhodomelaceae, Rhodophyta) currently
    [Show full text]
  • The Genus Laurencia (Rhodomelaceae, Rhodophyta) in the Canary Islands
    Courier Forsch.-Inst. Senckenberg, 159: 113-117 Frankfurt a.M., 01.07.1993 The Genus Laurencia (Rhodomelaceae, Rhodophyta) in the Canary Islands M. CANDELARIA GIL-RODRIGUEZ & RICARDO HAROUN I Figure The genus Laurencia LAMOUROUX is a group of In the Atlantic Coasts, SAITO (1982) made a short medium-sized, erect, fleshy or cartilaginous, red al­ review of three typical European species: L. obtusa gae distributed from temperate to tropical waters. (HUDSON) LAMOUROUX, L. pinnatifida (HUDSON) LA­ During the last few years several collections along MOUROUX and L. hybrida (De.) LENORMAND. Other the coasts of the Canary Islands have shown the im­ researches carried out in this troublesome genus in portant role of the Laurencia species in the intertidal the Atlantic Ocean were made by TAYLOR (1960) in communities; however, it is rather problematic to Eastern Tropical and Subtropical Coasts of America, identify many of the taxa observed, and it seems 0LIVEIRA-FILHO {1969) in Brazil, MAGNE (1980) in necessary to make a biosystematic review of this ge­ the French Atlantic Coasts, LAWSON & JoHN (1982) nus in the Macaronesian Region. in the West Coast of Africa, RODRIGUEZ DE Rros LAMouRoux in 1813 established the genus with 8 (1981), RODRIGUEZ DE RIOS & SAITO (1982, 1985) and species, but he didn't mention a type species. Critical RODRIGUEZ DE RIOS & LOBO {1984) in Venezuela. systematic studies have been made by several authors, C. AGARDH (1823, 1824), J.AGARDH {1842, 1851, 1880), DE TONI {1903, 1924), YAMADA {1931), after reviewing many type specimens
    [Show full text]
  • Sargassum Muticum and Osmundea Pinnatifida Enzymatic Extracts: Chemical, Structural, and Cytotoxic Characterization
    Article Sargassum muticum and Osmundea pinnatifida Enzymatic Extracts: Chemical, Structural, and Cytotoxic Characterization Dina Rodrigues 1, Ana R. Costa-Pinto 1, Sérgio Sousa 1, Marta W. Vasconcelos 1, Manuela M. Pintado 1, Leonel Pereira 2, Teresa A.P. Rocha-Santos 3, João P. da Costa 3, Artur M.S. Silva 4, Armando C. Duarte 3, Ana M.P. Gomes 1,* and Ana C. Freitas 1 1 Laboratório Associado, Escola Superior de Biotecnologia, CBQF–Centro de Biotecnologia e Química Fina, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; [email protected] (D.R.); [email protected] (A.R.C-P.); [email protected] (S.S.); [email protected] (M.W.V.); [email protected] (M.M.P.); [email protected] (A.M.P.G.); [email protected] (A.C.F.) 2 Marine and Environmental Sciences Centre (MARE), Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456 Coimbra, Portugal; [email protected] 3 CESAM–Centre for Environmental and Marine Studies & Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; [email protected] (T.A.P.R.-S.); [email protected] ((J.P.d.C.); (A.M.S.S.); [email protected] (A.C.D.) 4 QOPNA–Organic Chemistry, Natural Products and Food Stuffs Research Unit & Department of Chemistry, University of Aveiro, Aveiro, 3810-193, Portugal; [email protected] * Correspondence: [email protected]; Tel.: 0035-225-580-084. Received: 27 February 2019; Accepted: 29 March 2019; Published: 3 April 2019 Abstract: Seaweeds, which have been widely used for human consumption, are considered a potential source of biological compounds, where enzyme-assisted extraction can be an efficient method to obtain multifunctional extracts.
