Quantum Information Theory

Total Page:16

File Type:pdf, Size:1020Kb

Quantum Information Theory Quantum Information Theory Joseph M. Renes With elements from the script of Renato Renner & Matthias Christandl and contributions by Christopher Portmann February 4, 2015 Lecture Notes ETH Zürich HS2014 Revision: f4e02a9be866 Branch: full Date: Wed, 04 Feb 2015 14:51:33 +0100 Contents Contents i 1 Introduction 1 1.1 Bits versus qubits............................................. 1 1.2 No cloning................................................. 2 1.3 Measurement and disturbance .................................... 3 1.4 Quantum key distribution....................................... 3 1.5 Quantum computation is not like classical computation ................... 4 1.6 Notes & Further reading........................................ 6 2 Probability Theory7 2.1 What is probability?........................................... 7 2.2 Probability spaces and random variables.............................. 8 2.3 Discrete random variables....................................... 11 2.4 Channels.................................................. 14 2.5 Vector representation of finite discrete spaces........................... 16 2.6 Notes & Further reading........................................ 19 2.7 Exercises .................................................. 20 3 Quantum Mechanics 23 3.1 The postulates of quantum mechanics ............................... 23 3.2 Qubits.................................................... 24 3.3 Comparison with classical probability theory .......................... 26 3.4 Bipartite states and entanglement .................................. 27 3.5 No cloning & no deleting ....................................... 28 3.6 Superdense coding and teleportation ................................ 29 3.7 Complementarity ............................................ 31 3.8 The EPR paradox............................................. 35 3.9 Bell inequalities.............................................. 37 3.10 Notes & Further reading........................................ 41 3.11 Exercises .................................................. 42 4 Quantum States, Measurements, and Channels 45 4.1 Quantum states.............................................. 45 4.2 Generalized measurements....................................... 50 4.3 Quantum operations .......................................... 55 4.4 Everything is a quantum operation ................................. 62 4.5 Notes & Further Reading ....................................... 63 4.6 Exercises .................................................. 64 5 Quantum Detection Theory 69 5.1 Distinguishing states & channels................................... 69 5.2 Fidelity ................................................... 73 5.3 Distinguishing between many states................................. 76 5.4 Binary hypothesis testing........................................ 78 i CONTENTS 5.5 Convex optimization .......................................... 79 5.6 Notes & Further reading........................................ 82 5.7 Exercises .................................................. 84 6 Divergence Measures and Entropies 87 6.1 f -Divergence ............................................... 87 6.2 Quantum divergences.......................................... 90 6.3 von Neumann & Shannon entropies ................................ 91 6.4 Entropic uncertainty relations .................................... 94 6.5 Min and max entropies......................................... 96 6.6 Entropic measures of entanglement................................. 97 6.7 Notes & Further reading........................................ 99 6.8 Exercises .................................................. 100 7 Information Processing Protocols 103 7.1 Background: The problem of reliable communication & storage . 103 7.2 The resource simulation approach.................................. 103 7.3 Optimality of superdense coding and teleportation....................... 106 7.4 Compression of classical data..................................... 109 7.5 Classical communication over noisy channels .......................... 115 7.6 Compression of quantum data .................................... 121 7.7 Entanglement purification....................................... 123 7.8 Exercises .................................................. 126 8 Quantum Key Distribution 129 8.1 Introduction................................................ 129 8.2 Classical message encryption ..................................... 130 8.3 Quantum cryptography ........................................ 132 8.4 QKD protocol .............................................. 136 8.5 Security proof of BB84 ......................................... 137 8.6 Exercises .................................................. 144 A Mathematical background 147 A.1 Hilbert spaces and operators on them ............................... 147 A.2 The bra-ket notation........................................... 147 A.3 Representations of operators by matrices ............................. 148 A.4 Tensor products.............................................. 149 A.5 Trace and partial trace.......................................... 150 A.6 Decompositions of operators and vectors ............................. 151 A.7 Operator norms and the Hilbert-Schmidt inner product ................... 152 A.8 The vector space of Hermitian operators ............................. 153 A.9 Norm inequalities ............................................ 154 A.10 A useful operator inequality...................................... 