Genetics / Genética

Total Page:16

File Type:pdf, Size:1020Kb

Genetics / Genética Botanical Sciences 99(3): 542-559. 2021 Received: November 15, 2020, Accepted: February 2, 2021 DOI: 10.17129/botsci.2795Genetic structure of threeOn line Mexican first: May bamboo 26, 2021 species Genetics / Genética A POPULATION GENETICS STUDY OF THREE NATIVE MEXICAN WOODY BamBOO SPECIES OF GUADUA (POACEAE: BamBUSOIDEAE: BamBUSEAE: GUADUINAE) USING NUCLEAR MICROSATELLITE maRKERS ESTUDIO DE GENÉTICA DE POBLACIONES DE TRES ESPECIES DE BAMBÚES LEÑOSOS NATIVOS DE MEXICO DEL GÉNERO GUADUA (POACEAE: BAMBUSOIDEAE: BAMBUSEAE: GUADUINAE) UTILIZANDO MICROSATÉLITES NUCLEARES JESSICA PÉREZ-ALQUICIRA1,2, STEPHANIE AGUILERA-LÓPEZ1, YESSICA RICO3,2, EDUARDO RUIZ-SANCHEZ*1,4 1 Universidad de Guadalajara, Laboratorio Nacional de Identificación y Caracterización Vegetal (LaniVeg), Depto. Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, México. 2 CONACYT, Ciudad de México, México. 3 Red de Diversidad Biológica del Occidente Mexicano, Instituto de Ecología, A.C., Pátzcuaro, Michoacán, México. 4 Universidad de Guadalajara, Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Zapopan, Jalisco, Mexico. *Author for correspondence: [email protected] Abstract Background: Sporadic flowering contributes significantly to genetic diversity and connectivity among populations. Woody bamboos present sporadic or gregarious flowering patterns with long flowering cycles. In this study, we analyze the genetic diversity of three Guadua species distributed along the Gulf of Mexico slope that have different patterns of flowering. Questions: (1) Are the three Guadua species genetically differentiated? (2) Does the vulnerable species G. inermis have low levels of genetic diversity? (3) What is the relative contribution of geographic and environmental factors to the genetic structure of G. inermis? Species studied: Guadua amplexifolia, G. inermis and G. tuxtlensis. Study site and dates: During 2014 and 2015, we collected samples of G. inermis in Puebla and southeastern Mexico, G. amplexifolia in Vera- cruz and Oaxaca, and G. tuxtlensis in southern Veracruz. Methods: We successfully amplified five of nine SSR markers, and genotyped a total of 155 samples. Results: The three Guadua species were genetically differentiated. For G. inermis, we found high levels of population genetic diversity, which are relatively higher than those of other monocot species. Genetic differentiation was high and three groups were detected: north, central and south. We found a significant association between genetic distances and the maximum temperature of the warmest month, but not with geo- graphic distance. Conclusions: Our study is the first to analyze levels of genetic diversity in Mexican bamboos and confirms their taxonomic identity.G. inermis has a strong genetic structure, even when populations are geographically close. Keywords: Bamboos, genetic diversity, genetic structure, sporadic and massive flowering, polyploid. Resumen Antecedentes: La floración esporádica puede influenciar la estructura genética de las poblaciones. Los bambúes presentan patrones de floración esporádica o gregaria. En este estudio analizamos la diversidad genética de tres especies de Guadua con diferentes patrones de floración distri- buidos en la Vertiente del Golfo de México. Preguntas: 1) ¿Están las tres especies de Guadua (G. inermis, G. amplexifolia y G. tuxtlensis) genéticamente diferenciadas? 2) ¿Presenta G. inermis bajos niveles de diversidad genética? 