    [Show full text]
  • Distribution of Epiphytic Macroalgae on the Thalli of Their Hosts in Cuba
    Acta Botanica Brasilica 27(4): 815-826. 2013. Distribution of epiphytic macroalgae on the thalli of their hosts in Cuba Yander Luis Diez García1, Abdiel Jover Capote2,6, Ana María Suárez Alfonso3, Liliana María Gómez Luna4 and Mutue Toyota Fujii5 Received: 4 April, 2012. Accepted: 14 October, 2013 ABSTRACT We investigated the distribution of epiphytic macroalgae on the thalli of their hosts at eight localities along the sou- theastern coast of Cuba between June 2010 and March 2011. We divided he epiphytes in two groups according to their distribution on the host: those at the base of the thallus and those on its surface. We determining the dissimilarity between the zones and the species involved. We identified 102 taxa of epiphytic macroalgae. There were significant differences between the two zones. In 31 hosts, the number of epiphytes was higher on the surface of the thallus, whereas the number of epiphytes was higher at the thallus base in 25 hosts, and the epiphytes were equally distributed between the two zones in five hosts (R=−0.001, p=0.398). The mean dissimilarity between the two zones, in terms of the species composition of the epiphytic macroalgae, was 96.64%. Hydrolithon farinosum and Polysiphonia atlantica accounted for 43.76% of the dissimilarity. Among macroalgae, the structure of the thallus seems to be a determinant of their viability as hosts for epiphytes. Key words: Chlorophyta, epiphytism, distribution, Phaeophyceae, Rhodophyta Introduction scales is a potentially productive approach. It is important to understand the patterns of abundance of all sympatric The structure of intertidal marine communities is deter- epiphytic species along the various gradients, because in- mined by a combination of physical factors and biotic interac- terspecific relationships could represent one of the factors tions (Little & Kitching 1996; Wernberg & Connell 2008).
    [Show full text]
  • The Genus "Laurencia (Rhodomelaceae
    - Courier Forsch.-Inst. Senckenberg, 159: 113- 117 - Frankfurt a.M., 0 1.07.1993 The Genus Laurencia (Rhodomelaceae, Rhodophyta) in the Canary Islands I Figure Tha riamiir 1 ~i..-ni.-:~ 1 i.inwinnrtv :e a mrnian nr iii~~GUUJ uuursi~,iu knmvunvun a= a fiiuup vk Ir! !he A!!ari.!ic Cous, STUTC(!W) ?i?ade a short medium-sized, erect, fleshy or cartilaginous, red al- review of three typical European species: L. obtusa gae distributed from temperate to tropical waters. (HUDSON)LAMOUROUX, L. pinnatifida (HUDSON)LA- During the last few years severa1 collections along MoURoUX and L. hybrida (Dc.) LENORMAND.Other the coasts of the Canary Islands have shown the im- researches carried out in this troublesome genus in portant role of the Laurencia species in the intertidal the Atlantic Ocean were made by TAYLOR(1960) in communities; however, it is rather problematic to Eastern Tropical and Subtropical Coasts of America, identify rnany of the taxa observed, and it seems OLIVEIRA-FILHO(1 969) jn Brazil, MACNE(1 980) in necessary to make a biosystematic review of this ge- the French Atlantic Coasts, LAWSON& JOHN(1982) nus in the Macaronesian Region. in the West Coast of Africa, RODRICUEZDE RIOS LAMOUROUXin 1813 established the genus with 8 (1981), RODRIGUEZDERroS & SNTO (1982, 1985) and species, but he didn't mention a type species. Critica1 RODRIGUEZDE RIOS& LOBO(1984) in Venezuela. systematic studies have been made by several authors, C. ACAIU)H(1823, 1824), J.AGARDH(1842, 1851, 1880), DE TON1 (1903, 1924). YMADA(1931). after reviewing many type specimens from different American and European Herbaria.