154 B Solutions to Exercises 155 Bibliography 179 ii Introduction 1 “Information is physical” claimed the late physicist Rolf Landauer,1 by which he meant that Computation is inevitably done with real physical degrees of freedom, obeying the laws of physics, and using parts available in our actual physical universe. How does that re- strict the process? The interface of physics and computation, viewed from a very fun- damental level, has given rise not only to this question but also to a number of other subjects...[1] The field of quantum information theory is among these “other subjects”. It is the result of asking what sorts of information processing tasks can and cannot be performed if the underlying informa- tion carriers are governed by the laws of quantum mechanics as opposed to classical mechanics. For example, we might use the spin of a single electron to store information, rather than the magneti- zation of a small region of magnetic material (to say nothing of ink marks on a piece of paper). As this is a pretty broad question, the field of quantum information theory overlaps with many fields: physics, of course, but also computer science, electrical engineering, chemistry and materials science, mathematics, as well as philosophy. Famously, it is possible for two separated parties to communicate securely using only insecure classical and quantum transmission channels (plus a short key for authentication), using a protocol for quantum key distribution (QKD). Importantly, the security of the protocol rests on the correctness of quantum mechanics, rather than any assumptions on the difficulty of particular computational tasks—such as factoring large integers—as is usual in today’s cryptosystems. This is also fortunate from a practical point of view because, just as famously, a quantum computer can find prime factors very efficiently. On the other hand, as opposed to classical information, quantum information cannot even be copied, nor can it be deleted! Nevertheless, quantum and classical information theory are closely related. Because any such classical system can in principle be described in the language of quantum mechanics, classical information theory is actually a (practically significant) special case of quantum information theory. The goal of this course is to provide a solid understanding of the mathematical foundations of quantum information theory, with which we can then examine some of the counterintuitive phe- nomena in more detail. In the next few lectures we will study the foundations more formally and completely, but right now let’s just dive in and get a feel for the subject. 1.1 Bits versus qubits Classical information, as you already know, usually comes in bits, random variables which can take on one of two possible values. We could also consider “dits”, random variables taking on one of d values, but this can always be thought of as some collection of bits. The point is that the random variable takes a definite value in some alphabet. 2 In contrast, quantum information comes in qubits, which are normalized vectors in C . Given some basis 0 and 1 , the qubit state, call it , can be written = a 0 +b 1 , with a, b C such that 2 2 j i j i j i j i j i 2 a + b = 1. The qubit is generally not definitely in either state 0 or 1 ; if we make a measurement whosej j j twoj outcomes correspond to the system being in 0 and j1 i, thenj i the probabilities are j i j i 2 2 2 2 prob(0) = 0 = a prob(1) = 1 = b (1.1) jh j ij j j jh j ij j j 1Rolf Wilhelm Landauer, 1927-1999, German-American physicist. 1 1. INTRODUCTION 2n The state of n qubits is a vector in C , a basis for which is given by states of the form 0,...,0 = 0 0 , 0,...,1 , 0,...,1,0 , etc. Then we write the quantum state of the entire collectionj i as j i ⊗ ··· ⊗ j i j i j i X = s s , (1.2) j i s 0,1 n j i 2f g P 2 where s are binary strings of length n and once again s C with = 1 = s s . Allowed transformations of a set of qubits come in2 the formh ofjunitaryi operators,j j which just 2n transform
Recommended publications
  • 1 Postulate (QM4): Quantum Measurements
    Part IIC Lent term 2019-2020 QUANTUM INFORMATION & COMPUTATION Nilanjana Datta, DAMTP Cambridge 1 Postulate (QM4): Quantum measurements An isolated (closed) quantum system has a unitary evolution. However, when an exper- iment is done to find out the properties of the system, there is an interaction between the system and the experimentalists and their equipment (i.e., the external physical world). So the system is no longer closed and its evolution is not necessarily unitary. The following postulate provides a means of describing the effects of a measurement on a quantum-mechanical system. In classical physics the state of any given physical system can always in principle be fully determined by suitable measurements on a single copy of the system, while leaving the original state intact. In quantum theory the corresponding situation is bizarrely different { quantum measurements generally have only probabilistic outcomes, they are \invasive", generally unavoidably corrupting the input state, and they reveal only a rather small amount of information about the (now irrevocably corrupted) input state identity. Furthermore the (probabilistic) change of state in a quantum measurement is (unlike normal time evolution) not a unitary process. Here we outline the associated mathematical formalism, which is at least, easy to apply. (QM4) Quantum measurements and the Born rule In Quantum Me- chanics one measures an observable, i.e. a self-adjoint operator. Let A be an observable acting on the state space V of a quantum system Since A is self-adjoint, its eigenvalues P are real. Let its spectral projection be given by A = n anPn, where fang denote the set of eigenvalues of A and Pn denotes the orthogonal projection onto the subspace of V spanned by eigenvectors of A corresponding to the eigenvalue Pn.