3) ¿Cuál es la contribución relativa de los factores geográficos y ambientales en la estructura genética de G. inermis? Especies de estudio: Guadua amplexifolia, G. inermis y G. tuxtlensis. Sitio y años de estudio: En 2014 y 2015, colectamos muestras de G. inermis en Puebla y sureste de México; G. amplexifolia en Veracruz y Oaxaca, y G. tuxtlensis en el sureste de Veracruz. Métodos: Amplificamos exitosamente cinco marcadores SSR de un total de nueve y genotipificamos 155 muestras. Resultados: Las tres especies analizadas están genéticamente diferenciadas. G. inermis presentó altos niveles de diversidad genética, y superio­ res a otras especies de monocotiledóneas. Los niveles de diferenciación genética fueron altos y se detectaron tres grupos: norte, sur y centro. Encontramos una asociación significativa entre las distancias genéticas con la temperatura máxima del mes más caliente, pero no con la distancia geográfica. Conclusiones: Nuestro trabajo es el primer estudio que evalúa los niveles de diversidad genética en bambúes mexicanos y confirma su identidad taxonómica. G. inermis tiene una estructura genética alta, incluso cuando las poblaciones están cerca geográficamente. Palabras clave: Bambúes, diversidad genética, estructura genética, floración esporádica y masiva, poliploidía. This is an open access article distributed under the terms of the Creative Commons Attribution License CCBY-NC (4.0) international. https://creativecommons.org/licenses/by-nc/4.0/ 542 Pérez-Alquicira et al. / Botanical Sciences 99(3): 542-559. 2021 Understanding the processes leading to speciation and tween populations, leading to diffuse flower temporality biodiversity in plants is one of the main research topics in within a species; 4) Sporadic flowering, random or other evolutionary biology. Flowering time has a strong effect non­gregarious patterns of flowering (Troup 1921, Janzen on gene flow among populations (Fitter & Fitter 2002). 1976, Gadgil & Prasad 1984, Banik 1998, Franklin 2004, For example, floral synchrony results in the simultaneous Bhattacharya et al. 2009, Zheng et al. 2020). Understand- and massive flowering of individuals, offering abundant ing how asynchronous flowering phenology can influence floral resources that can attract numerous pollinators and patterns of gene flow in woody bamboos is crucial to elu- favoring outcrossing rates (Domínguez & Dirzo 1995, cidating its role in population genetic divergence and spe- Rodríguez­Pérez & Traveset 2016). In the same way, ciation. there is evidence that flowering synchrony increases re- The genus Guadua Kunth is one of the six genera of productive success in wind­pollinated species (Bogdzie- the subtribe Guaduinae (Judziewicz et al. 1999, Clark et wicz et al. 2020). In contrast, plant asynchrony or sporadic al. 2015, Tyrrell et al. 2018). It includes 33 species and is flowering might reduce the availability of mates and thus one of the most diverse genera in the subtribe (Clark et reproductive success in both insect and wind­pollinated al. 2015, Ruiz­Sanchez et al. 2021). Species of Guadua species (Domínguez & Dirzo 1995, Bogdziewicz et al. are distributed from Mexico to Argentina, most of the spe- 2020). Asynchrony in flowering time across populations cies occur in South America, and this region is consid- should result in lower levels of gene flow and greater ge- ered its center of diversification (Medina & Medina 1965, netic structure, even for populations that are geographi- Judziewicz et al. 1999, Londoño 2001, 2011, Clark et al. cally close together (Kirkpatrick 2000, Reisch & Posclod 2015). Mexico has seven species of Guadua: G. aculeata 2009). Rupr. ex Fourn., G. amplexifolia J. Presl., G. longifolia Geographic distance and the environment represent (E. Fourn.) R.W. Pohl, G. paniculata Munro, G. inermis key components influencing species’ genetic structure Rupr. ex Fourn, G. velutina Londoño & L.G. Clark, and G. (Rousset 1997, Wang & Bradburd 2014). Several species tuxtlensis Londoño & Ruiz­Sanchez. The last three spe- exhibit a significant pattern of isolation by distance (IBD), cies are endemic to Mexico, and except for G. paniculata, which suggests that genetic differentiation increases with which is distributed along the Pacific coast of Mexico, geographic distance. On the other hand, isolation by envi- the other species are distributed along the Gulf of Mexi- ronment (IBE) has been proposed to describe the relation- co in the states of Campeche, Chiapas, Hidalgo, Oaxaca, ship between environmental heterogeneity and the spatial Puebla, San Luis Potosí, Tabasco, Tamaulipas, and Vera- distribution of genetic variation (Wang & Bradburd 2014). cruz (Londoño & Ruiz­Sanchez 2014, Ruiz­Sanchez et Thus, genetic differentiation among populations increases al. 2020). Most of the species are used to build houses, with their environmental differentiation (Wang & Brad- fences, kiosks, and to make handicrafts (Londoño & Ruiz­ burd 2014). In contrast, limited dispersal constrains gene Sanchez 2014). flow among populations and reduces the possibility of Few studies have reported the flowering cycles ofGua - counteracting genetic drift (Slatkin 1993, Rousset 1997). dua species. Guerreiro (2014), Guerreiro et al. (2020) Woody bamboos (Poaceae: Bambusoideae: Bambuse- and Vega & Hernández (2008) recorded massive flower- ae) are a large taxonomic group with notable economic ing events and estimated flowering cycles for three South and ecological importance. Flowering in woody bamboos American Guadua species: Guadua chacoensis (Rojas) is peculiar because many of them remain in a vegeta- Londoño & P. M. Peterson (28­31 years), G. paraguayana tive phase for a long period of time, as long as decades Döll (38 years), and G. trinii (Nees) Nees ex Rupr. (30­33 or a century, followed by mass synchronous flowering years). Liebsch & Reginato (2009) estimated cycles of 27- and subsequent death (Janzen 1976). Other woody bam- 28 years between flowering events forG. sarcocarpa Lon- boos
Recommended publications
  • Iloza Et Al GEB 170226
    1 Phylogenetic patterns of rarity in a regional species pool of tropical woody plants 2 M. Isabel Loza, Iván Jiménez, Peter M. Jørgensen, Gabriel Arellano, Manuel J. Macía, 3 Vania W. Torrez, and Robert E. Ricklefs 4 M. Isabel Loza: Department of Biology, University of Missouri, St. Louis, MO, 63121, 5 USA and Herbario Nacional de Bolivia, Campus Universitario Cota-Cota, calle 27, 6 Correo Central Cajón Postal 10077, La Paz, Bolivia. [email protected] 7 Iván Jiménez: Center for Conservation and Sustainable Development, Missouri 8 Botanical Garden, P.O. Box 299, St. Louis, Missouri 63166, USA; and Department of 9 Biology, University of Missouri, St. Louis, MO, 63121, USA. 10 [email protected] 11 Peter M. Jørgensen: Missouri Botanical Garden, P.O. Box 299, St. Louis, Missouri 12 63166, USA. [email protected] 13 Gabriel Arellano: Center for Tropical Forest Science – ForestGEO, Smithsonian 14 Tropical Research Institute.NMNH-MRC 166, West Loading Dock, 10th and 15 Constitution Ave. NW, Washington, DC 20560, USA. 16 [email protected] 17 Manuel J. Macía: Departamento de Biología, Área de Botánica, Universidad 18 Autónoma de Madrid, Calle Darwin 2, ES–28049 Madrid, Spain. 19 [email protected] 20 Vania W.Torrez: Division of Plant Conservation and Population Biology, Department 21 of Biology, University of Leuven, B-3001 Leuven, [email protected] 22 Robert E. Ricklefs: Department of Biology, University of Missouri, St. Louis, MO, 23 63121, USA. [email protected] 24 25 Running title: Phylogenetic patterns of rarity 26 27 Keywords: Andean floras, Bolivia, habitat breadth, geographical range size, local 28 abundance, Madidi, rarity, phylogenetic conservatism, phylogenetic signal.