    [Show full text]
  • Ceramiales, Rhodophyta) from the Southwestern Atlantic Ocean
    Phytotaxa 100 (1): 41–56 (2013) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2013 Magnolia Press ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.100.1.5 Osmundea sanctarum sp. nov. (Ceramiales, Rhodophyta) from the southwestern Atlantic Ocean RENATO ROCHA-JORGE1,6, VALÉRIA CASSANO2, MARIA BEATRIZ BARROS-BARRETO3, JHOANA DÍAZ-LARREA4, ABEL SENTÍES4, MARIA CANDELARIA GIL-RODRÍGUEZ5 & MUTUE TOYOTA FUJII6,7 1Post-Graduate Program “Biodiversidade Vegetal e Meio Ambiente”, Instituto de Botânica, Av. Miguel Estéfano, 3687, 04301-902 São Paulo, SP, Brazil. 2 Departamento de Botânica, Universidade de São Paulo, Rua do Matão 277, 05508-900 São Paulo, SP, Brazil. 3Departamento de Botânica, Universidade Federal do Rio de Janeiro, Av. Prof. Rodolpho Rocco 211, CCS, bloco A, subsolo, sala 99, 21941-902 Rio de Janeiro, RJ, Brazil. 4Departamento de Hidrobiología, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-535, 09340 Mexico, D.F. 5Departamento de Biología Vegetal (Botánica), Universidad de La Laguna, 38071. La Laguna, Tenerife, Islas Canarias, Spain. 6Núcleo de Pesquisa em Ficologia, Instituto de Botânica, Av. Miguel Estéfano, 3687, 04301-902 São Paulo, SP, Brazil. 7Author for correspondence. E-mail: [email protected] Abstract An ongoing phycological survey in the Laje de Santos Marine State Park (LSMSP) of São Paulo in southeastern Brazil revealed a previously undescribed species of Osmundea (Rhodophyta, Rhodomelaceae), which was found in the subtidal zone at a depth of 7 to 20 m. Morphological studies conducted on Osmundea specimens collected in the LSMSP revealed characteristics typical of the genus Osmundea, including two pericentral cells per each axial segment and tetrasporangia cut off randomly from cortical cells.
    [Show full text]
  • Molecular Phylogenies Support Taxonomic Revision of Three Species of Laurencia (Rhodomelaceae, Rhodophyta), with the Description of a New Genus
    European Journal of Taxonomy 269: 1–19 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2017.269 www.europeanjournaloftaxonomy.eu 2017 · Rousseau F. et al. This work is licensed under a Creative Commons Attribution 3.0 License. DNA Library of Life, research article Molecular phylogenies support taxonomic revision of three species of Laurencia (Rhodomelaceae, Rhodophyta), with the description of a new genus Florence ROUSSEAU 1,*, Delphine GEY 2, Akira KURIHARA 3, Christine A. MAGGS 4, Julie MARTIN-LESCANNE 5, Claude PAYRI 6, Bruno de REVIERS 7, Alison R. SHERWOOD 8 & Line LE GALL 9 1,7,9 Institut de Systématique, Evolution, Biodiversité (ISyEB), UMR 7205 CNRS, EPHE, MNHN, UPMC, Sorbonne Universités, Equipe Exploration, Espèces, Evolution, Muséum National d’Histoire Naturelle, case postale N° 39, 57 rue Cuvier, 75231 Cedex 05 Paris, France 2,5 Outils et Méthodes de la Systématique Intégrative, UMS 2700 MNHN, CNRS, Service de Systématique Moléculaire, Muséum National d’Histoire Naturelle, case postale N° 26, 57 rue Cuvier, 75231 Cedex 05 Paris, France 3,8 Department of Botany, 3190 Maile Way, University of Hawaii, Honolulu, Hawaii, 96822 U.S.A. 4 Faculty of Science and Technology, Bournemouth University, Poole House, Talbot Campus, Poole, Dorset BH12 5BB, U.K. 6 Institut de Recherche pour le Développement (IRD), UMR ENTROPIE-IRD, UR, CNRS, BP A5, 98848 Noumea cedex, Noumea, New Caledonia * Corresponding author E-mail: [email protected] 2 Email: [email protected] 3,8 Email: [email protected] 4 Email: [email protected] 5 Email: [email protected] 6 Email: [email protected] 7 Email: [email protected] 9 Email: [email protected] Abstract.