    [Show full text]
  • Quantum Circuits with Mixed States Is Polynomially Equivalent in Computational Power to the Standard Unitary Model
    Quantum Circuits with Mixed States Dorit Aharonov∗ Alexei Kitaev† Noam Nisan‡ February 1, 2008 Abstract Current formal models for quantum computation deal only with unitary gates operating on “pure quantum states”. In these models it is difficult or impossible to deal formally with several central issues: measurements in the middle of the computation; decoherence and noise, using probabilistic subroutines, and more. It turns out, that the restriction to unitary gates and pure states is unnecessary. In this paper we generalize the formal model of quantum circuits to a model in which the state can be a general quantum state, namely a mixed state, or a “density matrix”, and the gates can be general quantum operations, not necessarily unitary. The new model is shown to be equivalent in computational power to the standard one, and the problems mentioned above essentially disappear. The main result in this paper is a solution for the subroutine problem. The general function that a quantum circuit outputs is a probabilistic function. However, the question of using probabilistic functions as subroutines was not previously dealt with, the reason being that in the language of pure states, this simply can not be done. We define a natural notion of using general subroutines, and show that using general subroutines does not strengthen the model. As an example of the advantages of analyzing quantum complexity using density ma- trices, we prove a simple lower bound on depth of circuits that compute probabilistic func- arXiv:quant-ph/9806029v1 8 Jun 1998 tions. Finally, we deal with the question of inaccurate quantum computation with mixed states.
    [Show full text]
  • A Mini-Introduction to Information Theory
    A Mini-Introduction To Information Theory Edward Witten School of Natural Sciences, Institute for Advanced Study Einstein Drive, Princeton, NJ 08540 USA Abstract This article consists of a very short introduction to classical and quantum information theory. Basic properties of the classical Shannon entropy and the quantum von Neumann entropy are described, along with related concepts such as classical and quantum relative entropy, conditional entropy, and mutual information. A few more detailed topics are considered in the quantum case. arXiv:1805.11965v5 [hep-th] 4 Oct 2019 Contents 1 Introduction 2 2 Classical Information Theory 2 2.1 ShannonEntropy ................................... .... 2 2.2 ConditionalEntropy ................................. .... 4 2.3 RelativeEntropy .................................... ... 6 2.4 Monotonicity of Relative Entropy . ...... 7 3 Quantum Information Theory: Basic Ingredients 10 3.1 DensityMatrices .................................... ... 10 3.2 QuantumEntropy................................... .... 14 3.3 Concavity ......................................... .. 16 3.4 Conditional and Relative Quantum Entropy . ....... 17 3.5 Monotonicity of Relative Entropy . ...... 20 3.6 GeneralizedMeasurements . ...... 22 3.7 QuantumChannels ................................... ... 24 3.8 Thermodynamics And Quantum Channels . ...... 26 4 More On Quantum Information Theory 27 4.1 Quantum Teleportation and Conditional Entropy . ......... 28 4.2 Quantum Relative Entropy And Hypothesis Testing . ......... 32 4.3 Encoding
    [Show full text]
  • Quantum Information Theory
    Lecture Notes Quantum Information Theory Renato Renner with contributions by Matthias Christandl February 6, 2013 Contents 1 Introduction 5 2 Probability Theory 6 2.1 What is probability? . .6 2.2 Definition of probability spaces and random variables . .7 2.2.1 Probability space . .7 2.2.2 Random variables . .7 2.2.3 Notation for events . .8 2.2.4 Conditioning on events . .8 2.3 Probability theory with discrete random variables . .9 2.3.1 Discrete random variables . .9 2.3.2 Marginals and conditional distributions . .9 2.3.3 Special distributions . 10 2.3.4 Independence and Markov chains . 10 2.3.5 Functions of random variables, expectation values, and Jensen's in- equality . 10 2.3.6 Trace distance . 11 2.3.7 I.i.d. distributions and the law of large numbers . 12 2.3.8 Channels . 13 3 Information Theory 15 3.1 Quantifying information . 15 3.1.1 Approaches to define information and entropy . 15 3.1.2 Entropy of events . 16 3.1.3 Entropy of random variables . 17 3.1.4 Conditional entropy . 18 3.1.5 Mutual information . 19 3.1.6 Smooth min- and max- entropies . 20 3.1.7 Shannon entropy as a special case of min- and max-entropy . 20 3.2 An example application: channel coding . 21 3.2.1 Definition of the problem . 21 3.2.2 The general channel coding theorem . 21 3.2.3 Channel coding for i.i.d. channels . 24 3.2.4 The converse . 24 2 4 Quantum States and Operations 26 4.1 Preliminaries .