    [Show full text]
  • Introduction in the Americas, Agreat Diversity of Bamboo Endemic Species Is Found in Brazil, North and Central Andes, Mexico and Central America
    Theme: Environment: Ecology and Environmental Concerns Mexican national living bamboo collection ex situ conservation Ma. Teresa Mejia-Saulés and Rogelio Macías Ordóñez Instituto de Ecología A.C. Carretera antigua a Coatepec 351, El Haya, Xalapa, Ver. 91070 México. email: [email protected]@inecol.mx In the Americas, the highest bamboo diversity and endemism is found in Brazil, the northern and central Andes, Mexico and Central America. In 2003, there were 40 native species of bamboos described for Mexico in eleven bamboo genera. Recent work has brought this number to 56 species. More than the half (34) of the Mexican bamboo species are endemic. The Mexican bamboos grow in tropical dry and perennial forests, mixed pine-oak and pine-fire forests, pine forests, and cloud forests from sea level to 3,000 m elevation. Genera of described Mexican woody bamboos species (and spp number) are: Arthrostylidium(1), Aulonemia(1),Chusquea(22),Guadua(7),Merostachys (1),Olmeca(5),Otatea(11),Rhipidocladum(4). Herbaceous genera are Cryptochloa(1),Lithachne(1),Olyra(2). Many of them have a diversity of rustic uses such as material for roofs or walls, furniture, fences, baskets, walking sticks, handcrafts, beehives, agricultural tools as well as ornamental plants. Live collections at the Botanical Gardens that preserve plant genetic resources are curated for various purposes including scientific education and research. The Francisco Javier Clavijero Botanical Garden at the Instituto de Ecología, in Xalapa, Mexico, houses the Mexican national living bamboo collection. It was stablished in 2003 with the collaborative support of INECOL, Bamboo of the Americas, and the InstitutoTecnológico de Chetumal for the ex situ conservation of Mexican bamboo diversity, research and education.
    [Show full text]
  • Allometric Derivation and Estimation of Guadua Weberbaueri and G. Sarcocarpa Biomass in the Bamboo-Dominated Forests of SW Amazonia
    bioRxiv preprint doi: https://doi.org/10.1101/129262; this version posted April 21, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Allometric derivation and estimation of Guadua weberbaueri and G. sarcocarpa biomass in the bamboo-dominated forests of SW Amazonia Noah Yavit 10103 Farrcroft Drive Fairfax, VA 22030 Direct all correspondence to: [email protected] (571) 213-7571* bioRxiv preprint doi: https://doi.org/10.1101/129262; this version posted April 21, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Abstract Bamboo-dominated forests in Southwestern Amazonia encompass an estimated 180,000 km2 of nearly contiguous primary, tropical lowland forest. This area, largely composed of two bamboo species, Guadua weberbaueri Pilger and G. sarcocarpa Londoño & Peterson, comprises a significant portion of the Amazon Basin and has a potentially important effect on regional carbon storage. Numerous local REDD(+) projects would benefit from the development of allometric models for these species, although there has been just one effort to do so. The aim of this research was to create a set of improved allometric equations relating the above and belowground biomass to the full range of natural size and growth patterns observed. Four variables (DBH, stem length, small branch number and branch number ≥ 2cm diameter) were highly significant predictors of stem biomass (N≤ 278, p< 0.0001 for all predictors, complete model R2=0.93).
    [Show full text]
  • Dendrocalamus Sinicus)
    RESEARCH ARTICLE Transcriptome Sequencing and Analysis for Culm Elongation of the World’s Largest Bamboo (Dendrocalamus sinicus) Kai Cui1, Haiying Wang1, Shengxi Liao1*, Qi Tang2,LiLi1, Yongzhong Cui1, Yuan He1 1 Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, 650224, People’s Republic of China, 2 Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultral University, Changsha, 410128, People’s Republic of China a11111 * [email protected] Abstract Dendrocalamus sinicus is the world’s largest bamboo species with strong woody culms, and known for its fast-growing culms. As an economic bamboo species, it was popularized OPEN ACCESS for multi-functional applications including furniture, construction, and industrial paper pulp. Citation: Cui K, Wang H, Liao S, Tang Q, Li L, Cui Y, To comprehensively elucidate the molecular processes involved in its culm elongation, et al. (2016) Transcriptome Sequencing and Analysis Illumina paired-end sequencing was conducted. About 65.08 million high-quality reads for Culm Elongation of the World’s Largest Bamboo (Dendrocalamus sinicus). PLoS ONE 11(6): were produced, and assembled into 81,744 unigenes with an average length of 723 bp. A e0157362. doi:10.1371/journal.pone.0157362 total of 64,338 (79%) unigenes were annotated for their functions, of which, 56,587 were Editor: Binying Fu, Institute of Crop Sciences, annotated in the NCBI non-redundant protein database and 35,262 were annotated in the CHINA Swiss-Prot database. Also, 42,508 and 21,009 annotated unigenes were allocated to Received: December 5, 2015 gene ontology (GO) categories and clusters of orthologous groups (COG), respectively.