    [Show full text]
  • Defence on Surface of Rhodophyta Halymenia Floresii
    THESE DE DOCTORAT DE UNIVERSITE BRETAGNE SUD ECOLE DOCTORALE N° 598 Sciences de la Mer et du littoral Spécialité : Biotechnologie Marine Par Shareen A ABDUL MALIK Defence on surface of Rhodophyta Halymenia floresii: metabolomic fingerprint and interactions with the surface-associated bacteria Thèse présentée et soutenue à « Vannes », le « 7 July 2020 » Unité de recherche : Laboratoire de Biotechnologie et Chimie Marines Thèse N°: Rapporteurs avant soutenance : Composition du Jury : Prof. Gérald Culioli Associate Professor Président : Université de Toulon (La Garde) Prof. Claire Gachon Professor Dr. Leila Tirichine Research Director (CNRS) Museum National d’Histoire Naturelle, Paris Université de Nantes Examinateur(s) : Prof. Gwenaëlle Le Blay Professor Université Bretagne Occidentale (UBO), Brest Dir. de thèse : Prof. Nathalie Bourgougnon Professor Université Bretagne Sud (UBS), Vannes Co-dir. de thèse : Dr. Daniel Robledo Director CINVESTAV, Mexico i Invité(s) Dr. Gilles Bedoux Maître de conferences Université Bretagne Sud (UBS), Vannes Title: Systèmes de défence de surface de la Rhodophycée Halymenia floresii : Analyse metabolomique et interactions avec les bactéries épiphytes Mots clés: Halymenia floresii, antibiofilm, antifouling, métabolomique, bactéries associées à la surface, quorum sensing, molecules de défense Abstract : Halymenia floresii, une Rhodophycée présente Vibrio owensii, ainsi que son signal C4-HSL QS, a été une surface remarquablement exempte d'épiphytes dans les identifié comme pathogène opportuniste induisant un conditions de l'Aquaculture MultiTrophique Intégrée (AMTI). blanchiment. Les métabolites extraits de la surface et Ce phénomène la présence en surface de composés actifs de cellules entières de H. floresii ont été analysés par allélopathiques. L'objectif de ce travail a été d'explorer les LC-MS.
    [Show full text]
  • Revisiting Marine Bioprospecting of Tropical Indonesian Macroalgae from West Timor
    REVISITING MARINE BIOPROSPECTING OF TROPICAL INDONESIAN MACROALGAE FROM WEST TIMOR Turupadang, Welem Linggi A thesis submitted to Victoria University of Wellington in fulfilment of the requirements for the degree of Master of Science in Chemistry. Victoria University of Wellington 2018 Abstract Marine algae are an important and historically rich source of new marine-based natural products. This thesis describes the screening of 40 Indonesian macroalgal samples using liquid chromatography-mass spectrometry (LC-MS) based molecular networking, and the subsequent nuclear magnetic resonance (NMR)-guided isolation and structural elucidation of a 6-deoxy-6-aminoglycoglyrecolipid (60). Molecular networking was performed using LC-MS/MS data through the online Global Natural Product Social Molecular Networking (GNPS) platform directly from crude extracts. NMR spectroscopy-guided screening was also employed targeting unique peaks detected by 1H NMR to validate any hits from GNPS. Out of 40 macroalgae specimens collected from West Timor waters, six samples were prioritised by the molecular networking screening. Proton NMR revealed three specimens with significantly interesting peaks but only one specimen, Laurencia snackeyi was purified further, which yielded compound 60. i Acknowledgements I am humbly grateful to Abba Father throughout my study at Victoria University of Wellington, how much knowledge and experience that has been passed on by academics (especially during my formative year doing my graduate Diploma), fellow students and postgrads, as well as technicians over the past two-and-a-half year in the School of Chemical and Physical Sciences (SCPS). Thank you very much. My fabulous supervisor Dr Rob Keyzers, thank you for your guidance, patience and wisdom; also, for being a guru and mentor during my study; I benefit not only academically and through laboratory skills but also how you have inspired me to be a good teacher and serve students from different backgrounds.
    [Show full text]
  • Seaweed and Seagrasses Inventory of Laguna De San Ignacio, BCS
    UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA SUR ÁREA DE CONOCIMIENTO DE CIENCIAS DEL MAR DEPARTAMENTO ACADÉMICO DE BIOLOGÍA MARINA PROGRAMA DE INVESTIGACIÓN EN BOTÁNICA MARINA Seaweed and seagrasses inventory of Laguna de San Ignacio, BCS. Dr. Rafael Riosmena-Rodríguez y Dr. Juan Manuel López Vivas Programa de Investigación en Botánica Marina, Departamento de Biología Marina, Universidad Autónoma de Baja California Sur, Apartado postal 19-B, km. 5.5 carretera al Sur, La Paz B.C.S. 23080 México. Tel. 52-612-1238800 ext. 4140; Fax. 52-612-12800880; Email: [email protected]. Participants: Dr. Jorge Manuel López-Calderón, Dr. Carlos Sánchez Ortiz, Dr. Gerardo González Barba, Dr. Sung Min Boo, Dra. Kyung Min Lee, Hidrobiol. Carmen Mendez Trejo, M. en C. Nestor Manuel Ruíz Robinson, Pas Biol. Mar. Tania Cota. Periodo de reporte: Marzo del 2013 a Junio del 2014. Abstract: The present report presents the surveys of marine flora 2013 – 2014 in the San Ignacio Lagoon of the, representing the 50% of planned visits and in where we were able to identifying 19 species of macroalgae to the area plus 2 Seagrass traditionally cited. The analysis of the number of species / distribution of macroalgae and seagrass is in progress using an intense review of literature who will be concluded using the last field trip information in May-June 2014. During the last two years we have not been able to find large abundances of species of microalgae as were described since 2006 and the floristic lists developed in the 90's. This added with the presence to increase both coverage and biomass of invasive species which makes a real threat to consider.