    [Show full text]
  • Quantum Zeno Dynamics from General Quantum Operations
    Quantum Zeno Dynamics from General Quantum Operations Daniel Burgarth1, Paolo Facchi2,3, Hiromichi Nakazato4, Saverio Pascazio2,3, and Kazuya Yuasa4 1Center for Engineered Quantum Systems, Dept. of Physics & Astronomy, Macquarie University, 2109 NSW, Australia 2Dipartimento di Fisica and MECENAS, Università di Bari, I-70126 Bari, Italy 3INFN, Sezione di Bari, I-70126 Bari, Italy 4Department of Physics, Waseda University, Tokyo 169-8555, Japan June 30, 2020 We consider the evolution of an arbitrary quantum dynamical semigroup of a finite-dimensional quantum system under frequent kicks, where each kick is a generic quantum operation. We develop a generalization of the Baker- Campbell-Hausdorff formula allowing to reformulate such pulsed dynamics as a continuous one. This reveals an adiabatic evolution. We obtain a general type of quantum Zeno dynamics, which unifies all known manifestations in the literature as well as describing new types. 1 Introduction Physics is a science that is often based on approximations. From high-energy physics to the quantum world, from relativity to thermodynamics, approximations not only help us to solve equations of motion, but also to reduce the model complexity and focus on im- portant effects. Among the largest success stories of such approximations are the effective generators of dynamics (Hamiltonians, Lindbladians), which can be derived in quantum mechanics and condensed-matter physics. The key element in the techniques employed for their derivation is the separation of different time scales or energy scales. Recently, in quantum technology, a more active approach to condensed-matter physics and quantum mechanics has been taken. Generators of dynamics are reversely engineered by tuning system parameters and device design.
    [Show full text]
  • Singles out a Specific Basis
    Quantum Information and Quantum Noise Gabriel T. Landi University of Sao˜ Paulo July 3, 2018 Contents 1 Review of quantum mechanics1 1.1 Hilbert spaces and states........................2 1.2 Qubits and Bloch’s sphere.......................3 1.3 Outer product and completeness....................5 1.4 Operators................................7 1.5 Eigenvalues and eigenvectors......................8 1.6 Unitary matrices.............................9 1.7 Projective measurements and expectation values............ 10 1.8 Pauli matrices.............................. 11 1.9 General two-level systems....................... 13 1.10 Functions of operators......................... 14 1.11 The Trace................................ 17 1.12 Schrodinger’s¨ equation......................... 18 1.13 The Schrodinger¨ Lagrangian...................... 20 2 Density matrices and composite systems 24 2.1 The density matrix........................... 24 2.2 Bloch’s sphere and coherence...................... 29 2.3 Composite systems and the almighty kron............... 32 2.4 Entanglement.............................. 35 2.5 Mixed states and entanglement..................... 37 2.6 The partial trace............................. 39 2.7 Reduced density matrices........................ 42 2.8 Singular value and Schmidt decompositions.............. 44 2.9 Entropy and mutual information.................... 50 2.10 Generalized measurements and POVMs................ 62 3 Continuous variables 68 3.1 Creation and annihilation operators................... 68 3.2 Some important
    [Show full text]
  • Quantum Channels and Operations
    1 Quantum information theory (20110401) Lecturer: Jens Eisert Chapter 4: Quantum channels 2 Contents 4 Quantum channels 5 4.1 General quantum state transformations . .5 4.2 Complete positivity . .5 4.2.1 Choi-Jamiolkowski isomorphism . .7 4.2.2 Kraus’ theorem and Stinespring dilations . .9 4.2.3 Disturbance versus information gain . 10 4.3 Local operations and classical communication . 11 4.3.1 One-local operations . 11 4.3.2 General local quantum operations . 12 3 4 CONTENTS Chapter 4 Quantum channels 4.1 General quantum state transformations What is the most general transformation of a quantum state that one can perform? One might wonder what this question is supposed to mean: We already know of uni- tary Schrodinger¨ evolution generated by some Hamiltonian H. We also know of the measurement postulate that alters a state upon measurement. So what is the question supposed to mean? In fact, this change in mindset we have already encountered above, when we thought of unitary operations. Of course, one can interpret this a-posteriori as being generated by some Hamiltonian, but this is not so much the point. The em- phasis here is on what can be done, what unitary state transformations are possible. It is the purpose of this chapter to bring this mindset to a completion, and to ask what kind of state transformations are generally possible in quantum mechanics. There is an abstract, mathematically minded approach to the question, introducing notions of complete positivity. Contrasting this, one can think of putting ingredients of unitary evolution and measurement together.