    [Show full text]
  • The Formation of Dense Understory Layers in Forests Worldwide: Consequences and Implications for Forest Dynamics, Biodiversity, and Succession
    Previous Advances in Threat Assessment and Their Application to Forest and Rangeland Management The Formation of Dense Understory Layers in Forests Worldwide: Consequences and Implications for Forest Dynamics, Biodiversity, and Succession Alejandro A. Royo and Walter P. Carson by land ownership and administrative boundaries. In many cases, the risk to forest understories was particularly acute Alejandro A. Royo, research ecologist, Forestry Sciences if the effects of multiple stressors occurred in a stand, either Laboratory, USDA Forest Service, Northern Research in tandem or within a short period of time. Specifically, the Station, Irvine, PA 16329; and Walter P. Carson, associate synergy between overstory disturbance and uncharacteristic professor, Department of Biological Sciences, University of fire regimes or increased herbivore strongly controls species Pittsburgh, Pittsburgh, PA 15260. richness and leads to depauperate understories dominated Abstract by one or a few species. We suggest that aggressive expansion by native Alterations to natural herbivore and disturbance regimes understory plant species can be explained by considering often allow a select suite of forest understory plant species their ecological requirements in addition to their environ- to dramatically spread and form persistent, mono-dominant mental context. Some plant species are particularly invasive thickets. Following their expansion, this newly established by virtue of having life-history attributes that match one or understory canopy can alter tree seedling recruitment rates more of the opportunities afforded by multiple disturbances. and exert considerable control over the rate and direction Increased overstory disturbance selects for shade-intolerant of secondary forest succession. No matter where these species with rapid rates of vegetative spread over slower native plant invasions occur, they are characterized by one growing, shade-tolerant herbs and shrubs.
    [Show full text]
  • A New Species of Merostachys (Poaceae: Bambusoideae: Bambuseae: Arthrostylidiinae) with the Northernmost Distribution of the Genus
    Phytotaxa 344 (1): 031–038 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2018 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.344.1.4 A new species of Merostachys (Poaceae: Bambusoideae: Bambuseae: Arthrostylidiinae) with the northernmost distribution of the genus EDUARDO RUIZ-SANCHEZ1,*, LYNN G. CLARK2, TERESA MEJÍA-SAULÉS3 & FRANCISCO LOREA- HERNÁNDEZ4 1 Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara. Camino Ing. Ramón Padilla Sánchez 2100, Nextipac, Zapopan, Jalisco 45110, Mexico., e-mail: [email protected] 2 Department of Ecology, Evolution, and Organismal Biology, 251 Bessey Hall, Iowa State University, Ames, Iowa 50011–4009, United States of America., e-mail: [email protected] 3 Red de Biología Evolutiva, Instituto de Ecología, A. C. Carretera antigua a Coatepec 351, Xalapa, 91070, Mexico., e-mail: [email protected] 4 Red de Biodiversidad y Sistemática, Instituto de Ecología, A. C. Carretera antigua a Coatepec 351, Xalapa, 91070, Mexico., e-mail: [email protected] *author for correspondence Abstract With 52 described species, Merostachys is the most diverse genus in the Arthrostylidiinae; 50 of the species are present in South America and only two, M. latifolia and M. pauciflora, are distributed in Central America and Mexico. Previous col- lections of vegetative Merostachys specimens from El Triunfo, Chiapas, Mexico, were identified as M. pauciflora. However, new flowering collections from the state of Tabasco, Mexico, allowed us to differentiate the Mexican populations from M. latifolia and M. pauciflora. A detailed study of samples from the Tabasco population, and a review of the previous collections from Chiapas, confirmed the existence of a new Merostachys species, which we here describe and illustrate as M.