    [Show full text]
  • Seaweeds of California Green Algae
    PDF version Remove references Seaweeds of California (draft: Sun Nov 24 15:32:39 2019) This page provides current names for California seaweed species, including those whose names have changed since the publication of Marine Algae of California (Abbott & Hollenberg 1976). Both former names (1976) and current names are provided. This list is organized by group (green, brown, red algae); within each group are genera and species in alphabetical order. California seaweeds discovered or described since 1976 are indicated by an asterisk. This is a draft of an on-going project. If you have questions or comments, please contact Kathy Ann Miller, University Herbarium, University of California at Berkeley. [email protected] Green Algae Blidingia minima (Nägeli ex Kützing) Kylin Blidingia minima var. vexata (Setchell & N.L. Gardner) J.N. Norris Former name: Blidingia minima var. subsalsa (Kjellman) R.F. Scagel Current name: Blidingia subsalsa (Kjellman) R.F. Scagel et al. Kornmann, P. & Sahling, P.H. 1978. Die Blidingia-Arten von Helgoland (Ulvales, Chlorophyta). Helgoländer Wissenschaftliche Meeresuntersuchungen 31: 391-413. Scagel, R.F., Gabrielson, P.W., Garbary, D.J., Golden, L., Hawkes, M.W., Lindstrom, S.C., Oliveira, J.C. & Widdowson, T.B. 1989. A synopsis of the benthic marine algae of British Columbia, southeast Alaska, Washington and Oregon. Phycological Contributions, University of British Columbia 3: vi + 532. Bolbocoleon piliferum Pringsheim Bryopsis corticulans Setchell Bryopsis hypnoides Lamouroux Former name: Bryopsis pennatula J. Agardh Current name: Bryopsis pennata var. minor J. Agardh Silva, P.C., Basson, P.W. & Moe, R.L. 1996. Catalogue of the benthic marine algae of the Indian Ocean.
    [Show full text]
  • The Marine Macroalgae of Cabo Verde Archipelago: an Updated Checklist
    Arquipelago - Life and Marine Sciences ISSN: 0873-4704 The marine macroalgae of Cabo Verde archipelago: an updated checklist DANIELA GABRIEL AND SUZANNE FREDERICQ Gabriel, D. and S. Fredericq 2019. The marine macroalgae of Cabo Verde archipelago: an updated checklist. Arquipelago. Life and Marine Sciences 36: 39 - 60. An updated list of the names of the marine macroalgae of Cabo Verde, an archipelago of ten volcanic islands in the central Atlantic Ocean, is presented based on existing reports, and includes the addition of 36 species. The checklist comprises a total of 372 species names, of which 68 are brown algae (Ochrophyta), 238 are red algae (Rhodophyta) and 66 green algae (Chlorophyta). New distribution records reveal the existence of 10 putative endemic species for Cabo Verde islands, nine species that are geographically restricted to the Macaronesia, five species that are restricted to Cabo Verde islands and the nearby Tropical Western African coast, and five species known to occur only in the Maraconesian Islands and Tropical West Africa. Two species, previously considered invalid names, are here validly published as Colaconema naumannii comb. nov. and Sebdenia canariensis sp. nov. Key words: Cabo Verde islands, Macaronesia, Marine flora, Seaweeds, Tropical West Africa. Daniela Gabriel1 (e-mail: [email protected]) and S. Fredericq2, 1CIBIO - Research Centre in Biodiversity and Genetic Resources, 1InBIO - Research Network in Biodiversity and Evolutionary Biology, University of the Azores, Biology Department, 9501-801 Ponta Delgada, Azores, Portugal. 2Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana 70504-3602, USA. INTRODUCTION Schmitt 1995), with the most recent checklist for the archipelago published in 2005 by The Republic of Cabo Verde is an archipelago Prud’homme van Reine et al.
    [Show full text]