    [Show full text]
  • Quantum Mechanics Quick Reference
    Quantum Mechanics Quick Reference Ivan Damg˚ard This note presents a few basic concepts and notation from quantum mechanics in very condensed form. It is not the intention that you should read all of it immediately. The text is meant as a source from where you can quickly recontruct the meaning of some of the basic concepts, without having to trace through too much material. 1 The Postulates Quantum mechanics is a mathematical model of the physical world, which is built on a small number of postulates, each of which makes a particular claim on how the model reflects physical reality. All the rest of the theory can be derived from these postulates, but the postulates themselves cannot be proved in the mathematical sense. One has to make experiments and see whether the predictions of the theory are confirmed. To understand what the postulates say about computation, it is useful to think of how we describe classical computation. One way to do this is to say that a computer can be in one of a number of possible states, represented by all internal registers etc. We then do a number of operations, each of which takes the computer from one state to another, where the sequence of operations is determined by the input. And finally we get a result by observing which state we have arrived in. In this context, the postulates say that a classical computer is a special case of some- thing more general, namely a quantum computer. More concretely they say how one describes the states a quantum computer can be in, which operations we can do, and finally how we can read out the result.
    [Show full text]
  • Choi's Proof and Quantum Process Tomography 1 Introduction
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Choi's Proof and Quantum Process Tomography provided by CERN Document Server Debbie W. Leung IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, USA January 28, 2002 Quantum process tomography is a procedure by which an unknown quantum operation can be fully experimentally characterized. We reinterpret Choi's proof of the fact that any completely positive linear map has a Kraus representation [Lin. Alg. and App., 10, 1975] as a method for quantum process tomography. Furthermore, the analysis for obtaining the Kraus operators are particularly simple in this method. 1 Introduction The formalism of quantum operation can be used to describe a very large class of dynamical evolution of quantum systems, including quantum algorithms, quantum channels, noise processes, and measurements. The task to fully characterize an unknown quantum operation by applying it to carefully chosen input E state(s) and analyzing the output is called quantum process tomography. The parameters characterizing the quantum operation are contained in the density matrices of the output states, which can be measured using quantum state tomography [1]. Recipes for quantum process tomography have been proposed [12, 4, 5, 6, 8]. In earlier methods [12, 4, 5], is applied to different input states each of exactly the input dimension of . E E In [6, 8], is applied to part of a fixed bipartite entangled state. In other words, the input to is entangled E E with a reference system, and the joint output state is analyzed.