    [Show full text]
  • Functional Analysis of Secondary Tropical Dry Forests in a Region of the Colombian Caribbean
    FUNCTIONAL ANALYSIS OF SECONDARY TROPICAL DRY FORESTS IN A REGION OF THE COLOMBIAN CARIBBEAN Carolina Castellanos Castro This thesis has been submitted in partial fulfilment of the requirements of the degree of Doctor of Philosophy Bournemouth University October 2013 This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognize that its copyright rests with its author and due acknowledgement must always be made of the use of any material contained in, or derived from, this thesis. 2 FUNCTIONAL ANALYSIS OF SECONDARY TROPICAL DRY FORESTS IN A REGION OF THE COLOMBIAN CARIBBEAN Carolina Castellanos Castro ABSTRACT Secondary tropical forests are increasingly recognized for their role conserving biodiversity in agricultural landscapes and this role is especially important for seasonally dry tropical forests (SDTF), one of the most threatened tropical forested ecosystems. The conservation value of secondary forest is increased by its capacity to maintain ecosystem properties and provide services to humans; which has been hypothesized to have positive links to the species and functional diversity of ecosystems. However very little information is available on the occurrence of this relationship in secondary forests. This dissertation makes an important contribution to the ecological knowledge of secondary SDTF and describes changes in plant species and functional diversity by using a stratified design considering different successional stages along an environmental gradient in a region of the Caribbean coast of Colombia and a multi-trait approach to study functional diversity at three scales: species, communities and landscape. The analysis of the variation in functional traits of SDTF trees at the species level allowed me to support the hypothesis of coordination between leaves and stem traits.
    [Show full text]
  • Avian Assemblages in Bamboo and Non-Bamboo Habitats in a Tropical Rainforest
    CSIRO PUBLISHING Emu http://dx.doi.org/10.1071/MU12017 Avian assemblages in bamboo and non-bamboo habitats in a tropical rainforest Débora Cristina Rother A, Kaizer José Ferreira Alves B and Marco Aurélio Pizo C,D AUNESP – Universidade Estadual Paulista, Departamento de Botânica, 13506-900 Rio Claro, São Paulo, Brazil. BInstituto Adolfo Lutz – Regional de Rio Claro, 13500-090 Rio Claro, São Paulo, Brazil. CUNESP – Universidade Estadual Paulista, Departamento de Zoologia, 13506-900 Rio Claro, São Paulo, Brazil. DCorresponding author. Email: [email protected] Abstract. Some species of bird are closely associated with bamboos (bamboo specialists) but community-wide studies comparing the avian assemblages in bamboo and non-bamboo habitats are lacking. Using point counts, we compared the species richness, abundance and composition of the avian assemblages in bamboo and non-bamboo habitats in the Brazilian Atlantic forest. Apart from considering bamboo specialists and non-specialist species, we contrasted birds from different categories of forest dependence, forest strata and diet. We recorded a total of 81 species of birds (74 in bamboo, 55 in non- bamboo habitats), including 15 bamboo specialists. Species richness was greater in bamboo habitats in all categories of diet and forest dependence. Bamboo and non-bamboo habitats had a similar number of canopy species, but bamboo habitats had a greater number of non-canopy species. The abundance of the whole avian community or of each of the dietary categories did not differ between habitats. The overall species composition differed between habitats, with a more homogeneous composition in non-bamboo habitats. A great number of species use bamboo habitats, even if they are not bamboo specialists.