    [Show full text]
  • The Minimal Modal Interpretation of Quantum Theory
    The Minimal Modal Interpretation of Quantum Theory Jacob A. Barandes1, ∗ and David Kagan2, y 1Jefferson Physical Laboratory, Harvard University, Cambridge, MA 02138 2Department of Physics, University of Massachusetts Dartmouth, North Dartmouth, MA 02747 (Dated: May 5, 2017) We introduce a realist, unextravagant interpretation of quantum theory that builds on the existing physical structure of the theory and allows experiments to have definite outcomes but leaves the theory's basic dynamical content essentially intact. Much as classical systems have specific states that evolve along definite trajectories through configuration spaces, the traditional formulation of quantum theory permits assuming that closed quantum systems have specific states that evolve unitarily along definite trajectories through Hilbert spaces, and our interpretation extends this intuitive picture of states and Hilbert-space trajectories to the more realistic case of open quantum systems despite the generic development of entanglement. We provide independent justification for the partial-trace operation for density matrices, reformulate wave-function collapse in terms of an underlying interpolating dynamics, derive the Born rule from deeper principles, resolve several open questions regarding ontological stability and dynamics, address a number of familiar no-go theorems, and argue that our interpretation is ultimately compatible with Lorentz invariance. Along the way, we also investigate a number of unexplored features of quantum theory, including an interesting geometrical structure|which we call subsystem space|that we believe merits further study. We conclude with a summary, a list of criteria for future work on quantum foundations, and further research directions. We include an appendix that briefly reviews the traditional Copenhagen interpretation and the measurement problem of quantum theory, as well as the instrumentalist approach and a collection of foundational theorems not otherwise discussed in the main text.
    [Show full text]
  • Measurements of Entropic Uncertainty Relations in Neutron Optics
    applied sciences Review Measurements of Entropic Uncertainty Relations in Neutron Optics Bülent Demirel 1,† , Stephan Sponar 2,*,† and Yuji Hasegawa 2,3 1 Institute for Functional Matter and Quantum Technologies, University of Stuttgart, 70569 Stuttgart, Germany; [email protected] 2 Atominstitut, Vienna University of Technology, A-1020 Vienna, Austria; [email protected] or [email protected] 3 Division of Applied Physics, Hokkaido University Kita-ku, Sapporo 060-8628, Japan * Correspondence: [email protected] † These authors contributed equally to this work. Received: 30 December 2019; Accepted: 4 February 2020; Published: 6 February 2020 Abstract: The emergence of the uncertainty principle has celebrated its 90th anniversary recently. For this occasion, the latest experimental results of uncertainty relations quantified in terms of Shannon entropies are presented, concentrating only on outcomes in neutron optics. The focus is on the type of measurement uncertainties that describe the inability to obtain the respective individual results from joint measurement statistics. For this purpose, the neutron spin of two non-commuting directions is analyzed. Two sub-categories of measurement uncertainty relations are considered: noise–noise and noise–disturbance uncertainty relations. In the first case, it will be shown that the lowest boundary can be obtained and the uncertainty relations be saturated by implementing a simple positive operator-valued measure (POVM). For the second category, an analysis for projective measurements is made and error correction procedures are presented. Keywords: uncertainty relation; joint measurability; quantum information theory; Shannon entropy; noise and disturbance; foundations of quantum measurement; neutron optics 1. Introduction According to quantum mechanics, any single observable or a set of compatible observables can be measured with arbitrary accuracy.
    [Show full text]
  • Partial Traces and Entropy Inequalities Rajendra Bhatia Indian Statistical Institute, 7, S.J.S
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Linear Algebra and its Applications 370 (2003) 125–132 www.elsevier.com/locate/laa Partial traces and entropy inequalities Rajendra Bhatia Indian Statistical Institute, 7, S.J.S. Sansanwal Marg, New Delhi 110016, India Received 8 May 2002; accepted 5 January 2003 Submitted by C. Davis Abstract The partial trace operation and the strong subadditivity property of entropy in quantum mechanics are explained in linear algebra terms. © 2003 Elsevier Inc. All rights reserved. Keywords: Quantum entropy; Density matrix; Partial trace; Operator convexity; Matrix inequalities 1. Introduction There is an interesting matrix operation called partial trace in the physics lit- erature. The first goal of this short expository paper is to connect this operation to others more familiar to linear algebraists. The second goal is to use this connection to present a slightly simpler proof of an important theorem of Lieb and Ruskai [11,12] called the strong subadditivity (SSA) of quantum-mechanical entropy. Closely re- lated to SSA, and a crucial ingredient in one of its proofs, is another theorem of Lieb [9] called Lieb’s concavity theorem (solution of the Wigner–Yanase–Dyson conjecture). An interesting alternate formulation and proof of this latter theorem appeared in a paper of Ando [1] well-known to linear algebraists. Discussion of the Lieb–Ruskai theorem, however, seems to have remained confined to the physics literature. We believe there is much of interest here for others as well, particularly for those interested in linear algebra.
    [Show full text]