    [Show full text]
  • Bamboo Species Introduced in Ethiopia
    BAMBOO SPECIES INTRODUCED IN ETHIOPIA Biological, Ecological and Management Aspects Yigardu Mulatu Asabeneh Alemayehu Zebene Tadesse Ethiopian Environment and Forest Research Institute (EEFRI) Yigardu Mulatu et al. BAMBOO SPECIES INTRODUCED IN ETHIOPIA BIOLOGICAL, ECOLOGICAL AND MANAGEMENT ASPECTS Yigardu Mulatu Asabeneh Alemayehu Zebene Tadesse ©Ethiopian Environment and Forest Research Institute (EEFRI), 2016 All rights reserved Tel.: +251-116-464606/0286 Fax: +251-116-464882 E-mail: [email protected] P. O. Box: 24536 code 1000 Addis Ababa, Ethiopia ISBN: 978-99944-950-2-3 Ethiopian Environment and Forest Research Institute Yigardu Mulatu et al. Acknowledgements The authors would like to acknowledge Central Ethiopia Environment and Forest Research Center (CE-EFRC) of the Ethiopian Environment and Forest Research Institute (EEFRI), Oromiya Forest and Wildlife Enterprise (OFWE) and the Ministry of Environment, Forest and Climate Change of Ethiopia (MEFCC) for covering costs on preparing and publishing this book through the jointly implemented CRGE-FTI bamboo project entitled ''Enhancing Highland Bamboo Management and Processing and Improving Livelihood of the community in Oromiya Region. Much of the research information used in this book has been adapted from the bamboo research project on performance evaluation of introduced bamboo species at different research sites in Northwest Ethiopia (Chagnii), Southwest Ethiopia (Jimma and Tepi), Southern Ethiopia (Gambo and Wondo Genet), Eastern Ethiopia (Hirna) and Central Ethiopia (Holetta, Debrezeit), Most of the pictures of mature clumps of the introduced species are taken from web sources and the authors would like to highly acknowledge all the sources. The research has been implemented by the then Forest Research Directorate of the Ethiopian Institute of Agricultural Research that in the long run has grown up to an institutional level, the Ethiopia Environment and Forest Research Institute, by merging with other two directorates of Ethiopia Environment Protection Authority.
    [Show full text]
  • VOLUME 5 Biology and Taxonomy
    VOLUME 5 Biology and Taxonomy Table of Contents Preface 1 Cyanogenic Glycosides in Bamboo Plants Grown in Manipur, India................................................................ 2 The First Report of Flowering and Fruiting Phenomenon of Melocanna baccifera in Nepal........................ 13 Species Relationships in Dendrocalamus Inferred from AFLP Fingerprints .................................................. 27 Flowering gene expression in the life history of two mass-flowered bamboos, Phyllostachys meyeri and Shibataea chinensis (Poaceae: Bambusoideae)............................................................................... 41 Relationships between Phuphanochloa (Bambuseae, Bambusoideae, Poaceae) and its related genera ......... 55 Evaluation of the Polymorphic of Microsatellites Markers in Guadua angustifolia (Poaceae: Bambusoideae) ......................................................................................................................................... 64 Occurrence of filamentous fungi on Brazilian giant bamboo............................................................................. 80 Consideration of the flowering periodicity of Melocanna baccifera through past records and recent flowering with a 48-year interval........................................................................................................... 90 Gregarious flowering of Melocanna baccifera around north east India Extraction of the flowering event by using satellite image data ......................................................................................................
    [Show full text]
  • Addis Ababa University Addis Ababa Ethiopia July, 2020
    Phylogenetic Relationships among Indigenous and Introduced Bamboo Species and Genetic Diversity Study of Ethiopian Lowland Bamboo [Oxytenanthera abyssinica (A. Rich.) Munro] Using cpDNA Genes ( matK , ndhF and rps16 ) and ISSR Markers Oumer Abdie Oumer Addis Ababa University Addis Ababa Ethiopia July, 2020 Phylogenetic Relationships among Indigenous and Introduced Bamboo Species and Genetic Diversity Study of Ethiopian Lowland Bamboo [Oxytenanthera abyssinica (A. Rich.) Munro] Using cpDNA Genes ( matK , ndhF and rps16 ) and ISSR Markers Oumer Abdie Oumer A Dissertation Submitted to Department of Microbial, Cellular and Molecular Biology in Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biology (Applied Genetics) Addis Ababa University Addis Ababa Ethiopia July, 2020 DECLARATION I declare that this Dissertation entitled “Phylogenetic Relationships among Indigenous and Introduced Bamboo Species and Genetic Diversity Study of Ethiopian Lowland Bamboo [Oxytenanthera abyssinica (A. Rich.) Munro] Using cpDNA Genes ( matK , ndhF and rps16 ) and ISSR Markers” submitted for the Degree of Doctor of Philosophy (PhD) in Biology (Applied Genetics) to the School of Graduate Studies, Addis Ababa University, is my original work and its composition has never been submitted elsewhere for any other award. All sources of materials used for the Dissertation have been duly acknowledged. Name: Oumer Abdie Signature: . Date: 20- July-2020 . i ACKNOWLEDGMENT .( ْٱﻟ َﺤ ْﻤﺪ ُ ِ ﱠ @ ِ َ ﺭ ِّ ﺏ ْٱﻟ َٰﻌ َﻠ ِﻤ َﻴﻦ ) First and for most, I would like to thank the Almighty I am highly indebted to eIpress my deepest and genuine appreciation and than.s to my supervisors0 the late Dr. Jifle Dagne, Dr. Tileye Feyissa and Dr.
    [Show full text]
  • CARACTERIZACIÓN GENÉTICA DE RELICTOS DE Guadua Angustifolia, UN ECOSISTEMA ESTRATÉGICO DE LA ECOREGIÓN VALLE DEL CAUCA MEDIANTE STR´S
    CARACTERIZACIÓN GENÉTICA DE RELICTOS DE Guadua angustifolia, UN ECOSISTEMA ESTRATÉGICO DE LA ECOREGIÓN VALLE DEL CAUCA MEDIANTE STR´s TESIS DOCTORAL CARLOS ANDRES PEREZ GALINDO Sevilla, 2014 AGRADECIMIENTOS A mi madre Carmenza, abuelos, hermana, sobrino y toda mi familia que siempre ha estado allí, apoyándome en todos los procesos de materialización de mis ideas. Al profesor Heiber Cardenas, que siempre me incentivo a ir más allá en las diferentes investigaciones y en los proyectos que emprendimos, que han estado enmarcados en la construcción de nuevos programas de postgrado en Colombia, estudios en biodiversidad de nuestra gran región Vallecaucana y la puesta en marcha de diferentes proyectos para el mejoramiento formativo en ciencias biológicas de los jóvenes colombianos. A la Universidad Pablo de Olavide por el apoyo no solo académico, sino también económico en mi etapa como becario. A su excelente cuerpo profesoral, que mediante sus enseñanzas me permitieron ampliar no solo mis conocimientos en biotecnología, sino también mi visión sobre la vida, incentivándome a realizar mis estudios de postgrado en bioinformática, lo cual me permitiría tratar de entender la evolución desde la óptica molecular. Al Dr. Modesto Luceño, quien tomaría la tutoría de este importante trabajo doctoral, apoyándome en los diferentes procesos y requerimientos para la presentación de la tesis y comprendiendo las dificultades que se tienen al trabajar a distancia. A la Universidad Santiago de Cali, institución que apoyó económica, logística y moralmente la investigación objeto de este trabajo. Cuyo principal objetivo ha estado centrado en recurrir a la investigación social y científica para la defensa de la biodiversidad de cultivos nativos en una región agroindustrial, regida por los monocultivos de azúcar y que ve como la afectación de la biodiversidad incide de manera negativa en la calidad de las tierras y la disponibilidad de recursos hídricos, lo cual hoy por hoy está afectando a los habitantes de estas zonas.
    [Show full text]